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a) -

Figure S2. a,b) SEM images of Kapton and LSG; c,d) EDX of Kapton and LSG



b) NICAT@LSG

d) Ni-CuCAT@LSG

Figure S3. HR-TEM images of a) LSG, b) NiCAT@LSG, c) CuCAT@LSG and d) Ni-CuCAT@LSG



Table T1. EDS and XPS summary table of conductive MOFs and MOFs grown on LSG

EDX Atomic %
(Average 5 points)
C o Ni Cu

LSG 98.5 1.5 - -
NiCAT@LSG 88.2 9.46 2.34 -
CuCAT@LSG 81.16 14.88 - 3.96
Ni-CuCAT@LSG 88.175 8.725 1 2.1
NiCAT 76.24 18.12 5.64 -
CuCAT 73.48 20.36 - 6.16
Ni-CuCAT 75.84 17.12 2.18 4.86

XPS Atomic %
LSG 88.05 11.95 - -
NiCAT@LSG 75.99 22.79 1.22 -
CuCAT@LSG 92.21 7.57 - 0.22
Ni-CuCAT@LSG 77.65 21.22 0.32 0.81
NiCAT 74.96 23.95 1.09 -
CuCAT 77.70 20.80 - 1.50
Ni-CuCAT 76.71 22.02 0.42 0.84

Table T2. Summary of lattice parameters of materials from XRD and TEM

dxro (NM) drem (NM)
(100) (001) (002)

LSG - - 0.338 | 0.34+0.01

NiCAT@LSG 1.889 0.328 - 1.94+0.05 for NiCAT and 0.34+0.01 for LSG
CuCAT@LSG 1.814 | 0.320 - 1.84+0.05 for CuCAT and 0.34+0.01 for LSG
Ni-CuCAT@LSG 1.809 0.318 - 1.81+0.05 for Ni-CuCAT and 0.34+0.01 for LSG
NiCAT 1.967 0.330 - 1.95+0.05

CuCAT 1.843 0.323 - 1.83+0.05

Ni-CuCAT 1.821 0.319 - 1.80+0.05




Description: The d spacing from XRD is calculated by using peak position (20), order of reflection (n)
and x-ray wavelength (A). Based on Bragg’s Law, the interplanar spacing (d) is calculated using this
equation:

Interplanar spacing (d) = Order of Reflection (n) x Wavelength (A) / 2 x Sin® with A= 0.15418 and n=1
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Figure S4. Chemical composition analysis by XPS. a, b) XPS C 1s and O 1s spectra of LSG, respectively. c, d, e, f)
XPS C 1s, O 1s, Cu 2p and Ni 2p of Ni-CuCAT@LSG, respectively
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Figure S5. a) Surface area and b) pore size distribution of M-CAT measured by BET analysing
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Figure S6 Current-voltage (I-V) curve of bare LSG, NiCAT@LSG, CuCAT@LSG, Ni-CuCAT@LSG, NiCAT, CuCAT and
Ni-CuCAT.
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Figure S7 a) Selectivity study of Ni-CuCAT@LSG sensor for different VOCs.
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Figure S8 Real time response at room temperature of fabricated sensors for 0.5 ppm formaldehyde. a) Response
and recovery curve of CuCAT and Ni-CuCAT. b) Response time and recovery time of CuCAT and NiCuCAT
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Figure S9 Real time response at room temperature of fabricated sensors for 2 ppm ammomia. a) Response and
recovery curve of Ni-CuCAT@LSG, CuCAT@LSG, NiCAT@LSG and bare LSG. b) Response and recovery curve of
CuCAT and Ni-CuCAT. c) Response time and recovery time of of Ni-CuCAT@LSG, CuCAT@LSG, NiCAT@LSG and
bare LSG. d) Response time and recovery time of CuCAT and NiCuCAT
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Figure S10 Real time response at room temperature of fabricated sensors for 0.5 ppm n-heptane. a) Response
and recovery curve of Ni-CuCAT@LSG, CuCAT@LSG, NiCAT@LSG and bare LSG. b) Response and recovery curve
of CuCAT and Ni-CuCAT. c) Response time and recovery time of of Ni-CuCAT@LSG, CuCAT@LSG, NiCAT@LSG and
bare LSG. d) Response time and recovery time of CuCAT and NiCuCAT.
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Figure 511 Real time response at room temperature of fabricated sensors for 0.5 ppm cyclohexane. a) Response
and recovery curve of Ni-CuCAT@LSG, CuCAT@LSG, NiCAT@LSG and bare LSG. b) Response and recovery curve
of CuCAT and Ni-CuCAT. c) Response time and recovery time of of Ni-CuCAT@LSG, CuCAT@LSG, NiCAT@LSG and
bare LSG. d) Response time and recovery time of CuCAT and NiCuCAT.
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Figure S12 a) Selectivity study of MOFs based sensor devices for different VOCs. b) Comparative recovery time
of MOFs@LSG based sensor devices for different VOCs.
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Figure 513 a) Response curves of Ni-CuCAT@LSG with different concentrations (0.5 — 100 ppm) of
formaldehyde. b) Linear relationship between concentration and sensitivity in low concentration range from 0.5
to 5 ppm formaldehyde of Ni-CuCAT@LSG sensor. c) Linear relationship between concentration and sensitivity
in high concentration range from 10 to 50 ppm formaldehyde of Ni-CuCAT@LSG
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Figure S14 Resistance response with 0.5 ppm formaldehyde at RT of CuCAT@LSG (black), Ni-CuCAT@LSG (red),
CuCAT (blue) and Ni-CuCAT (green) from day 0 to day 1
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Figure S15 Resistance response with 0.5 ppm formaldehyde at RT of CuCAT@LSG (black), Ni-CuCAT@LSG (red),
CuCAT (blue) and Ni-CuCAT (green) from day 3 to day 5
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Figure S16 Resistance response with 0.5 ppm formaldehyde at RT of CuCAT@LSG (black), Ni-CuCAT@LSG (red),
CuCAT (blue) and Ni-CuCAT (green) from day 6 to day 8

