

1

## Supporting Information

### 2 MoSe<sub>2</sub>/SWNT core–shell hybrids with space-charge-limited conduction 3 and nonlinear dynamics for in-materio reservoir computing

4 Alif Syafiq Kamarol Zaman<sup>1</sup>, Saman Azhari<sup>2,3</sup>, Muzhen Xu<sup>3</sup>, Yuki Usami<sup>1,3</sup>, and Hirofumi  
5 Tanaka<sup>1,3,\*</sup>

6 <sup>1</sup>Graduate School of Life Science and Systems Engineering, Kyushu Institute of  
7 Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196 Japan.

8 <sup>2</sup>Graduate School of Information, Production and Systems (IPS), Waseda University, 2-7  
9 Hibikino, Wakamatsu, Kitakyushu, 808-0135 Japan.

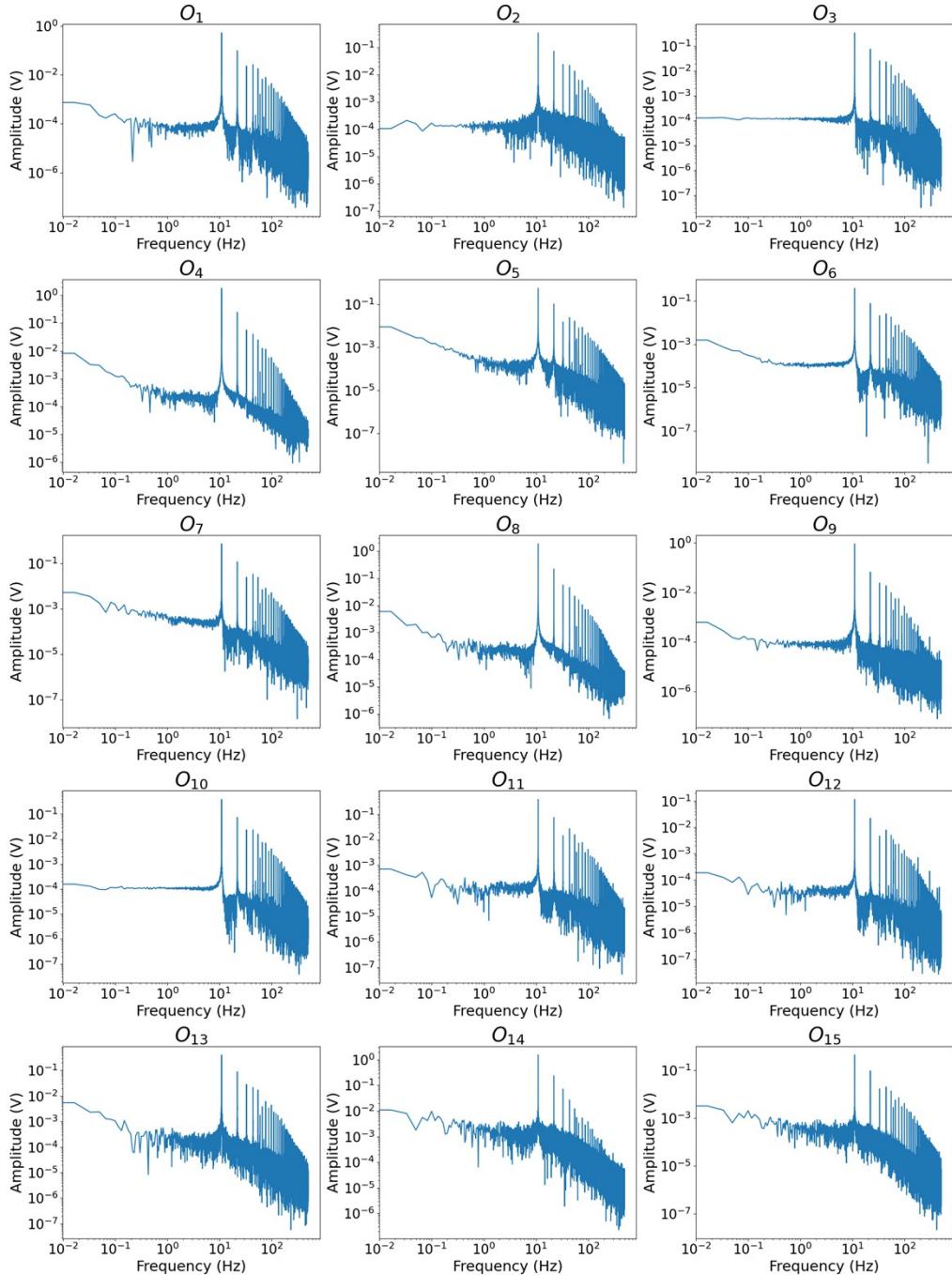
10 <sup>3</sup>Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, 2-4  
11 Hibikino, Wakamatsu, Kitakyushu, 808-0196 Japan.

