WILEY-VCH

Supporting Information

High-adhesion Stretchable Organic Single-Crystal Photoelectric Thin Films

Shao-Hua Wang¹, Xiao-Xiao Lu¹, Min Xu¹, Meng-Na Yu², Xue-Mei Dong¹, Fa Zhang¹, Yin-Xiang Li^{*,1}, Ju-Qing Liu¹

¹State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.

² State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

E-mail: iamyxli@njtech.edu.cn, ORCID: 0000-0002-0606-7949.

Keywords: flexible photoelectronics, organic single crystals, molecular self-assembly, stretchable thin film.

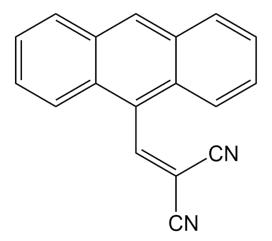


Figure S1. Molecular structure of 2-(Anthracen-9-ylmethylene)malononitrile (AMN).

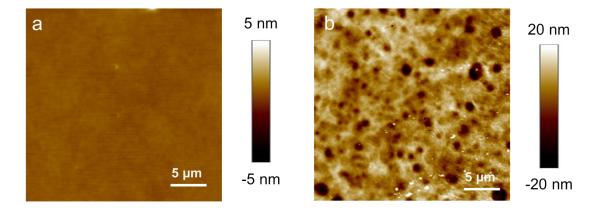


Figure S2. AFM images of the PDMS substrate (a) before and (b) after toluene etching.

Figure S3. Optical microscope image of the ordered microwire arrays (OMAs) obtained by self-ssembling of AYM on fully cured PDMS substrate.

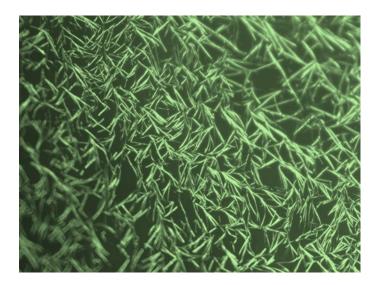


Figure S4. Optical microscope image of an AYM network that has been stretched by 20% and then restored to its original state

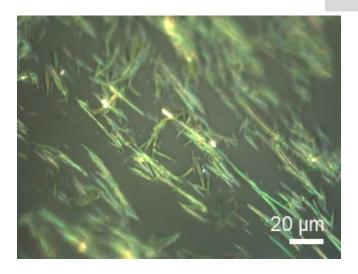


Figure S5. Optical microscope image of a ruptured AYM network after 40% tensile strains

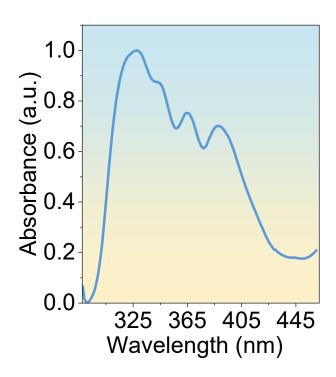


Figure S6. UV-Vis-NIR absorption spectrum of the AYM microwire network.

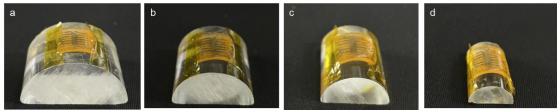


Figure S7. The backside of the devices was wrapped around the acrylic cylinders with different radii (r). (a) r = 1.8 cm; (b) r = 1.5 cm; (c) r = 1 cm; (d) r = 0.8 cm.

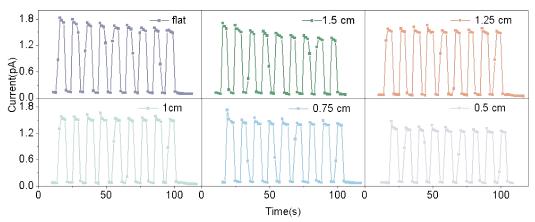


Figure S8. Photocurrent was measured over nine consistent post-pulse intervals at bending radii of 0, 1.5 cm, 1.25 cm, 1 cm, 0.75 cm, and 0.5 cm.