CuCAT@LSG Ni-CuCAT@LSG
699.00 —— CuCATELSG ama —— NI-CuCAT@LSG
G 9595 =]
O o 98.90 @ o
> 2osss 2791
< 8 9s.80 & 790
Q Zsers . 789
Q 98.70 o
14 98.65 I 78.8
0 50 100 150 200 250 300 0 100 200 300 400
Time (s) Time (s)
“‘:::: ——CuCATGLSG| ,__.79' —— NCUCATELSG
: 79.4
g S1Y g-:s 3
— § 9565 .
5 £ 9560 £ 79.2
< % 95.55/ +=79.1
0 5 9550 ‘%790
& 8545 & 789
#aa0 788
0 50 100 150 200 250 0 50 100 150 200 250
Time (s) Time (s)
81.7
~103.20 et | = —re—r
103.15 G 816
g 103.10 ‘531.5
T 2 10305 Og14
> & 103.00 H
- + 81.3
o 1 10295
0 'z 102.90 i 812
@ 102.85 D g1.1
102.80 L

81.0

50 100 150 200 250 300
Time (s)

0

50 100 150 200 250 300
Time (s)

CuCAT@LSG Ni-CuCAT@LSG
98.05 79.8
—CuCATESG | — NCUCATELSG
Ci98.00 (o] g:
o= 9795 =79
- é 97.90 § gi
> g 97.85 8193
1 97.80 D792
(=] B 97.75 @ 701
& 97.70 & 79.0
s 50 100 150 200 250 00 50 100 150 200 250
Time (s) Time (s)
= 95.80) —oweniesd .78.6 cecatatse
c c
i ‘é'ssns ‘é'"--"
78.4
v Q9570
> & S783
< E 95.65| E 78.2
0 P ese0 & 78.1
¥ 9555 & 750
0 50 100 150 200 250 1] 100 200 300 400
Time (s) Time (s)
98.55 79.9
g9 o] =708 ey
< 9840 =79.7
= 8 9835 8796
> gE2
< % 9820 194
o 802
¥ 98.05 & 79 4
980055 00 750 200 50 100 150 200 250 300
Time (s) Time (s)

Figure S17 Resistance response with 0.5 ppm formaldehyde at RT of CuCAT@LSG (black) and Ni-CuCAT@LSG
(red) from day 9 to day 14
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Figure 518 a) Response curves of Ni-CuCAT@LSG with 0.5 ppm formaldehyde at different relative humidity
condition, b) Efficiency of Ni-CuCAT@LSG at different humidity environment when exposure to 0.5 ppm
formaldehyde
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Figure 519 Schematic illustrations of energy band diagrams of CuCAT and Ni-CuCAT

Table T3 Signal to noise ratios (SNRs) of sensors when exposed to target gas (0.5 ppm) at RT.

Target Gas Signal to noise ratio (SNR)
LSG Ni-CuCAT@LSG CuCAT@LSG NiCAT@LSG
Formaldehyde 19.61 170.73 71.30 27.83
Ammonia 9.82 32.78 64.17 30.21
n-heptane 12.64 30.21 27.13 29.03
Cyclohexane 7.84 31.54 29.42 25.12




Table T4 Comparison table with other state-of-the-art formaldehyde sensing materials.

Materials HCHO Response Response/ | Temp (°C) | Ref. Published
concentration | (%) Recovery Year
(ppm) time (s)
S5MMM ZIF- 5 211000 9/400 RT 1 2021
7/TiO,
B-Ga,03 300 230.25 870/1055 300 2 2024
Zn0O nanorod 400 12000 10/- 100 3 2023
In,0;@TiO, 1 5.3 24/52 RT 4 2024
Cu0/In,04 10 €11.67 77/110 100 5 2022
MXene/NiO- 2 0.8 279/346 RT 6 2023
P2
Pt;-In,03 100 ¢750.4 2/373 200 7 2024
In,03 100 20 142/135 180 8 2022
nanospheres
Cr,05/ZnSn04 50 €37.8 4/4 175 3 2024
NiCo,0, 50 a1.85 22/57 RT 10 2023
nanoneedles
Mn-NiO 100 €12593 5/5 RT u 2022
NiS/Ni-ZnO 10 4330 39.4/40.7 RT 12 2022
ZnO/ANS/rGO | 5 ¢1.05 300/- RT 13 2021
ZnSn0O;/MXen | 5 262.4 6.2/5.1 RT 14 2022
e
Sn02/MXene 50 21.01 36/44 RT 15 2021
rGO/ZnO NRs 1 a21 82/167 RT 16 2017
rGO/Zn0O 10 a5.2 117/- RT 1 2015
Ti;C,T,/Sn0O, 10 a29.16 388/486 RT 18 2023
ZIF-8@LSG 0.8 a0.045 3/22 RT 19 2024
Ni-CuCAT 0.5 8.4 84/21 RT This work | -
CuCAT 0.5 a51 108/102 RT This work | -
Ni- 0.5 a0.42 2/25 RT This work | -
CuCAT@LSG
Ni- 0.5 a0.7 2/27 RT This work | -
CuCAT@LSG

RT-Room temperature.  Response (%)= | AR/R,|.? Response = |Al/l,|. ¢ Response = R,/R;. 9 Response = l/l,.
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