

**Sustainable N/S Co-Doped Porous Carbon from Waste Lemon Peels for High-
Performance Zinc-Ion Hybrid Supercapacitors**

Faiz Ullah^a, Iza Shahid ^a, Yanzhi Sun^a, Rajapariya Andavar ^a, Uzair Ahmad Kolachi ^a,
Zhenglu Zhu^{*,a}, Junqing Pan^{*,a}

^a State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing
University of Chemical Technology, Beijing, 100029, China,

Corresponding author, E-mail: zlzhu@buct.edu.cn; jqpan@buct.edu.cn

1. Experimental Section

1.1. Materials

All chemical reagents (AR grade) were used without further purification with ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$ AR, 99%), and ethanol (EtOH, ACS, $\geq 99.5\%$, moisture $\leq 0.2\%$) were purchased from Aladdin Reagent Company (China). Concentrated hydrochloric acid (HCl) were purchased from Beijing Chemical Factory (China). Technical grade potassium hydroxide (KOH, 95%) was supplied by Zhejiang Sandu Chemical Co. Nickel foam (NF, thickness: 17 mm) was purchased from Suzhou Xinuo Technology Co. NaClO_4 electrolyte (NC-008) was purchased from DoDoChem. Deionized water (DI H_2O , $18 \text{ M}\Omega$) and high-purity N_2 gas were used in this work.

1.2. Structural characterization

The microstructure and composition of the samples were characterized by field-emission scanning electron microscopy (SEM, Hitachi S-4700, and Hitachi/Japan) along with energy dispersive X-ray (EDX) spectroscopy, and transmission electron microscopy (TEM, H-800 JEOL JEM2100F, and JEOL/Japan). X-ray diffraction (Rigaku Ultima IV) was performed by using a Rigaku D/max2500VB2 +/PCX diffractometer operating at 40 kV, 40 mA for Co $\text{K}\alpha$ radiation ($\lambda = 1.5406 \text{ \AA}$). The phase composition of samples was analyzed using a Raman spectrometer (LabRAM HR Evolution) N_2 sorption/desorption isotherms were analyzed at 77 K with Micromeritics ASAP 2020 surface-area analyzer. X-ray photoelectron spectroscopy (XPS) was recorded on a Thermo Scientific ESCALAB 250 spectrometer with operating voltage of 200 eV for the survey and 30 eV for high-resolution analysis at Al K radiation.

1.3 Electrochemical Performance

Electrochemical performance of the supercapacitor was assessed utilizing both full-cell (two electrode) and half-cell (three electrode) configurations. In the three-electrode system, the synthesized carbon material functioned as the working electrode, while a Zn/ZnO electrode acted as the reference, and a nickel plate ($1 \times 1 \text{ cm}^2$) served as the counter electrode. The electrolyte solution consisted of 6M KOH. Galvanostatic charge–discharge (GCD) experiments were conducted using a LANHE battery testing system, while cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were performed on a CHI1604E electrochemical workstation. All electrochemical tests were carried out within a potential window of 0.4 to 1.4 V versus Zn/ZnO. Initial CV measurements were conducted at a scan rate of 100 mV/s within the fixed potential window. To evaluate the scan rate capability, further measurements were conducted across a range of scan rates from 10 to 1000 mV s^{-1} . GCD tests were conducted at current densities ranging from 1 to 500 A g^{-1} to assess the rate performance and specific capacitance of the electrode material. EIS measurements were conducted over a frequency range of 100 kHz to 10 Hz, and the cyclic stability and capacitance retention of the fabricated material were evaluated over 150,000 charge–discharge cycles. The specific capacitance (C_s) of the electrode was calculated from the discharge portion of the GCD curves using the following equation:

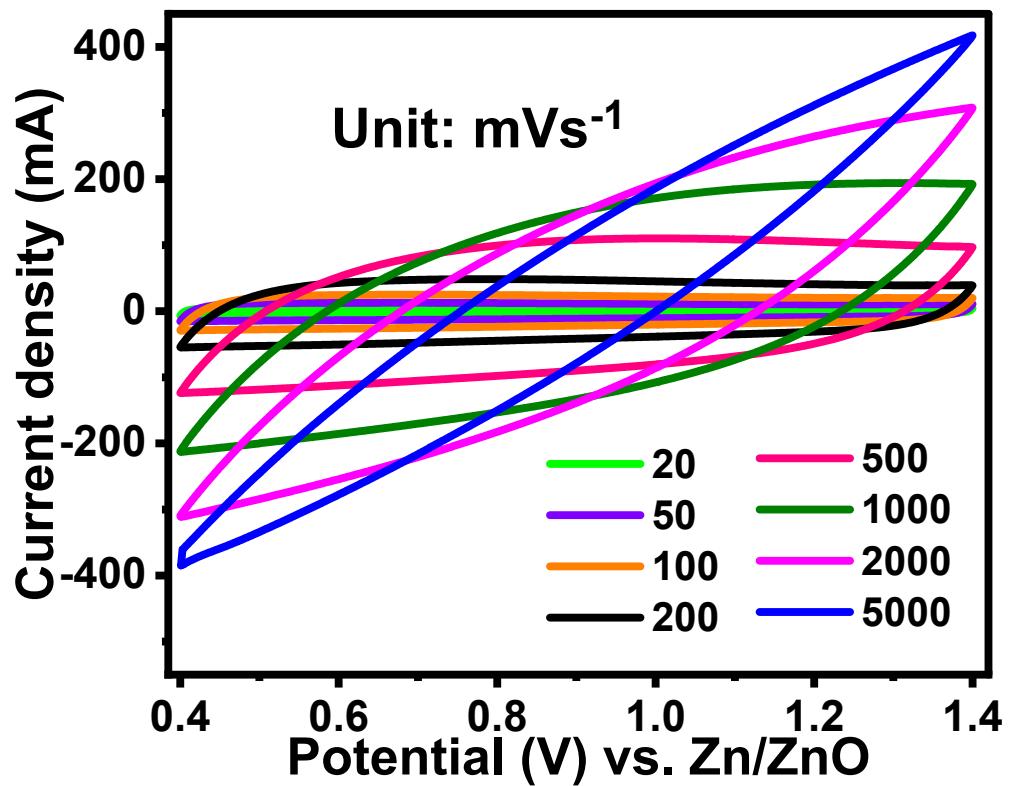
$$C_s = \frac{I \times \Delta t}{m \times \Delta V} \dots \dots \dots (I)$$

