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Synthesis of tin disulfide (SnS;)

To synthesize the compound, 24 mg of tin tetrachloride (SnCl,;-5H,0) was first dissolved in 2 mL
of concentrated HCI, followed by the addition of 30 mL of distilled water. Thereafter, 7.43 mg of
thioacetamide (C,HsNS) was introduced, and the mixture was stirred for 5 hours until it
developed a yellow color. The yellow precipitate was then washed with distilled water and

absolute ethanol, filtered, and dried in a vacuum oven at 70°C overnight.

Physical and Chemical Characterizations

Core-level XPS spectra for tin and sulfur were analyzed using CasaXPS for peak fitting. The
characteristic Sn 3ds/; and Sn 3ds/, peaks indicate the presence of both Sn?* and Sn** oxidation
states. Peaks at binding energies of 495.39 and 486.92 eV correspond Sn**, confirming that the
thin film is predominantly composed of SnS,. Additionally, shoulder peaks at 494.69 eV and
485.78 eV (Energy difference = 8.47eV) indicate a minor fraction of Sn?*, consistent with SnS. For
sulfur, the S 2p peaks at 164.00 eV and 162.25 eV correspond to S-Sn?* and S-Sn** bonds,
respectively. The observed 1.75 eV energy differences suggest a significant density of defects
within the SnS; film. To determine surface stoichiometry, XPS analysis was performed using the
Relative Sensitivity Factor (RSF) method:

IX
RSFy

Iy
Atomic % X = ZRSFX

(S1)

Where, Iy means Peak area of element (X= Sn, S), RSFx means Sensitivity factor.
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For Tin (Sn): RSF value = 0.974 and Area = 3205 found from XPS. For Sulfur (S): RSF value = 0.935

and Area = 6264 found from XPS.

Using these values, the calculated atomic composition is: Sn (32.93 %) and S (67.07 %). This
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59 Fig. S1 (a and b) Core level spectrum for Sn and S, respectively.
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60 Fig. S2 (a and b) Topography and surface roughness at different magnification.

61 Fig. S3 HRSEM image of the SnS, interdigitated pattern, and Thickness profile of the SnS,

62 interdigitated pattern using AFM technique.

63 ISC device voltage window optimization studies:
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Fig 4a compares the CV curves for the ISC device, recorded various voltage ranges of 0-0.9 V, 0-1
V, 0-1.1 V and 0-1.2 V at a constant scan rate of 50 mV s, Fig 4b, the GCD curves for the ISC
device are shown, recorded various voltage ranges of 0-0.9 V, 0-1V, 0-1.1 Vand 0-1.2 V at a
constant current density of 13.8 A cm3. Fig 4c indicates the calculated volumetric capacitance
(Cyo) values as a function of voltage from the CV study. In Fig 4d illustrates the calculated Cy, and
coulombic efficiency across various voltages. A pronounced drop in coulombic efficiency and
onset of interfacial decomposition were observed at voltages exceeding 1.0 V. A pronounced
reduction in coulombic efficiency and the onset of interfacial decomposition are observed at
voltages exceeding 1.0 V. Accordingly, the ISC device’s intrinsic electrochemical stability limits
the safe operating potential window to 0-1.0 V, which is adopted for all subsequent

measurements.
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Fig. S4 (a) Voltage window sqbiniegtivsof ISC| device at,S0mmyh% 1, (b) Voltage window

o . 5 . 92.8 ) )
optimization of ISC deyice at 13.8 A cm3, (c) Voltage window dependent volumetrit capacitance

10 63.3

(Cvol) from CV analysis, (d) Voltage window dependent volymetric capacitance (Cyq) Vs.

. - 50 22.0
coulombic efficiency frlom GCD analysis.

