Quantum-Dots-Based Phase Separation into a 3D/0D Perovskite Heterojunction for Boosting X-Ray Detector Performance

Han Li, a,b† Shanshan Yu, a,c† Handong Jin, a,b† Zikun Jin,b Wei Qian,b Wanshun Yang,b Shihe Yangab*

Dr. H. Li, S. Yu, H. Jin, Prof. S. Yang

Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China

chsyang@pku.edu.cn

Dr. H. Li, S. Yu, H. Jin, Z. Jin, Dr. W. Qian, W. Yang, Prof. S. Yang

Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen

Graduate School, Peking University, Shenzhen, Guangdong 518055, China.

S. Yu,

Department of Chemistry, The University of Hong Kong, Hong Kong S.A.R., China

The current distribution in the dark and light fields of the Pe-FPD was fitted to a normal distribution curve, as reported elsewhere:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

where μ is the average current value and σ is the standard deviation.

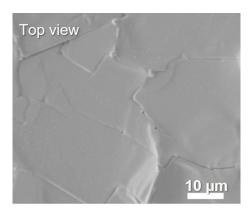
The SNR was calculated by:

$$SNR = J_s/J_n$$

where J_s is the net X-ray generated current density and J_n is the standard deviation of the photocurrent density under

X-ray exposure.

The sensitivity of our device with different applied voltages can be calculated by the equation:


$$R_s = \frac{I_p - I_d}{D \times A}$$

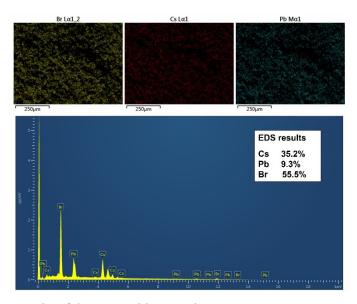
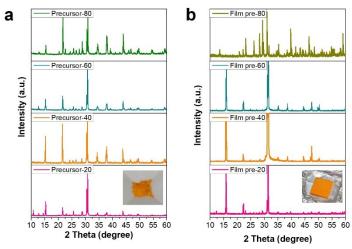
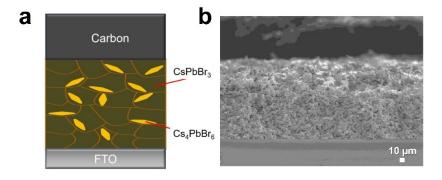
where R_s is the sensitivity, I_p and I_d are the photocurrent and dark current, respectively, and D and A represent the irradiation dose rate and effective area of the X-ray detector, respectively

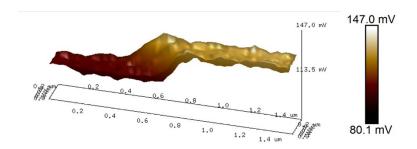
The mobility-lifetime ($\mu\tau$) product was obtained by fitting the curve of photocurrent versus bias voltage dependence using the modified Hecht equation:

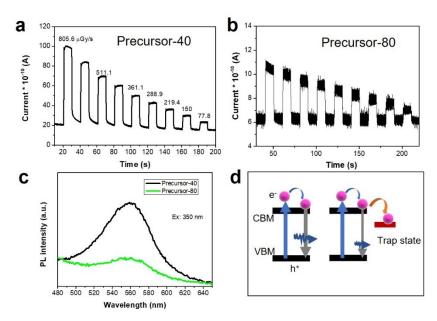
$$I = \frac{I_0 \mu \tau V^1 - exp\left(-\frac{L^2}{\mu \tau V}\right)}{L^2}$$
$$1 + \frac{Ls}{V\mu}$$

where I_0 is the saturated photocurrent, L is the distance between the electrodes, V is the applied bias, μ is the carrier mobility, τ is the lifetime, and s is the surface recombination rate.

Figure S1. SEM image of the CsPbBr₃/Cs₄PbBr₆ film from top view.


Figure S2. EDS mapping results of the composition Cs₄PbBr₆.


Figure S3. XRD patterns of the (a) precursor powders synthesized by different temperature 20/40/60/80 °C and (b) perovskite film after hot-pressing

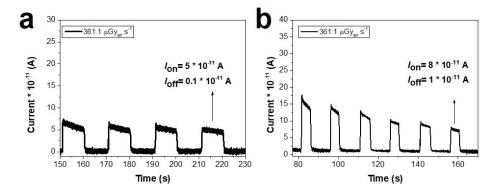

Figure S4. (a) Schematic device structure and (b) SEM images of CsPbBr₃/Cs₄PbBr₆ composites film rather than the layer heterojunction from cross-section view.