where I denote the applied current, Δt is the discharge time, m is the mass of active material, and ΔV the potential window corrected for the IR drop. Symmetric supercapacitor was assembled in CR2032 coin cells with two identical NS-LPC-850 electrodes as both working

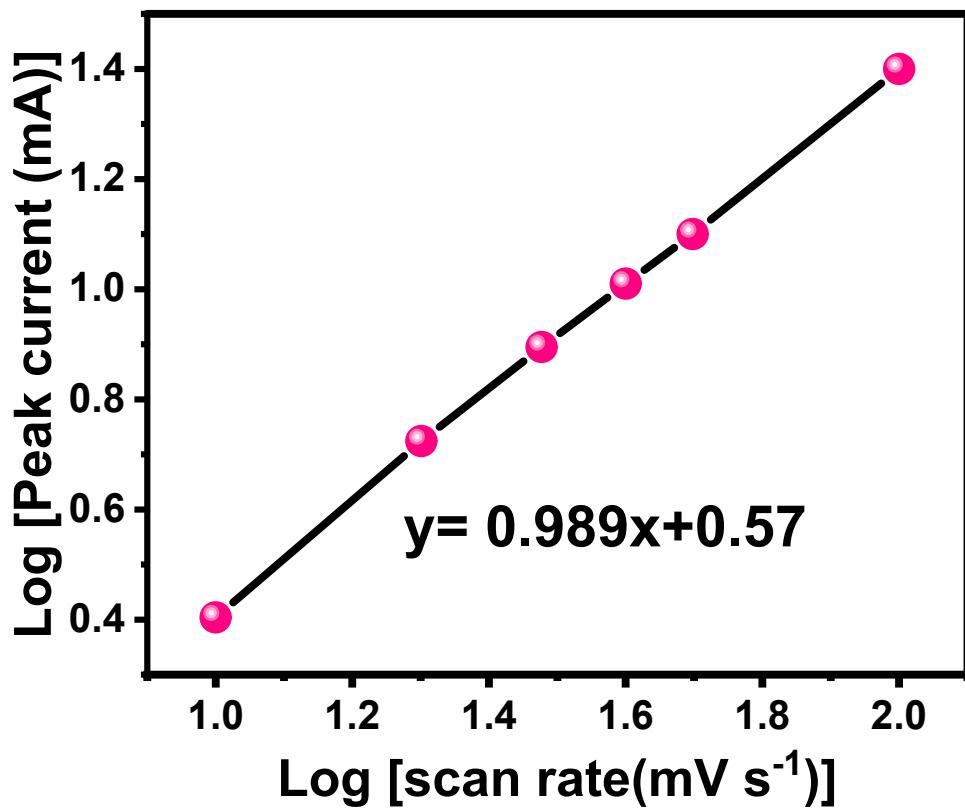
and counter electrodes inside an argon-filled glove box, using 6MKOH as the electrolyte. The specific capacitance (C_p), energy density (E), and power density (P) of these devices were determined by the following equations:

$$C_s = \frac{2I \times \Delta t}{m \times \Delta V} \dots \dots \dots (II)$$

$$E = \frac{C_s \times \Delta V^2}{8 \times 3.6} \dots \dots \dots (III)$$


$$P = \frac{E \cdot 3600}{\Delta t} \dots \dots \dots (IV)$$

Where E represents energy density (Wh kg⁻¹) and P is power density (W kg⁻¹). We designed a zinc hybrid capacitor (ZHC) with NS-LPC-850 as the active material, in addition to the typical three-electrode arrangement and coin cell construction. This device has a zinc foil anode and an NS-LPC-850 cathode. The electrolyte was composed of 6M KOH and 0.35M ZnO, and the cell was built into a stainless steel CR2032 coin battery. The energy density (E) and power density (P) of the ZHC were estimated using the formulae shown below.


$$E = \frac{V \cdot I \cdot \Delta t}{3.6 \cdot (m_1 + m_2)} \dots \dots \dots (V)$$

$$P = \frac{E \cdot 3600}{\Delta t} \dots \dots \dots (VI)$$

Where m_1 and m_2 is the mass of cathode and anode .

Figure S1: CV curves of NS-LPC-850 in a fixed potential window at different scan rate

Figure S2: Power law graph used to determine the b-value from the coefficient of variation (CV) of NS-LPC-850.