12 \*Corresponding Author: [tanaka@brain.kyutech.ac.jp](mailto:tanaka@brain.kyutech.ac.jp)

13 **S1. Fabrication of a 16-electrode device**

14 **S1.1. Electrode patterning**

15 The 16-electrode device was fabricated on a silicon/silicon dioxide (Si/SiO<sub>2</sub>) substrate. The device  
16 consists of 16 square aluminum (Al) electrodes arranged in a pattern (as shown in **Figure 1**), with  
17 a maximum opposing gap size of 100  $\mu$ m. The electrodes were patterned using a standard  
18 photolithography and lift-off process. This process begins with substrate cleaning, in which the  
19 Si/SiO<sub>2</sub> substrate was sequentially cleaned in an ultrasonic bath of isopropyl alcohol (IPA) and DI  
20 water, each for 3 minutes, and then dried. Then, the resist was coated, in which a bi-layer resist  
21 was prepared for the lift-off process. First, a lift-off resist (LOR-10A) was spin-coated onto the  
22 substrate at 3,000 rpm for 50 s and baked on a hot plate at 180 °C for 5 minutes. Subsequently, a  
23 photoresist (S18186) was spin-coated on top at 4,000 rpm for 2 s and baked at 90 °C for 3 minutes.  
24 After this patterning was achieved by using a chromium photomask with the electrode pattern  
25 placed over the substrate. The device was then exposed to UV light for 10 s at an intensity of 19  
26 mW/cm<sup>2</sup> using a mask aligner. The exposed resist was developed in an MF-319 developer for 90  
27 s, rinsed with DI water, and hard-baked at 120 °C for 5 minutes to define the pattern. Then,  
28 metallization and lift-off were performed, in which a 50 nm layer of aluminum (Al) was deposited  
29 over the substrate via sputtering at a base pressure of 10<sup>-5</sup> Torr. The lift-off was then performed by  
30 submerging the substrate in a dimethyl sulfoxide (DMSO) bath at 60 °C for 30 minutes. This step  
31 dissolves the underlying LOR and removes the excess metal. Finally, the completed electrode array  
32 was rinsed with IPA and DI water and dried, resulting in the patterned device.


33 **S1.2. Material Deposition and Device Packaging**

34 The synthesized MoSe<sub>2</sub>/SWNT composite powder (with SWNT loadings of 1, 5, and 10 mg) was  
35 dispersed in ethanol to create a suspension with a concentration of 40 mg/mL. The suspension was

