Robust In-situ Adaptive Artificial Interface for Dead-lithiumfree Lithium Metal Batteries

Chengkai Yang^{a,*}, Jing Luo^a, Jiajie Wu^a, Borong Li^a, Yichen Li^a, Dehuan Shi^a, Yanbin Qiu^a, Xinyu Zheng^a, Qian Wang^{d,*}, Zheyuan Liu^{a,*}, Shuming Duan^{b,c*}

a Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

b Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China c Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China.

d College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

E-mail: chengkai_yang@fzu.edu.cn; qianwang0825@pku.edu.cn; zheyuan.liu@fzu.edu.cn; smduan@tjufz.org.cn

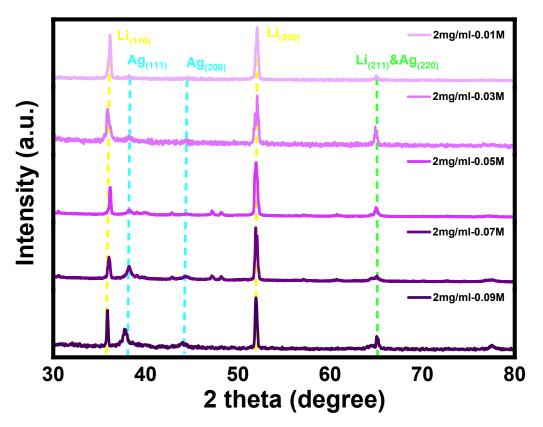
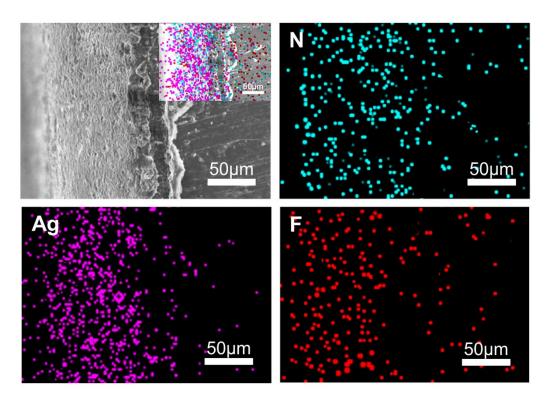



Fig.S1 XRD patterns of PAM-b-PHFBA-AgNO $_3$ @Li prepared at different concentrations.

 $\label{eq:Fig.S2} Fig.S2\ EDS\ spectrum\ of\ the\ cross-section\ of\ PAM-b-PHFBA-AgNO_3@Li\ (including\ N,\ Ag,\ and \\ F).$

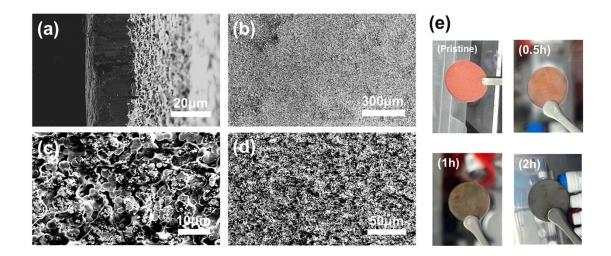
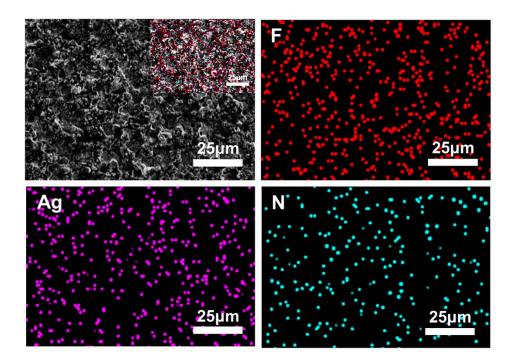



Fig.S3 (a) Cross-sectional view and (b) top view of PAM-b-PHFBA-AgNO₃@Cu. (d) Magnified view of (b). (c) Magnified view of (d). (e) Optical micrographs after different in situ reaction times.

 $Fig. S4\ EDS\ spectrum\ of\ the\ surface\ of\ PAM-b-PHFBA-AgNO_3@Cu\ (including\ N,\ Ag,\ and\ F).$

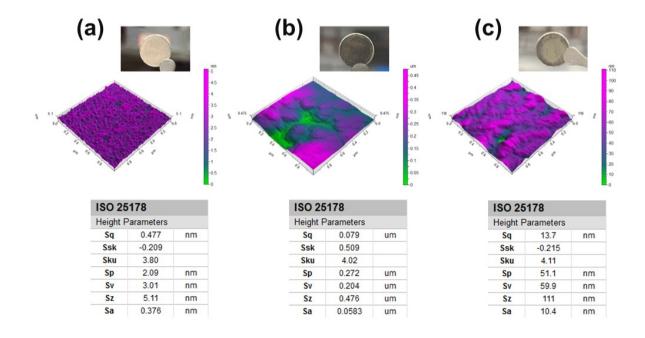


Fig. S5 Three-dimensional AFM morphology and surface information of (a) PAM-b-PHFBA@Li, (b) AgNO₃@Li, and (c) PAM-b-PHFBA-AgNO₃@Li.

