Supporting Information

H_2O_2 activated Ag_2S :In-Cu nanoprobe for in vitro synergistic tumor treatment

Xiaoyan Zhang^{1,#}, Ruiqi Liu^{2,#}, Zhouyu Yu¹, Baisong Chang*,¹

- ^{a.} State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- ^{b.} State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China # These authors contributed equally.
- * Correspondence should be addressed to B.C. (chang@whut.edu.cn)

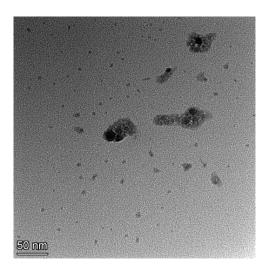


Fig. S1 TEM image of Ag_2S nanoparticles.

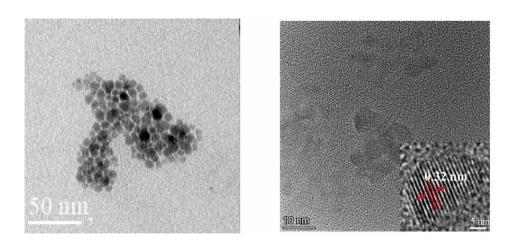


Fig. S2 TEM and high-resolution TEM images of AIS nanoparticles.

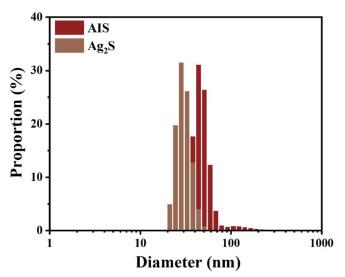


Fig. S3 Particle size of Ag_2S and AIS nanoparticles.

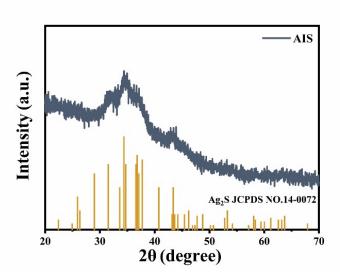


Fig. S4 X-ray diffraction pattern of AIS nanoparticles.

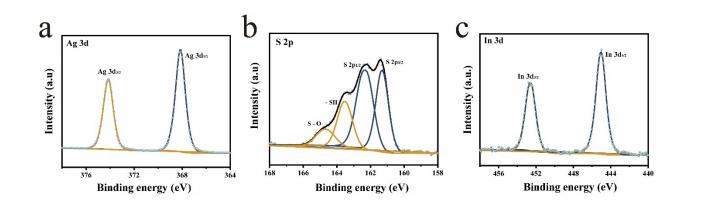


Fig. S5 Survey and fitted XPS analysis of AIS (Ag 3d, S 2p and In 3d) nanoparticles.

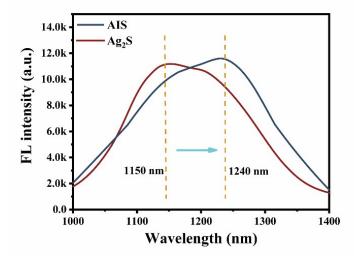


Fig. S6 NIR-II fluorescence spectra of AIS and Ag₂S nanoparticles.

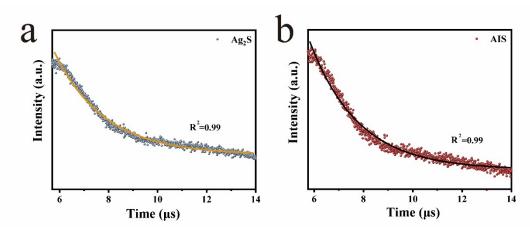


Fig. S7 Fluorescence lifetime of (a) Ag_2S and (b) AIS.

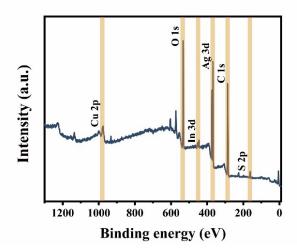


Fig. S8 XPS full spectrum of ACP nanoparticles.