75 17.1
Areal Capacitance for |SC device: 100 145

Specific areal capacitance (Carea)) Values were determined for each scan rate using Equation S2,

with a decrease in Cprea Observed at higher scan rates.

oo $i(t)dt
Areal ™ Areq x 9 x AV (S2)

Here, ¥ and AV are the sweep rates and the voltage variation (1 V), i indicates measured current

in CV, and t is time.

Table S1. Areal capacitance for ISC device

ISC device cycle stability:
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Electrochemical impedance spectroscopy (EIS) measurements were conducted prior to cycle
stability testing, showing a resistance of 0.266 kQ, which served as a reference for determining
other cell properties (Fig. 5a). The initial ionic conductivity (oac) was 6.981 X 10 S cm™ (Fig. 5b),
accompanied by a moderate dielectric response [e (w)] of 3.989 X 10%. After 10000 cycles, the
resistance increased slightly to 0.270 kQ, while the dielectric response decreased marginally to
3.951 X 10* and the ionic conductivity dropped to 6.910 ¥ 10* S cm™. These variations confirm
the decline in ionic conductivity and dielectric response for the ISC configuration upon cycling.
The electron transfer rate constant (ko) also showed a slight reduction, from 1.251 X 10 cm s’!
cm s7' before cycling to 1.228 X 10 cm s after 10000 cycles (Fig. 5c). Similarly, the diffusion
coefficient (Dy) decreased from 3.852 X 101t cm? s* to 3.775 X 101 cm? s (Fig. 5d). The kinetic
analysis before and after cycling, incorporating parameters such as volumetric capacitance, ionic
conductivity, electron transfer rate constant, diffusion coefficient, and carrier density, is

summarized in Fig. 5e.
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Fig. S5 (a) Comparison of Resistance/EIS spectra of before and after cycle stability (10000)
studies, (b) Frequency vs. AC conductivity at before and after cycle stability studies, (c) Frequency
vs. Electron transfer rate constant at before and after cycle stability studies, (d) Frequency vs.
Diffusion coefficient at before and after cycle stability studies, (e) Stack graphs indicate the

kinetic studies such as No of cycles vs. Cy, 0ac, ko, Do, and n¢ at before and after cycle stability

studies.
No of cycle Cvol Oac ko € (w) Do n.
(Fcm3) (Scm??) (cm s?) (cm?s?) (cm3)
1% Cycle 173.4 6.981x 104 1.251x 105 3.989 x 10* 3.852x 1011 3.570 x 1010
After 4000 170.0 6.975 x 10 1.240x 105 3.988 x 10* 3.847 x 101 3.563 x 1010
After 7000 168.5 6.967 x 104 1.239x 105 3.976 x 10* 3.838x 101 3.557 x 1010
After 10000 165.3 6.910 x 10 1.228 x 105 3.951 x 10* 3.775x 101 3.536 x 1010

Table S2. ISC device cycle life characteristics from EIS measurement
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Table S3. Compare coulombic efficiency, Volumetric capacitance, energy density and power

denh

sity for ISC device Interdigitated super capacitors (ISC)
Current (A)/ Coulombic Volumetric Volumetric energy Volumetric
Current Efficiency (%) capacitance, Cy, (F density (Wh cm3) power density
density (A cm3) cm3) (W cm3)
0.000162/ 3.6 96.4 977.5 135.7 1.802
0.000189/ 4.2 95.4 867.7 120.5 2.128
0.000216/ 4.8 95.1 773.7 107.4 2.433
0.000243/5.4 94.6 681.0 94.5 2.737
0.000270/ 6.0 94.9 586.3 81.4 3.041
0.000324/ 7.2 95.2 435.0 60.4 3.649
0.000378/ 8.5 95.3 347.4 48.2 4.257
0.000434/9.9 96.8 301.1 41.8 4.888
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Table S4. References mentioned in the above table.

