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Fig. S1. Room temperature PXRD spectra for (a) HEO-4 and (b) HEO-5 nanostructures using Cu-
Ko radiation.
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Fig. S2. Particle size distribution extracted from TEM image HEQO-5 nanostructures.

Fig. S3. (a-b) TEM micrograph for HEO-4 nanostructures.
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Fig. S4. TEM- EDS mapping of Zn, Co, Ni, O, Mg and Cu in HEO-5 nanostructures.
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Fig. S5.TEM- EDS mapping of Zn, Co, Ni, O and Cu in HEO-4 nanostructures.
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Fig. S7. TEM-EDAX spectra of HEO-4.
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Fig. S8. Room temperature FTIR spectra of (a) HEO-4 and (b) HEO-5 nanostructures.
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Fig. S9. BET nitrogen adsorption-desorption isotherms and pore size distribution plots (inset) of (a)

HEO-4 and (b) HEO-S.
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Fig. S10. Deconvoluted XPS spectra of (a) Co2p, (b) Ni2p, (c¢) Cu2p and (d) Zn2p for HEO-4

nanostructures after background subtraction.
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Fig. S11. UV-Vis spectral changes showing catalytic reduction of p-NP using 0.5, 1 and 1.5 mg of
HEO-4 (a-c) and HEO-5 (d-f) catalysts respectively.
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Fig. S12. Changes in the UV-Vis spectra showing catalytic reduction of (a) o-NP, (b) m-NP,
(c) 2,4 DNP and (d) PA using 0.5 mg of HEO-4 catalysts respectively.
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Fig. S13. Linear fit of In(Co/C) as a function of time for p-NP, o-NP, 2,4 DNP and PA using
0.5 mg of HEO-4 catalysts.
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Fig. S14. Linear fit of In(Co/C) as a function of time for p-NP for different reaction temperatures
(30°, 40° and 50° C) showing the value of rate constant using 0.5 mg of HEO-4 catalysts.
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Fig. S15. Plot of rate constant (kapp) as a function of different amount of p-NP for HEO-5 catalyst.
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Fig. S16. Plot of rate constant (kapp) as a function of different amount of NaBH4 for HEO-S5 catalyst.
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Table S1. Comparison of catalytic p-NP reduction efficiency of HEO-5 with the previously reported

catalysts
Catalyst Cat-loading [4-NP] (M) t (min) k(min) | References
(mg/mL)
SPION@Ni/Cu 1.0 0.005 1.16 min 0.103 [1]
NiO/CuO HNSs 0.0017 104 3.3 min 1.5032 [2]
FeCoNb/NHC 1.0 104 6 min 0.299 [3]
CuCoAl- 2.5 0.02 1 min 2.952 [4]
LDH/rGO
PtRhCoNiMn 1.0 10+ 10 min 0.269 [5]
NDHEA
MoFeNi@np- 0.5 104 2 min 2.314 [6]
AlFeNiCuPd
CrMnFeCoNi 10 1.4x107 91 % in 30 0.17 [7]
(CMFCN-4) min
AlCoCrFeNiV 1.1 1.6x107 90 % in 30 0.0478 [8]
min
HEO-5 0.016 10* 0.5 min 1.932 This work
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Fig. S17. Reusability studies performed by separating the catalyst from reaction mixture and reusing

it for 6 cycles.
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Fig. S18. PXRD pattern of HEO-5 recovered from the reaction mixture after five reuse cycles.

Table S2. Thermodynamic parameters calculated from Eyring plots for the reduction of p-NP using

HEOQO-4 and HEO-5 as catalyst.

Temperature (K) AH# AG* AS*
(kJmol ™) (kJmol™) (Jmol'K'1)
HEO-4 | HEO-5 | HEO-4 | HEO-5 | HEO-4 HEO-5
303 27.43 26.29 77.61 73.58 -165.4 -135.7
313 79.12 75.39 -164.9 -137.2
323 80.92 76.29 -165.4 -135.7
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