Figure S5. KPFM 3D maps of the heterojunction film at the interface.

Figure S6. (a, b) X-ray i-t curves of the devices produced by different precursor powders. (c) PL results of the different precursors. (d) Schematic of the carriers recombination.

Figure S7. X-ray i-t curves of the CsPbBr₃/Cs₄PbBr₆ devices reach to (a) 50 and (b) 8 I_{on}/I_{off} ratio with electric field (a) 0.5V/mm and (b) 1 V/mm, respectively.

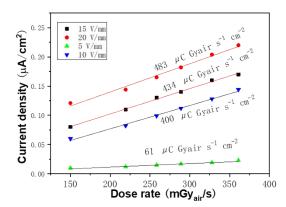
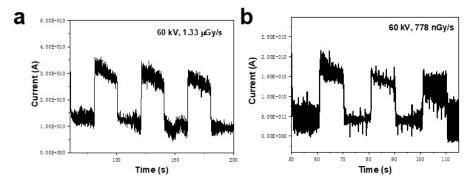
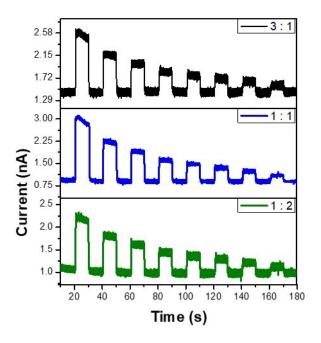
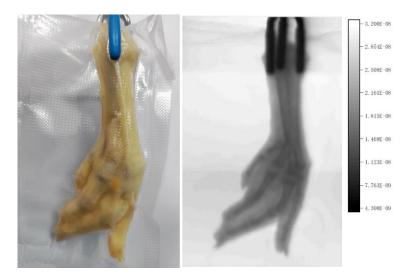
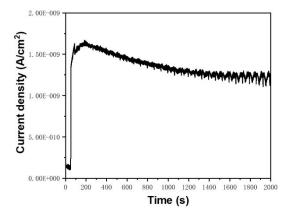



Figure S8. A linear dependence for the sensitivity is consistently observed in low-field/low-dose.

Figure S9. X-ray response current of the CsPbBr₃/Cs₄PbBr₆ X-ray detector under low-dose X-ray irradiation.


Figure S10. SNR of the CsPbBr₃/Cs₄PbBr₆ perovskite X-ray detector as a function of X-ray dose


Figure S11. X-ray i-t curves of the different devices with heterojunction ratio 1:2, 1:1 and 3:1, respectively. The electric field is 2 V mm⁻¹

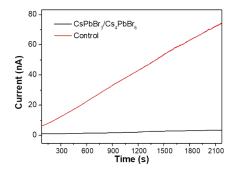

Figure S12. Digital photo of integrated CsPbBr₃/Cs₄PbBr₆ FPD after blading the carbon electrode and bonding with a flexible printed circuit (FPC). The orange film is CsPbBr₃/Cs₄PbBr₆ heterojunction (The black carbon electrode is on the backside of the perovskite thick film and is not visible from above figure. The specific device structure can be referred to Figure 3c in the main text). The inset picture is the TFT based backplane (Model: GHS1).

Figure S13. The X-ray images obtained with a single-pixel detector $(1 \times 2 \text{ mm}^2)$ by scanning the X and Y directions at the dose rates 185.2 μ Gy_{air} s⁻¹ (total dose: 1667 mGy_{air}, exposure time: 9000 s)

Figure 14. Stability of the annealed CsPbBr₃/Cs₄PbBr₆ X-ray detector under continuous X-ray radiation measured at room temperature (28 °C) and 50% relative humidity.

Figure S15. The temporal baseline tracking of the perovskite heterojunction and control sample devices at 100 V/mm.

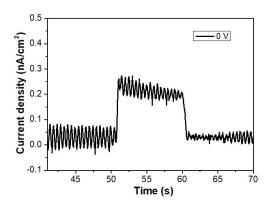


Figure S16. X-ray i-t curves (under 0 V/mm electric field) of the devices.

Table S1. The effect of precursor control details on film morphology. The reaction temperature refers to the temperature at which the precursor is synthesized in the first step. The impurity content refers to other components in the CsPbBr₃ precursor powder, such as Cs₄PbBr₆ hetero-phase. The approximate content was estimated by rietveld analysis of XRD diffraction peaks.