Ref MSCs (Positrode Fabrication Electrolyte Careal EDareal (HWh Cycle
No || Negatrode) method (mF cm?2) cm?) stability
(%)
SnS,: ISC (This work) E- beam technique PVA-LiClO, 92.8 22.32 10000
(95.4%)
1 rGO Photolithography PVA-H,SO, 0.95 - 11000
(98.3%)
2 NiFe,04 Photolithography PVA-KOH 0.067 0.006 10000
(93.6%)
3 C/CHIT-CNT Photolithography 1M H,S0, 6.09 - 10000
(99.9%)
4 C/Sn QDs Photolithography PVA-H,SO, 5.79 - 5000
(93.3%)
5 MXene Ink printing PVA-H,SO, 27.29 - -

6 EEG Ink printing PSSH 0.7 - 11000
(77%)

7 Co(OH), [|vN Ink printing PVA-KOH 21 - 10000
(84%)

8 | GO/PANI ||Graphene Ink printing PVA-H;PO, 153.6 15.4 5000
(100%)

9 MnO, " Graphene Ink printing PVA-H,SO, 7.6 - 10000
(91.1%)

10 EG/PEDOT: PSS Ink printing PVA-H,SO, 5.4 - 5000
(90%)

11 MnO, Ink printing PVA-LICIO, 26.6 - 1000
(100%)

12 GCP Ink printing PVA-HsPO, 107.5 1.27 8000
(93.2%)

13 PG Ink printing PVA-H,SO, 9.8 - 2000
(89.5%)

14 Graphene Screen printing PVA-HsPO, 1.0 - 10000
(91.8%)

15 Graphene Screen printing PVA-HsPO, 5.2 0.06 2000
(89.5%)

16 Ag@PPy Screen printing PVA-H;PO, 47.5 - 10000
(82.6%)

17 MnO, Screen printing 1M Na,SO, 2.1 8.05 10000
(98.3%)

510



18 Cu(OH),@FeOOH Screen printing FS/EMIM-BF, 58 18 10000
(82%)
19 rGO Laser processing PVA-H3PO, 15.3 - 10000
(94%)
20 rGO Laser processing PVA-LiCl 125 - 20000
(94.8%)
21 rGO Laser processing PVA-H,SO, 4.9 - 10000
(99%)
22 LIG Laser processing BMIM-BF, 4 - 7000
(90%)
23 LIG Laser processing PVA-H,SO, 25.1 0.0026 12000
(99.2%)
24 B-doped LIG Laser processing PVA-H,SO, 16.5 - 12000
(90%)
25 CGF Laser processing PVA-H3PO, 1.7 0.22 1000
(89.4%)
26 WO;/PVDF/MWCNT Laser processing PVA-H;PO, 62.4 - 2000
(80%)
27 MXene Laser processing PVA-H,SO, 27 - 10000
100%
( )
28 Graphene Plasma etching PVA-H,SO, 116 - 50000
(98.5%)
29 EG/PANI Plasma etching 1M H,SO, 1.5 - 1000
(94%)
30 MWCNT/AgNWs Plasma etching PVA-H;PO, 0.27 - 10000
(92.3%)
31 EG/PANI Plasma etching PVA-H,SO, 368 - 1000
(92.6%)
32 Graphene Stamping lon gel 0.26 - 100000
(97%)
33 TisC,Ty Stamping PVA-H,SO, 61 0.76 10000
(94.1%)
34 MWCNT/PANI Stamping PMMA-PC- 441 0.004 20000
LiClO,4 (87%)
35 Graphene 3D printing PVA-H,SO, 58.7 - 10000
(100%)
36 LIG Laser processing PVA-H,SO, 31.9 - 3000
(98%)
37 LIG Laser processing PVA-H3PO, 2.31 - 100000
(100%)
38 MoS, doped LIG Laser processing PVA-H,SO, 16 - 5000
(92%)
39 NiCo,S4/CNF Laser processing 1M KOH 4000 200 10000
(89%)
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40 V,05 || G-VNQDs 3D printing PVA-LiCI 207.9 73.9 8000
(65%)
41 PANI/rGO 3D printing 1M H,S0, 1329 - 1000
(75%)