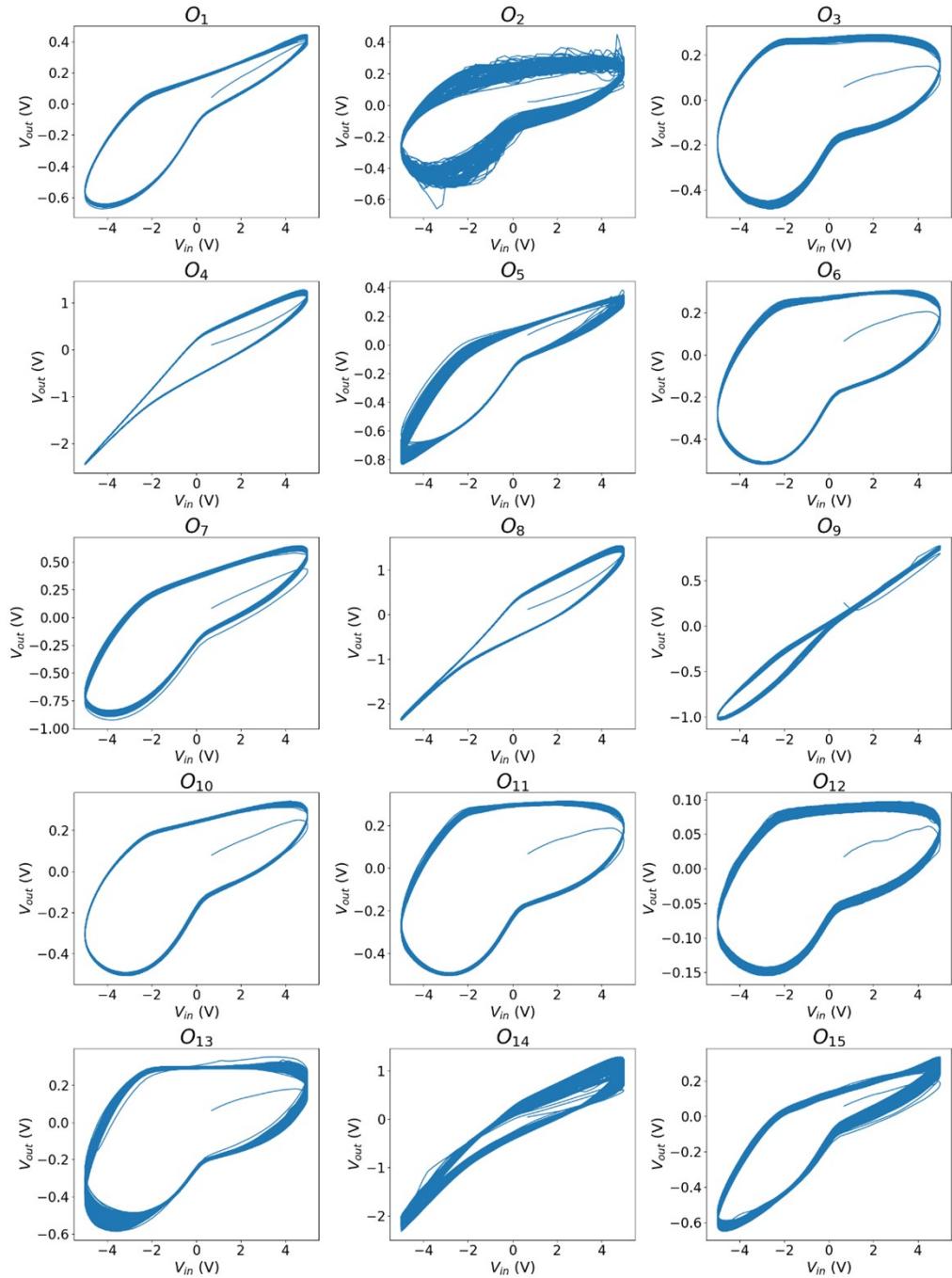
36 then homogenized via ultrasonication for 10 minutes. The active material was deposited by drop-  
37 casting three 1  $\mu$ L drops (approximately 3  $\mu$ L total volume) from a micropipette onto the central  
38 100  $\mu$ m gap of the electrode array. During this process, the substrate was held on a hot plate at 70  
39  $^{\circ}$ C to facilitate controlled solvent evaporation. After the material was fully dried, the Si/SiO<sub>2</sub> chip  
40 was mounted onto a custom-designed printed circuit board (PCB). Electrical connections from the  
41 16 aluminum electrode pads to the corresponding PCB contacts were then established using silver  
42 paste for wire bonding. The fully packaged device was then ready for electrical characterization  
43 and reservoir computing experiments.

44 **S2. FFT Analysis and High-Dimensional Representation**

**FFT of Output Signals  $O_1$  to  $O_{15}$**



45


46 **Figure S1.** FFT amplitude spectra of the 15 device output signals  $O_1$  to  $O_{15}$  obtained under an 11 Hz sinusoidal input voltage. The  
 47 spectra exhibit pronounced peaks at the fundamental frequency of 11 Hz and at higher harmonic frequencies such as 22 Hz and 33  
 48 Hz. The generation of these integer multiples confirms the nonlinear dynamical response of the MoSe<sub>2</sub>/SWNT reservoir.