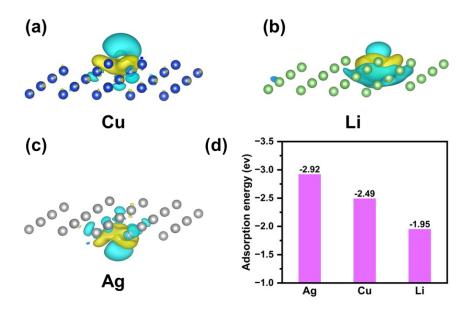


Fig. S6 (a) Charge density difference maps of lithium atoms adsorbed on (a) Cu, (b) Li, and (c) Ag substrates. (d) Adsorption energy diagram.

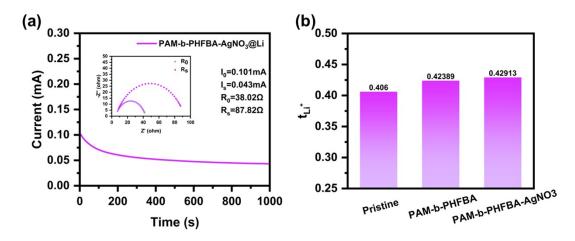


Fig. S7 (a) lithium ion migration number test. (b) Lithium ion migration numbers calculated from the test.

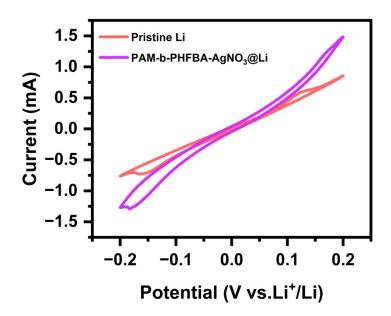


Fig. S8. CV curves of symmetric cells assembled with Pristine Li and PAM-b-PHFBA-AgNO $_3$ @Li.

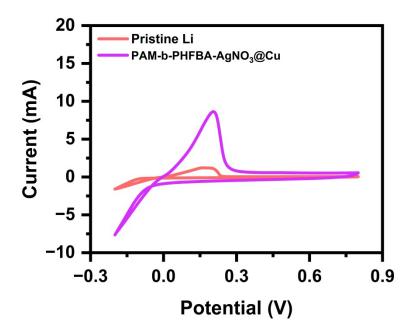


Fig. S9 CV curves of symmetric cells assembled with Pristine Cu and PAM-b-PHFBA-AgNO $_3$ @Cu.

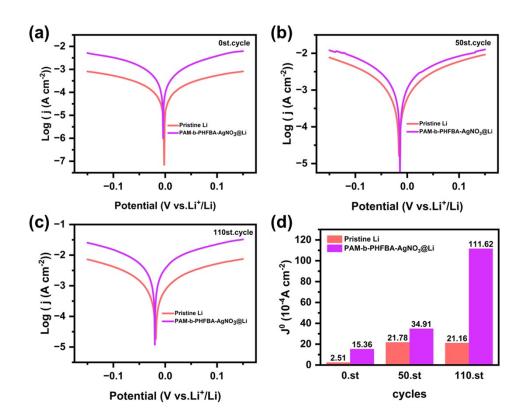


Fig. S10 Tafel plots after cycling of the battery for (a) 0, (b) 50, and (c) 110 cycles. (d) Comparison of exchange current densities.

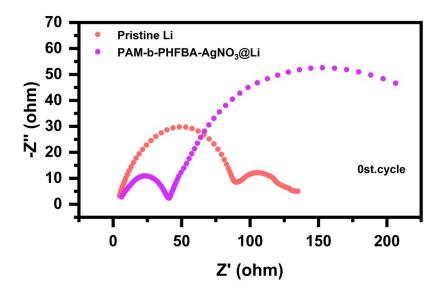


Fig. S11 Impedance spectra of symmetric cells assembled with Pristine Li and PAM-b-PHFBA- $AgNO_3@Li \ before \ cycling.$



Fig. S12 Nucleation overpotential of Pristine Li at (a) 0.5 mA cm⁻² and (b) 1 mA cm⁻². Nucleation overpotential of PAM-b-PHFBA-AgNO₃@Cu at (c) 0.5 mA cm⁻² and (d) 1 mA cm⁻².

