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Figure S1. (a) Three- dimensional unit cell of the equilibrium structure of MnSiO3. Mn ions
are shown in purple, Si ions in blue, and O ions in red; (b) Bulk unit cell of the equilibrium
structure of MnSiOs in the polyhedral model. The Mn-centered polyhedron is shown in purple,
while the Si-centered polyhedron is in blue. Oxygen ions are positioned at the vertices of the
polyhedra;(c) Supercell simulation of MnSiOs. Two blue and two orange planes define the
boundary of atoms included in the two-dimensional supercell of MnSiOs; along the
crystallographic plane; (d) Optimized supercell of quasi-two-dimensional MnSiO; in the
polyhedral model. The Mn-centered polyhedron is shown in purple, and the Si-centered
polyhedron in blue. Oxygen ions are located at the vertices of the polyhedral; (e) Two-
dimensional layers and the unit cell of the simulated quasi-dimeric MnSiOs material; (f)
Optimized supercell of quasi-two-dimensional rhodonite. Mn ions are in purple, Mg ions in
orange, Fe ions in yellow, Ca ions in turquoise, Si ions in blue, and O ions in red
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Figure S2. Optical bandgap for direct electron transition determined by Tauc plot;
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Figure S3. EDS analysis of 2D Rhodonite.
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Figure S4. Relative frequency vs Zeta potential plot for 2h, 4h exfoliated Rhodonite
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Figure S5. (a) Raman shift for bulk, 2h and 4h exfoliated rhodonite; (b) Deconvolution of the

va bending mode in the Raman spectra of bulk, 2h and 4h exfoliated rhodonite;

(c) Deconvolution of the vs antisymmetric stretching mode for bulk, 2h and 4h exfoliated

rhodonite.
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Figure S6. (a) XPS surface scan of the 2D sample; (b) XPS spectra displaying the

characteristic peaks of Ca 2p.
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Figure S7. Experimental Z-scan setup: BS1: Beam Splitter; PD1 and PD2: Photodetectors; L:
Lens; AP: Aperture.
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Figure S8. Response of the Glass substrate at peak intensity 4 GW/cm? and 415nm wavelength.
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Figure S9: Electronic band structure and projected density of states for bulk rhodonite.
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Figure S10: Orbital contributions for electronic structure of bulk rhodonite.
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Figure S11: Electronic band structure and projected density of states for 2D rhodonite.
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Figure S12: Orbital contributions for electronic structure of 2D rhodonite.




Table S1. TPA coefficients of recently reported materials.

Sample Laser Pulse Laser TPA coefficient | Refs
idth
WIEH Wavelength | B (cm/GW)
Repetition nm
rate
Bilayer 400 fs, 1100 (2+0.4) x10* [1]
Graph
raphene | KHz
Bilayer 400 fs, | 780 (1£0.2) x10* [1]
h
Graphene | KHz
MoS, 340 fs, 1030 (7.62+0.15)x10° | [2]
1
monolayer | KHz
WS, 35 fs, 800 1.183%x103 [3]
monolayer 1 KHz
2D Bi2Ss 35 fs, 800 4.25 %102 [4]
1 KHz
2D 100 fs, | 415 9.12x 10* This
Rhodonite 1 KHz work
Table S2. Optical Limiting Threshold values of recently reported materials.
Laser Wavelength Optical Limiting Ref
Sample (nm) Threshold (mJ/cm?)
MoS,-PMMA Film | 1064 315.1 [5]
Single Layer 532 10 [6]
Graphene
WS, Nanosheets 532 62 [7]
Monolayer Biotite 415 1.51 [8]
2D Rhodonite 415 0.38 This work
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