49 FFT analysis of the device outputs clearly shows pronounced peaks at the fundamental and  
50 harmonic frequencies as shown in **Figure S2**. By feeding a sine wave with a fundamental  
51 frequency of 11 Hz into the device, we observed its output through FFT analysis which revealed  
52 the presence of harmonics at integer multiples of the input frequency such as 22 Hz and 33 Hz.  
53 This harmonic generation indicates nonlinearity in the device response which is a desirable  
54 characteristic for effective reservoir computing<sup>3-5</sup>. The raw input and output signals used for this  
55 analysis are provided in **Figure S4**. Across the output signals ( $O_1$  to  $O_{15}$ ), significant peaks appear  
56 at the fundamental frequency and its harmonics, which aligns with the device's demonstrated  
57 ability to generate accurate representations of complex waveforms. The amplitude spectrum  
58 reveals a concentration of energy at harmonic frequencies, indicating that the device is introducing  
59 nonlinear transformations to the input signals. These transformations, driven by the device's  
60 nonlinear behavior, are critical for mapping the input signals into a higher-dimensional space. In  
61 the context of waveform reconstruction, this harmonic content is particularly important. For  
62 instance, the successful regression results for waveforms such as the triangle and square waves,  
63 which are rich in harmonic content, are reflected in the pronounced harmonic peaks in the FFT  
64 plots. This suggests that the device can capture the essential harmonic components that define  
65 these waveforms, further confirming its role as a nonlinear reservoir. The FFT analysis also  
66 provides insight into the device's ability to handle signals composed of higher-order harmonics,  
67 such as  $\text{Sin}2\omega$  and  $\text{Sin}3\omega$ . While higher harmonics typically introduce more spectral complexity,  
68 the device demonstrated strong regression performance for both cases. Notably, in the  $\text{Sin}3\omega$  case,  
69 where more complex harmonic content is present, the FFT plots still reveal well-defined peaks  
70 with limited degradation in harmonic amplitude. This is consistent with the observed regression  
71 accuracy of 95.1%, indicating that the device maintains sufficient precision even at higher

72 harmonic orders. Overall, the FFT results support the conclusion that the device not only  
73 transforms input signals nonlinearly but does so in a way that retains essential spectral features  
74 critical for accurate waveform reconstruction.

75 **S3. Lissajous Plots and Nonlinear Dynamics**

**Lissajous Plots: Output Signals  $O_1$  to  $O_{15}$**



76

77 **Figure S2.** Lissajous plots of all 15 outputs from the device showing asymmetric and hysteresis shape suggesting rich non-linearity

78 and phase shifts

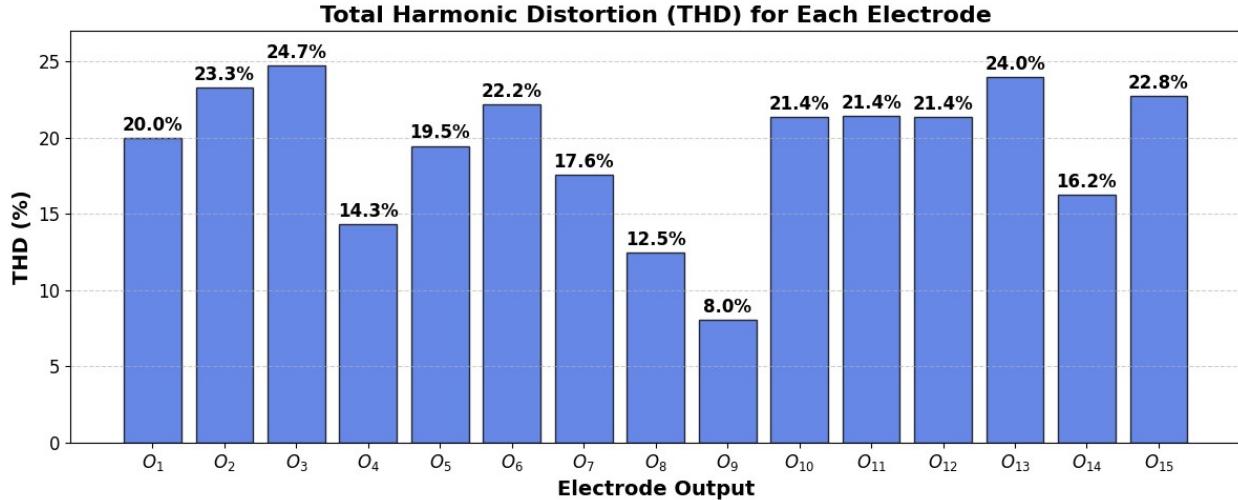
79 The Lissajous plots, depicted in the attached figures, provide a clear visualization of the nonlinear  
80 relationship between the input and output signals of the MoSe<sub>2</sub>/SWNT core-shell device. These  
81 plots were generated by plotting the output voltage ( $V_{\text{out}}$ ) against the input voltage ( $V_{\text{in}}$ ) for each  
82 of the device's output channels ( $O_1$  to  $O_{15}$ ) as shown in **Figure S3**. The resulting shapes,  
83 predominantly asymmetrical ellipses, are indicative of phase shifts and nonlinear dynamics  
84 introduced by the device. The elliptical shapes seen in the Lissajous plots typically emerge when  
85 the input and output signals share the same frequency, but the asymmetry of these ellipses reveals  
86 that the device is introducing significant phase shifts and nonlinear transformations to the input  
87 signal. This is a direct consequence of the nonlinearities in the device, which are essential for the  
88 reservoir computing framework. Nonlinear transformations enrich the dynamics of the system,  
89 enabling the reservoir to map input signals into a high-dimensional space, facilitating the  
90 separation and classification of complex patterns.

