

Supporting information

Wearable respiratory sensors for non-invasive healthcare monitoring: applications and intelligent technologies

*Luming Yu,† Guiyan Liu,† Hao Zhang and Dan Wen**

School of Materials Science and Engineering, Northwestern Polytechnical University,
Xi'an 710072, P. R. China

Table S1. Comparison of various types of sensors in terms of target gas, sensitivity, detection limit, response/recovery time, mechanical flexibility, cost, and integrability.

Types of sensors	Target gas	Sensitivity	LOD	$\tau_{\text{res}}/\tau_{\text{rec}}$	Flexibility	Integrability / Cost
Chemiresistive sensors	VOCs; NH ₃ , NO, etc.	1-10 ² /10 ppm	ppt-ppb	10-10 ² s	Good	Low cost and easy integrability; Easily mass-produced
Electrochemical sensors	Acetone, NH ₃ , NO, H ₂ O ₂ , etc.	nA- μ A / ppm	ppt-ppb	< 60 s	Medium	High cost and complex integrability
Optical sensors	H ₂ S, NO ₂ , etc.	---	ppb-ppm	---	Poor	High cost and complex integrability
Humidity sensors	Humidity	0.1-10 ² %/%RH	<1% RH	< 60 s	Good	Low cost and easy integrability
Pressure sensors	Acetone, NH ₃ , NO, etc.	1-10 ³ Hz/ppm	ppb	<200 s	Poor	High cost and complex integrability

Table S2. Comparison of advantages and disadvantages of the four material categories for practical applicability in real respiratory environments.

Materials	Metal oxides	Carbon materials	Conductive polymers	Metal chalcogenides
Work temperature	High (150-500°C)	Room temperature	Room temperature	Room temperature to 200°C
Selectivity	Poor	Poor	Excellent to basic gas	Medium
Sensitivity	High	Low	Low	Medium
Stability	Excellent	Medium	Poor	Poor
Target gas	Wide range of gases	NO _x , NH ₃ , etc.	NH ₃ , humidity, etc.	NO ₂ , NH ₃ , etc.
Synthetic process	Easy	Medium	Medium	Complicated

Table S3. Evaluation of various energy sources for self-powered systems.

Power source	Power density	Energy source	Wearability
Solar cells	mW/cm ²	Light	Poor
Piezoelectric nanogenerators	μW-W/cm ²	Repeatedly applying and releasing force	Good
Triboelectric nanogenerators	μW-mW/cm ²	Body movement	Excellent
Thermoelectric generator	μW/cm ²	Heat	Medium