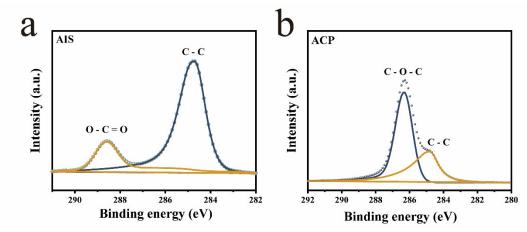
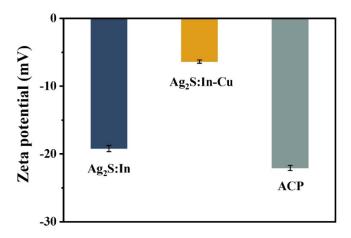
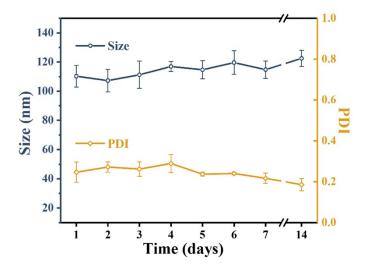




Fig. S9 High-resolution XPS spectra of C 1s. (a) AIS. (b) ACP.

 $\textbf{Fig. S10} \ \ \text{Zeta potential measurement of } Ag_2S: In, Ag_2S: In-Cu \ \text{and } ACP \ \text{nanoparticles}.$

Fig. S11 Particle size and polymer dispersity index (PDI) during 14 days of ACP nanoparticles.

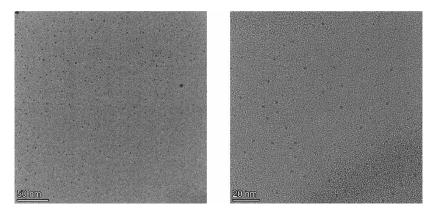


Fig. S12 TEM images of ACP nanoparticles treated with H_2O_2 .

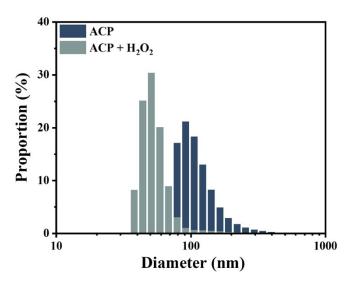


Fig. S13 Particle size of ACP and ACP treated with H_2O_2 nanoparticles.

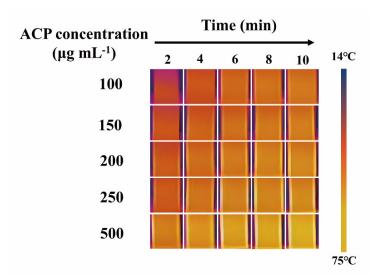
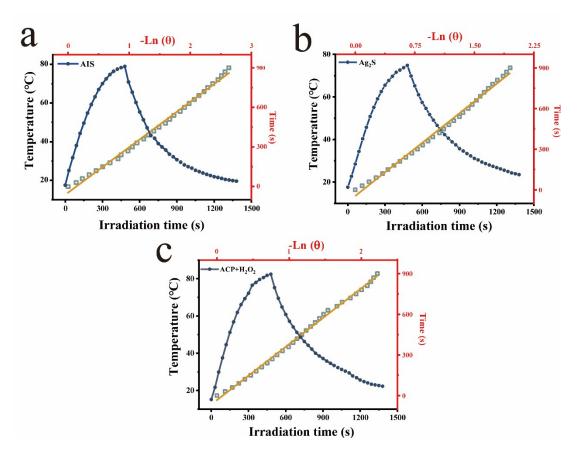
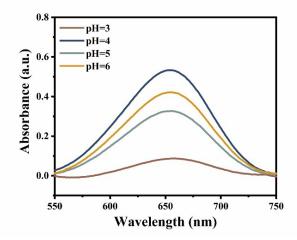
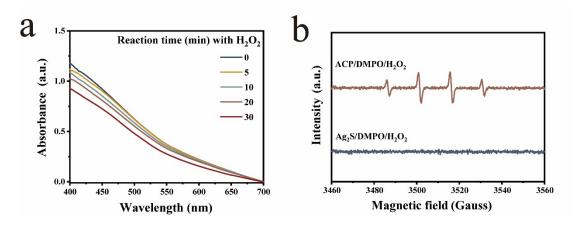
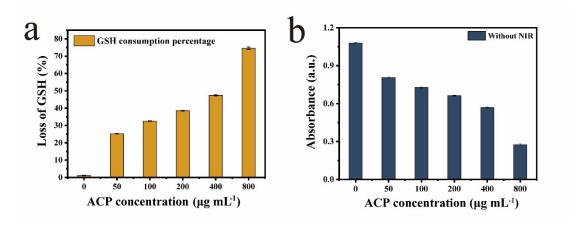