91 The Lissajous plots vary across different output signals, with some displaying more pronounced  
92 asymmetry (e.g.,  $O_2$ ,  $O_5$ ,  $O_{11}$ ) while others exhibit tighter, more elliptical shapes. These variations  
93 reflect the device's ability to apply different degrees of phase shifts and nonlinear modifications  
94 depending on the specific output channel. For example, output  $O_2$  shows a highly irregular and  
95 overlapping Lissajous figure, suggesting that the device has introduced a significant nonlinear  
96 distortion to the input. In contrast, outputs like  $O_1$  and  $O_3$  maintain a clearer elliptical shape with  
97 slight asymmetry, indicating more moderate nonlinear transformations.

98 These asymmetrical elliptical shapes are critical for reservoir computing applications. The  
99 nonlinearity they represent ensures that the input signal is transformed into a rich, high-  
100 dimensional representation, which is necessary for the system to perform tasks such as pattern  
101 recognition and time-series prediction. The phase shifts alter the orientation and size of the

102 Lissajous figures, further emphasizing the device's capability to introduce complex dynamics.  
103 These dynamics, captured in the Lissajous plots, provide a visual confirmation of the nonlinear  
104 behavior observed in both the FFT analysis and waveform reconstruction tasks discussed  
105 previously.

106 **S4. Total harmonic distortion**


107 Total Harmonic Distortion (THD) is another metric for quantifying the nonlinearity of a reservoir  
108 computing system, particularly in physical implementations where the reservoir transformation is  
109 governed by material properties<sup>1,2</sup>. In an ideal linear system, a pure sinusoidal input should only  
110 contain its fundamental frequency. However, a nonlinear system such as a memristive reservoir  
111 naturally generates higher harmonics at integer multiples of the input frequency. The degree of  
112 harmonic generation is quantified by THD, defined as:

$$113 \quad THD = \frac{\sqrt{A_2^2 + A_3^2 + A_4^2 + \dots + A_{15}^2}}{A_1} \quad \#(11)$$

114

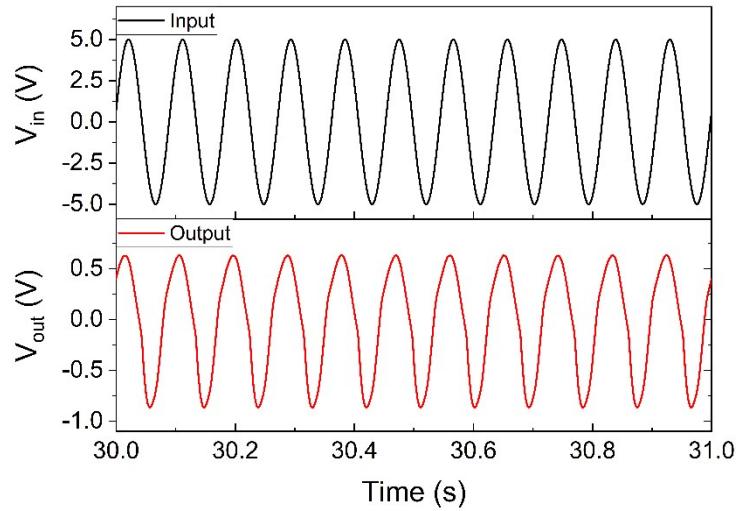
115 where  $A_1$  is the amplitude of the fundamental frequency, and  $[A_2, A_3, A_4, \dots, A_{15}]$  represent the  
116 amplitudes of the harmonic components. In the context of waveform reconstruction, THD provides  
117 insight into how the reservoir expands the input signal into a richer feature space, enabling the  
118 readout layer to synthesize complex waveforms from a single sinusoidal input. This is linked to  
119 Fourier series decomposition, where any periodic function can be represented as a sum of sinusoids  
120 at different frequencies. Since many target waveforms (e.g., triangle, square, and sawtooth waves)  
121 require specific harmonic components as from equations (12) – (15), the ability of the reservoir to  
122 generate these harmonics is crucial for achieving high reconstruction accuracy. Figure S3 presents  
123 the measured THD across the 15 output electrodes, revealing a heterogeneous nonlinearity  
124 distribution with values spanning from 8.0% O<sub>9</sub> to 24.7% O<sub>3</sub>. This variation indicates that different  
125 nodes within the reservoir provide diverse harmonic components, rather than a uniform  
126 transformation. By correlating THD with waveform reconstruction performance, as shown in  
127 **Figure S3**, we demonstrate that the memristive reservoir not only exhibits strong nonlinear

