

Supplementary Information

Spatially Separated Bipolar Transport and Surface Electron Accumulation in Tungsten Diselenide Nanostructures

Hemanth Kumar Bangolla¹, Chi-Yang Chen², Cheng-Maw Cheng^{3,4,5,6}, Kuei-Yi Lee², Liang-Chiun Chao², Rajesh Kumar Ulaganathan^{7,8}, Raman Sankar⁷, Abhishek Ghosh⁹, Ruei-San Chen^{1,*}

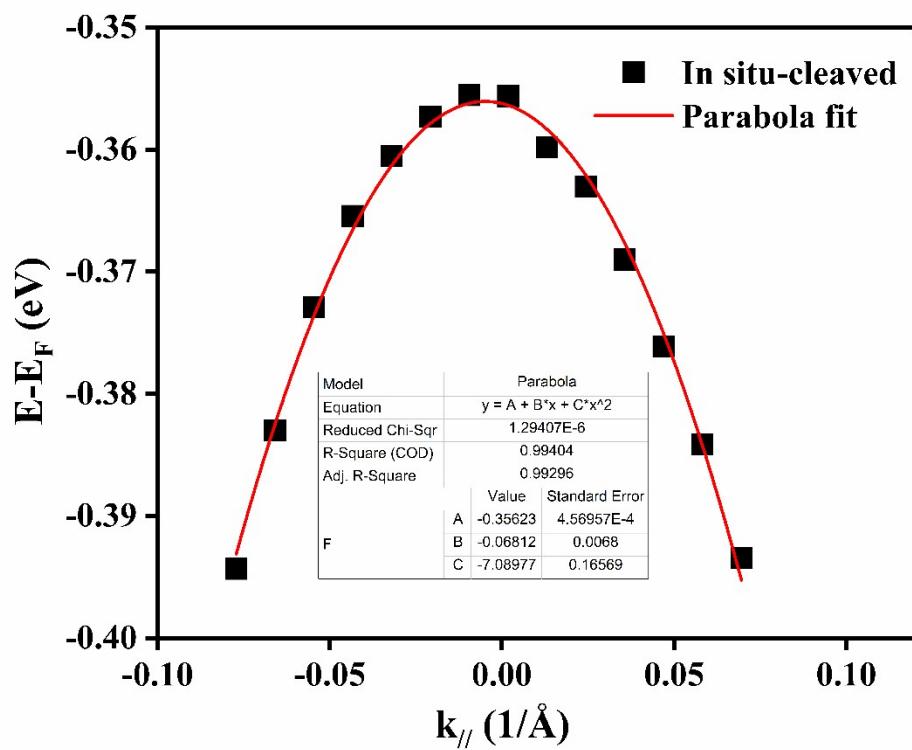
¹Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

²Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

³National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

⁴Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

⁵Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.


⁶Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 10601, Taiwan.

⁷Institute of Physics, Academia Sinica, Taipei 115201, Taiwan

⁸Centre for Nanotechnology, Indian Institute of Technology Roorkee, 247667, India

⁹Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

*E-mail: rsc@mail.ntust.edu.tw

Fig. S1. The Parabolic fitting of VBM for the in situ-cleaved surface of WSe₂.

Note S1: The effective mass evolution across pure, Se-vacant, and O-substituted WSe₂ directly reflects the underlying changes in band dispersion induced by defect chemistry. Pristine WSe₂ exhibits moderately light carriers ($m_e^* = 0.403 m_0$, $m_h^* = 0.548 m_0$), consistent with the well-dispersed bands arising from strong W–Se hybridization at the K valley. Introducing a Se vacancy disrupts this bonding environment and generates localized defect states that flatten both the conduction- and valence-band edges, leading to substantially heavier effective masses ($m_e^* = 0.603 m_0$, $m_h^* = 0.842 m_0$). This pronounced reduction in curvature reflects carrier localization and suppressed mobility commonly associated with vacancy defects. In contrast, substituting oxygen at the Se site removes the vacancy-induced localization by forming stronger and more stable W–O bonds, which restore the delocalized character of the band edges and enhance their curvature. As a result, the electronic structure recovers toward that of the pristine material, yielding even lighter carrier masses ($m_e^* = 0.393 m_0$, $m_h^* = 0.410 m_0$), particularly for holes. These trends demonstrate that Se vacancies degrade transport by weakening orbital overlap, whereas O substitution effectively passivates the defect, reestablishes bonding coherence, and improves carrier dispersibility.

Table S1: Calculated effective mass of electron (m_e^*) and holes (m_h^*) of WSe₂ with different conditions

System	m_e^*	m_h^*
Pure WSe ₂	0.403m0	0.548m0
Se vacant WSe ₂	0.603m0	0.842m0
O substituted WSe ₂	0.393m0	0.410m0