Fig. S14 Thermal images of ACP nanoparticles at different concentrations (0 - 500 μg mL⁻¹) under 808 nm laser irradiation for 10 min (2 W cm⁻²).

Fig. S15 (**a, b, c**) Temperature plots of the heating and cooling processes of AIS nanoparticles, Ag₂S nanoparticles and ACP nanoparticles treated with H₂O₂ irradiated with an 808 nm laser (2 W cm⁻²), and the plot of cooling time versus negative natural logarithm of the temperature driving force obtained from cooling stage.

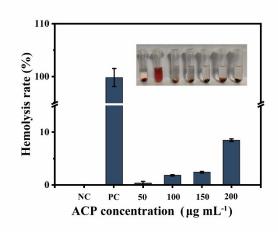

Fig. S16 The influence of different pH on ACP nanoparticles POD-like properties.

Fig. S17 (a) UV-vis spectra of Ag₂S nanoparticles and TMB/H₂O₂ at different reaction times. (b) DMPO/H₂O₂ treated with ACP nanoparticles and Ag₂S nanoparticles.

Fig. S18 (a) The percentage of GSH consumption and (b) absorbance change at 412 nm for different concentrations of ACP nanoparticles.

Fig. S19 Hemolysis rates of ACP nanoparticles with 3 h of incubation with blood cells (inset: hemolysis photo after centrifugation).

Table S1 PCE of some reported nanoparticles.

Nanoparticles	Power density (W cm ⁻²)	PEC (%)	Refs
PDA@Ag nanoparticles	1.0	36.1	[1]
SDBS-Ag ₂ Se nanoparticles	1.7	22.9	[2]
Ag ₂ S nanoparticles	1.0	38.5	[3]
Ag ₂ S/g-C ₃ N ₄ nanoparticles	2.5	31.3	[4]
BSA-Ag ₂ S nanoparticles	3.4	18.9	[5]
Ag ₂ S nanoparticles	2.0	41.0	[6]
ACP nanoparticles	2.0	54.0	This work

References

- [1] X. Qi, Y. Huang, S. You, Y. Xiang, E. Cai, R. Mao, W. Pan, X. Tong, W. Dong, F. Ye and J. Shen, *Adv. Sci.*, 2022, **9**, 2106015.
- [2] X. Yang, C. Wang, X. Zhang, Y. Wang, F. Gao, L. Sun, W. Xu, C. Qiao and G. Zhang, Sci. Technol. *Adv. Mater.*, 2020, **21**, 584-592.
- [3] S. Zhu, W. Song, Y. He, Y. Wang, X. Li, Y. Wu, X. Meng, C. Lin, W. Wang, H. Wang, S. Huang, F. Yan and L. Sun, *ACS Appl. Mater. Interfaces*, 2025, **17**, 37465-37478.
- [4] H. Wang, J. You, D. Shi, L. Cai, H. Shi and H. Shi, *ACS Appl. Nano Mater.*, 2024, 7, 19904-19914.
- [5] J. Zhao, Q. Zhang, W. Liu, G. Shan and X. Wang, *Colloids Surf.*, B, 2022, 211, 112295
- [6] R. Han, Y. Xiao, Q. Yang, M. Pan, Y. Hao, X. He, J. Peng and Z. Qian, *Biomaterials*, 2021, **264**, 120451.