128 transformation capabilities but also provides an effective basis for encoding diverse time-series  
 129 signals.



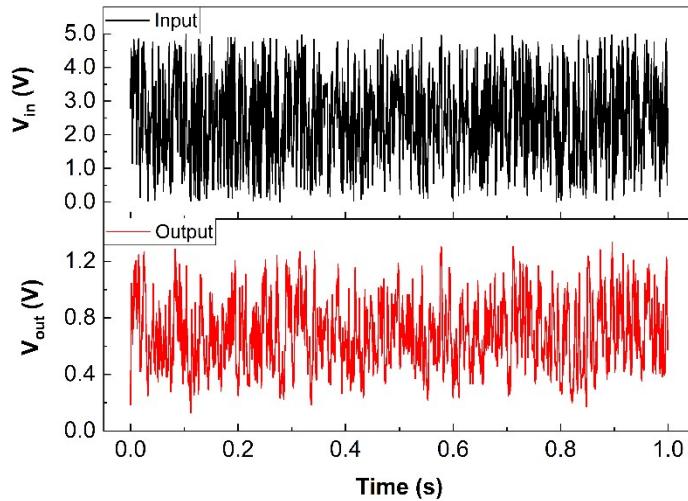
131 **Figure S3.** Total harmonic distortion of all 15 outputs of the reservoir.

132  $\text{Cosine wave } f(x) = \sin\left(\frac{\pi}{2} - x\right) \#(12)$


133  $\text{Triangle wave } f(x) = \frac{8}{\pi^2} \sum_{i=1,3,5,\dots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{n^2} \sin\left(\frac{n\pi x}{L}\right) \#(13)$

134  $\text{Sawtooth wave } f(x) = \frac{1}{2} - \frac{1}{\pi} \sum_{i=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{L}\right) \#(14)$

135  $\text{Square wave } f(x) = \frac{4}{\pi} \sum_{i=1,3,5,\dots}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{L}\right) \#(15)$


## 136 **S5. Input and Output representations of benchmark tasks**

137 The input and output of waveform reconstruction tasks is 11 Hz sine wave as shown in **Figure S4**.  
 138 We observed one of the outputs of their reservoir is a little bit distorted, an indication of the  
 139 nonlinear transformation by the reservoir on the input signal.



140

141 **Figure S4.** Input and output representation of waveform reconstruction task.



142

143 **Figure S5.** Input and output representation of NARMA2 and MC task.

144

## 145 References

146 1 A. Arranz-Gimon, A. Zorita-Lamadrid, D. Morinigo-Sotelo and O. Duque-Perez, *Energies*  
147 2021, Vol. 14, Page 6467, 2021, 14, 6467.

148 2 D. Shmilovitz, *IEEE Transactions on Power Delivery*, 2005, 20, 526–528.

149 3 O. Srikimkaew, D. Banerjee, S. Azhari, Y. Usami and H. Tanaka, *ACS Appl Electron Mater*,  
150 2024, 6, 688–695.

151 4 D. Banerjee, T. Kotooka, S. Azhari, Y. Usami, T. Ogawa, J. K. Gimzewski, H. Tamukoh  
152 and H. Tanaka, *Advanced Intelligent Systems*, 2022, 4, 2100145.

153 5 G. Abdi, A. Karacali, A. S. K. Zaman, M. Gryl, A. Sławek, A. Szkudlarek, H. Tanaka and K.  
154 Szaciłowski, *Adv Electron Mater*, DOI:10.1002/aelm.202500049.

155

156