Reproducibility of ISC Device Performance

To assess the reproducibility and stability of the fabricated ISC devices, cyclic
voltammetry (CV) measurements were repeatedly performed on three independently prepared
devices (Devices 1-3). Fig. 6a shows the CV characteristics of Devices 1-3 measured at a constant
scan rate of 100 mV s, All devices exhibit similar curve shapes and current responses, confirming
high reproducibility across multiple samples. Fig. 6b presents the CV curves of Device 1 measured
three consecutive times at 100 mV s1, showing nearly overlapping profiles and demonstrating
excellent repeatability of the electrochemical response. Fig. 6¢c performances a comparative plot
illustrating the reproducibility and repeatability of the capacitance for all three devices (Devices
1-3). Summarize the calculated mean capacitance (_C) of 136.1 F cm3, with a standard deviation,
SD of 10.62 F cm™3 and an error of +7.8 %, verifying consistent device fabrication and reliable

measurement reproducibility (Figs. 6d-6f).

Additionally, the step-by-step calculations for mean capacitance (_C), standard
deviation, and percentage error are also included for transparency and validation of the

reproducibility results. 42

(i) Mean Capacitance (_C): represents the average capacitance value from repeated

measurements, showing the typical charge storage ability of the ISC device.

=1 (s3)
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where C means (average) capacitance (F cm™3), C; means individual capacitance value (F cm3)
from each measurement, and n means total number of measurements.
(ii) Standard deviation, SD: Indicates how much the measured capacitance values deviate from

the mean a smaller value means higher reproducibility.

(S4)

where s means standard deviation, ~i means individual capacitance value (F cm3) from each

measurement, ¢ means capacitance (F cm3), and n means total number of measurements.
(iii) percentage error (%): expresses the variation as a percentage of the mean, showing the

precision or consistency of the measurements.

SD
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195 C means capacitance (F cm3).
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209 Fig. S6 (a) CV studies of three different ISC devices (Devices 1-3) measured at a constant scan rate
210 of 100 mV s (b) CV curves of Device 1 measured three consecutive times at 100 mV s, (c)
211 reproducibility and repeatability of the capacitance for all three devices, (d) mean capacitance
212 for all three devices, (e and f) Statistical comparison of standard deviation and error % for all

213 three devices.
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Table S5. Reproducibility of Mean capacitance (C), standard deviation, SD, and error (%) for

Device # Mean capacitance, C Standard deviation, Error
(Fcm3) SD (%)

Device 1 138.3 11.45 +8.28

Device 2 134.6 9.95 7.4

Device 3 135.6 10.48 +7.73

Average 136.1 10.62 +7.8

three ISC devices (1-3)
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249 and tangent loss for ISC device
250

251

252

253

254

255

256

257 Fig. S8 (a and b) resistance operation under various device state and various sweep rate, (c and

258 d) tan loss under various device state and various sweep rate.

259

260 Proposed interface switching mechanism at various sweep rates:

S17



261 Furthermore, a time-dependent voltage study was conducted under bias conditions following
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Fig. S9 (a) Time dependent cell voltage (Vo) under various sweep rate: 5 — 100 mV s for I1SC

configuration, (b, d, e) Operational frequency dependent o,c, Dg, K., and n. across various sweep

rate, (c) stack plots comparing kinetic parameters (Vcen, 0ac, Do, Ke, and n¢) across various sweep

rate.

Table S6. Quantification of the cell characteristics from EIS measurements for interdigitated (ISC)

device under various sweep rates.