Samples	Pre-20	Pre-40	Pre-60	Pre-80 80 °C	
Reaction Temperature	20 °C	40 °C	60 °C		
Impurity Amount	10%	4%	30%	80%	
Film Morphology	Heterojunction	Heterojunction	Heterojunction	Compounds	

Table S2. Comparation of the device parameters.

Parameter	α-Se	HgI_2	CdTe	MAPbI ₃	This work
Sensitivity (μC Gy ⁻¹ _{air} cm ⁻²)	20 [1]	1600	318	9300 [3]	12910
μτ (cm ⁻² V ⁻¹)	10-7 [2]	10-4	10-2	2 x 10 ⁻⁴ [3]	10-7

Table S3. Performance comparison of similar X-ray detectors reported.

$I_{ m on}/I_{ m off}$ ratio Dark Sensitivity ($\mu m C$ μau nt (cm LoD R

		Current	Gy _{air} ⁻¹ cm ⁻²)	product	3)	(nGy _{air}	renc
				(cm ² /V)		s-1)	e
Au/CsPbBr ₃ /FTO	3 (N/A)	2.0 * 10-7	55684 (5 V/	5.1 *	1.5 *	215	12
		A/cm ²	mm)	10^{-3}	1010		
C/CsPbBr ₃ /SnO ₂ /FT	6 (80 V/	5.0 * 10-6	15891 (80	5.2 *	8.4 *	321	13
О	mm, 686	A/cm ²	V/ mm);	10-4	1010		
	μGy _{air} s ⁻¹)						
Au/CPB3/CP2B5/Au	4 (1 V, 204	1.0 * 10-8	258000 (25	3.4 *	7.7 *	128	14
	μGy _{air} s ⁻¹)	A/ cm ²	V/ mm);	10-3	109		
			3075 (2 V/				
			mm)				
Au/Al/BCP/C60/CsP	4 (40V,	1.5 * 10-9	73000 (100	2.3 *	N/A	15	15
bBr ₃ /Au	1.86 μGy _{air}	A/ cm ²	V/mm)	10 ⁻³			
	s-1)						
C/CsPbBr ₃ /FTO	25 (1.6V/	2.8 * 10-9	42000 (40	3.0 *	1.5 *	136	16
	mm, 361	A/cm ²	V/ mm);	10-5	1013		
	μGy _{air} s ⁻¹)		153 (1.6 V/				
			mm)				
C/CsPbBr ₃ /Cs ₄ PbBr ₆ /	50 (0.5 V/	1 * 10-11	12910 (80	6.7 *	3.1 *	183	This
FTO	mm, 361	A/cm ²	V/ mm);	10-7	1011		wor
	$\mu Gy_{air} s^{-1}),$		400 (10				k
	8 (1V/ mm)		V/ mm)				

Table S4. The X-ray detector parameters for heterojunction devices with different ratio.

Heterojunction ratio	Dark Current (nA/cm²)	Sensitivity (μC Gyair ⁻¹ cm ⁻²)	$I_{ m On/Off}$ ratio	
3:1	1.5	6.7	1.5	
1:1	0.9	12.4	2.4	
1:2	1.0	7.8	1.8	

References:

- 1. Jinsong Huang, Sci. Adv. 2021. 7, eabg6716.
- 2. Jinsong Huang, Nat. Commun. 2019, 10, 1066.
- 3. Sarah Deumel, *Nat. Electron.*, 2011, **4**, 681–688.
- 4. Jin Jang, Nanoscale, 2018, 10, 8591-8599.
- 5. Caofeng Pan, Adv. Optical Mater. 2023, 11, 2202428.

- 6. Lena Yadgarov, Adv. Energy Sustainability Res., 5: 2300193.
- 7. Angshuman Nag, ACS Energy Lett. 2016, 1, 4, 665–671.
- 8. Bo Zou, Nat. Commun. 2018, 9, 4506.
- 9. Jongnam Park, Adv. Sci. 2022, 9, 2104660.
- 10. Koushik Biswas, J. Phys. Chem. Lett. 2018, 9, 4, 830–836.
- 11. Xuhui Sun, Adv. Funct. Mater. 2021, 31, 2105051.
- 12. J. Tang, Adv. Mater. 2019, 31, 1904405.
- 13. Y. Ge, Nat. Comm., 2024, 15:1588.
- 14. J. Ye, Adv. Funct. Mater. 2024, 34, 2401220.
- 15. S. Yang, ACS Appl. Mater. Interfaces 2023, 15, 44, 51370-51379.
- 16. Jian Wang, Adv. Sci. 2024, 11, 2407314.