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Materials

Lithium fluoride (LiF, 99%), Titanium aluminum carbide (Ti;AlC,, 400 mesh, 95 %),
25 wt% tetrabutylammonium hydroxide (TBAOH) aqueous dispersion, ethyl acetate
(EA, AR), and anhydrous ethanol were purchased from Sigma-Aldrich. Hydrochloric
acid (HCI, 37 %) was purchased from Yantai Far East Fine Chemical Co. Phenolic
Cyanate (C05C0400) was purchased from Yangzhou Tianqi New Material Co. The
photocrosslinking components were purchased from the Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences; The deionized water was produced in the
laboratory.

Simulation Method:

EM simulation analysis was conducted using CST Microwave Studio 2021. First,
modeling was performed based on the module's capabilities. Subsequently, the EM
parameters measured by the vector network analyzer were imported into the software.
The reflection loss (RL) of a 3D unit meta-structure was numerically calculated using
periodic boundary conditions with the Frequency Domain Solver. Additionally, the
boundary condition Z;, was configured as an electric wall, while Z,,,, was designated
as open space. The remaining boundary conditions were established as the unit cell.
Characterization

Scanning electron microscopy (SEM, CLARA GHM) was used to analyze the samples'
layered structure, surface, and cross-sectional morphology. XRD spectra of the samples
were acquired using a D8 ADVANCE XRD system with Cu Ka radiation (A = 1.5406

A) over a scanning range of 5° to 90°; the scanning rate was 5° min"'. Transmission



electron microscopy (TEM, FEI-TALOS-F200X) was used to characterize the
micromorphology, crystallite spacing, and crystallite index of TiO,. X-ray
photoelectron spectroscopy (XPS, Thermo Kalpha) determined the samples' chemical
state and chemical bonding. The samples were analyzed by Raman spectroscopy using
a LabRam HR Evolution Raman spectroscopy system (532 nm laser emitter). The
thermal stability of Ti;C, T was analyzed using a thermogravimetric analyzer (TG 209
F3 Tarsus) with a heating temperature of 10 °C min-' over a temperature range of 30
~800°C. The samples' electrical conductivity was characterized at different pressures
(10 MPa,14 MPa, and 18 MPa) using a resistivity tester (ST2253y). The macroscopic
morphology of 3D-printed bionic superstructure samples was characterized using a
fully automated 3D super depth-of-field video microscope (DVM6A). The surface
water contact angle of 3D samples was determined using a contact angle tester (SDC-

100).
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Fig. S1 Characterization of structural morphology and physical phase components of

Ti;AlC, before and after etching. (a) Schematic of Ti;C,Ty MXene preparation. SEM



and TEM images of (b) Ti;AlC; and (¢) Ti3C,Tx MXene. (d) XRD patterns of Ti3AIC,

and T1;C,T, MXene.
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Fig. S2. a-c) HRTEM image of TiO,-A, TiO,-R, and the corresponding inverse fast
Fourier transform (IFFT) lattice fringes are used to interpret the crystallographic indices

and spacings in Figure 2.
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Fig. S3. TGA and DTG curves of Ti3C, Ty MXene in N,.



Fig. S4 a, and a;) SEM, b; and b,) TEM surface images of Ti;C,Tx MXene.
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Fig. S5. TEM images of TiO,-A-NP@Ti;C,Tx MXene.



Rutile, syn = 17.4 wi%

Anatase, syn = 82.6 wi%

Quantitative Analysis from Profile-Fitted Peaks

Fig. S6. The mass fraction of TiO,-A and TiO,-R based on the XRD pattern of the
TiO,-AR-HI@Ti;C,Ty.
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Fig. S7. The a) Ti-O 2ps3,, and b) C-Ti Area cps of Ti3C, Ty, TiO-A-NP@Ti;C, Ty,
Ti0,-AR-HJ@Ti;C, Ty, and TiO,-RA@Carbon nanosheet.
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Fig. S8. Cole-Cole curves of (a;-a3) Ti3C,Ty, bi-b3) TiO,-A-NP@Ti;C, Ty, ci-¢3)
Ti0,-AR-HJ@Ti;C, Ty, and (d;-d;) TiO,-RA@Carbon nanosheet.



As shown in Fig. S7a;-c;, within the thickness range of 1.0~2.0 mm, TiO,-A-
NP@Ti;C, Ty has the minimum reflection loss value (-37.5 dB). In contrast, TiO,-
AR-HJ@Ti;C,Tx MXene has the maximum reflection loss value (-14.55 dB) due
to the strong impedance mismatch on the surface. As shown in Fig. S7a,-c,, TiO,-
A-NP@Ti;C,Ty achieves the optimal effective absorption bandwidth (4.3 GHz) at
a thickness of 1.12 mm, which is attributed to the excellent impedance matching

characteristics imparted to MXene by nano-TiO,-A-NP.
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Fig. S9. aj;-c;) 3D RL diagrams, (a,-c;) 2D projection images for TiO,-A-

NP@Ti;C,Tx MXene,

nanosheet.

TiO,-AR-HI@Ti;C, Ty  MXene,

and TiO,-RA@Carbon
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Fig. S10. The a) Reflection loss, b) Z;,/Z, of Ti3C,Tx MXene after 350 °C/1h, 350
°C/2h, and 350 °C/6h.
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Tab. S1 The EMW absorption properties of recent similar materials.

Fill
e Thickness ~ EAB  RLmin
Material Name Matrix loading Refs
(mm) (GHz) (dB)
(wt%)
TiO,-A- This
Wax 50 1.00 3.36 -20.1
NP@MXene work
Nano-diamond@
Wax 50 1.00 0.00 ~=-9.90 [2]
MXene (MN3)
CI/Ni@MXene
) Wax 40 1.00 0.00 -10.0 [3]
(CINi-MX-6)
Co3;04,-C@MXene Wax 20 1.00 0.00 -2.50 (4]
NiCoOs@MXene(P-
. Wax 50 1.00 0.00 =-5.0 [5]
MXene/NiCo,04)
Mesoporous MXene Wax 7.0 1.92 2.32 -49.54 [6]
SiO,@MXene Wax 45 3.52 1.60 -50.11 [7]
Ni-chain@MXene
) Wax 10 2.0 1.80 -16.9 [8]
(Ni-10% MXene)
Network-like
MXene nanoribbons ~ Wax 50 1.0 0.80 =-10.5 [9]
(N-MXene NRs)
MXene/amorphous
. Wax 50 1.85 2.80 -45.0 [10]
carbon/TiO,
CNTs/MXene Wax 35 2.00 3.00 -17.0 [11]
Porous MXene
monolayer (P- Wax 50 1.00 0.00 =-7.00 9]
MXene ML)
Porous MXene layer
Wax 50 1.00 0.00 =-6.50 9]

(P-MXene ML)
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Fig. S12. The 3D RCS diagram of PEC.
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