Sweep rate Veen Oac ko DER Do He ne
(mV s?) (V) (S ecm™?) (cm s?) £ (w) (cm?s1) (cm?2Vv-is?) (cm3)
5 0.343 7.189x 10 1.280x 10 7.052 x 10* 4,099 x 1011 100.92 9.162 x 101°
25 0.309 7.132x10* 1.269 x 10* 5.831x10* | 4.027x10* 90.42 7.575 x 101°
50 0.265 7.040x 10 1.254x10* 4.772x10* | 3.935x 1011 81.07 6.199 x 1010
100 0.233 6.926 x 10 1.232x10* 3.902 x 104 3.795x 1011 72.33 5.069 x 101°

518




274 Electron transfer rate constant (ko) at various device state, various sweep rate operation for
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275 ISC device

276 Fig.S10 (a and b) kinetic studies such as Frequency vs. kg under various device states and various

277 sweep rates for ISC device.

278 Specifically, included worked-out steps for the OFF-state of the ISC device, based on the Kramers-
279 Kronig relations, showing how €'(w) and €"(w) were numerically obtained from the impedance

280 data using the trapezoidal rule.

& (@)= R+ f (xZ ©) - wz (“’))
n 0

281 (i) x -’
282 We approximate the integral using the trapezoidal rule,
Nz‘:l[(xz (x) - wZ (@) + (4 1Z (x4 1) - @Z (@)] (41~ %)
X
X+w)*(x-w 2
s _~ (ot @)+ (x-w)
le
2 "2
284 expression is equal to = wCo(Z°+27) (S6)
2T (7 () - Z(w
o= 2J (O 2
s -
285 (ii) 0 r-ow
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We approximate the integral using the trapezoidal rule,
N1 . . . .
Z [(xZ (%) - wZ () + (X; . 1Z (x;4 1) — WZ (W))] y (41— %)
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290 Electrochemical performances comparison of parallel- series (P-S) connection for ISC
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Table S7. Comparison of kinetic studies for the 4 P, 1 P/S, and 4 S circuit.

296 Charge storage mechanism:

297

298

According to Dunn’s equation (eqn. S8), the current response (i,) at a given potential follows a

power law related to the scan rate (9), where both a and b are limitation parameters. The

299 coefficient b is derived from the slope of the log(ip) versus log(8) plot (Fig 11a). The relationship

300 between the scan rate (9) and current (A) is utilized to identify the b coefficient. The benchmarks

301

302

b =0.5and b = 1.0 indicate diffusion-limited and capacitive responses, respectively.

i = a9’

p

(S8)
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303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

When b = 0.5, the current response is predominantly diffusion-limited, described by eqn. S9.

i, = nFAC;D"?9"/* (anF/RT)"/* '/ y(bt) (59)

In this equation, Co represents the concentration of the electrode material, Dy is the chemical
diffusion coefficient, and the x (bt) function denotes the regularized current for a fully irreversible
system, as suggested by the cyclic voltammetry response. The variables include, n is the number
of electrons involved in the electrode reaction, A is the surface area of the electrode material, F
is the Faraday constant, R is molar gas constant, a is transfer coefficient, i is circumstance of a
circle, and T is absolute temperature.
When b = 1.0, the current is predominantly capacitive and proportional to the scan rate.

i, =9AC (510)
where C means capacitance. A value of 0.5 < b < 1.0 indicates a transition between diffusion-
controlled and capacitive charge storage processes (eqn. S10).

Equation. S11 differentiates the current response at a fixed potential into diffusion-controlled

and capacitive components (Fig 11b and 11c).

ip= k9 + kp\ 9 (s11)
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318 Theterm kg0 represents the capacitive current, while ko9 denotes the diffusion-limited current,

319

320
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323
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328

329
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Fig. S11 (a) b-coefficient value for ISC devices, (b) Calculation of diffusive and capacitive behavior

by plotting \/9 vs. b /N9, (c) Contribution percentage.
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330 Fig.S12 (a and b) Frequency dependent oac, and Dg at bending angles, (c) cyclic stability under
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various bending angles.

Table S8. Flexibility demonstration experimental values for ISC device.
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