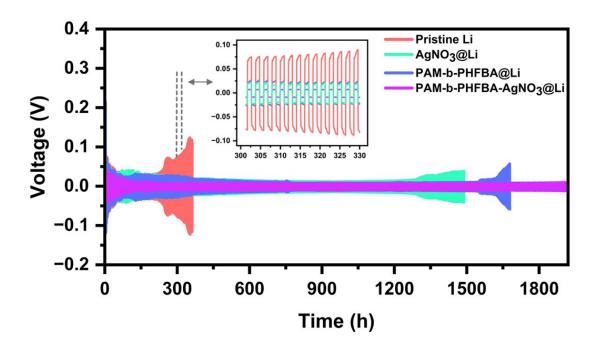


Fig. S13 Voltage distribution of Li||Li symmetric cells with Pristine Li, $AgNO_3@Li$, PAM-b-PHFBA@Li, and PAM-b-PHFBA-AgNO_3@Li at a current density of 1 mA cm⁻² with a capacity of 1 mAh cm⁻².

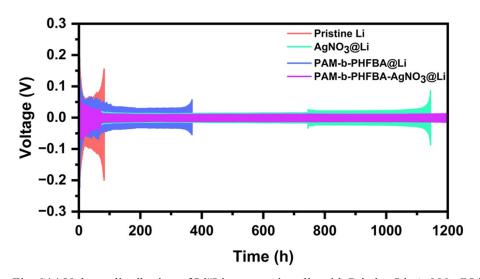


Fig. S14 Voltage distribution of Li||Li symmetric cells with Pristine Li, AgNO₃@Li, PAM-b-PHFBA@Li, and PAM-b-PHFBA-AgNO₃@Li at a current density of 3 mA cm⁻² with a capacity of 1 mAh cm⁻².

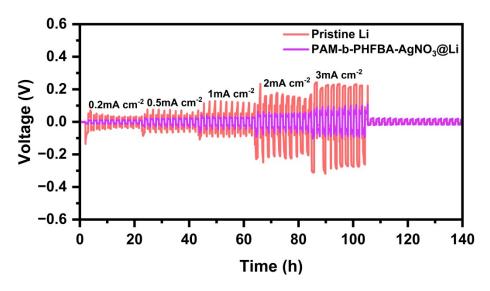


Fig. S15 Stepwise current test of Pristine Li and PAM-b-PHFBA-AgNO₃@Li.

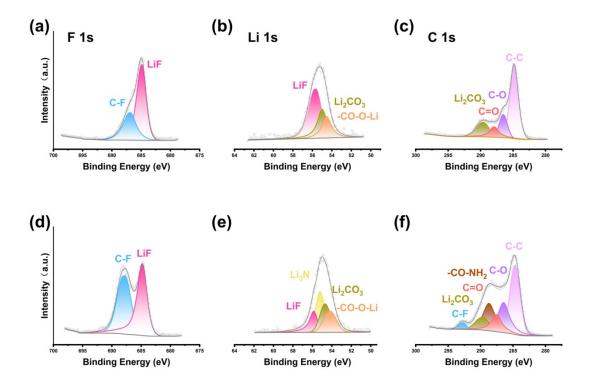


Fig. S16 F 1s, Li 1s, and C 1s XPS spectra of Li||Li symmetric cells assembled with (a-c) Pristine Li and (d-f) PAM-b-PHFBA-AgNO₃@Li after 50 cycles at 1 mA cm⁻²/1 mAh cm⁻².

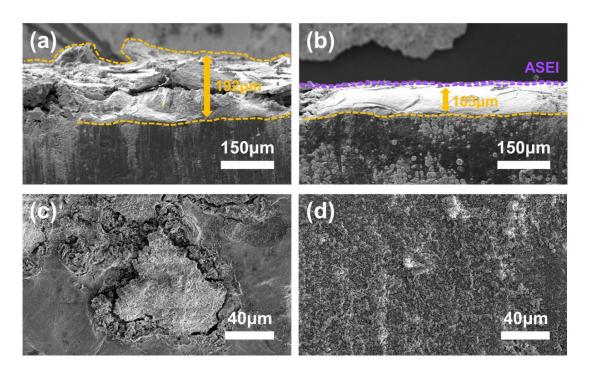


Fig. S17 Cross-sectional views of (a) Pristine Li and (b) PAM-b-PHFBA-AgNO₃@Li after 50 cycles at 3 mA cm⁻². Top views of (c) Pristine Li and (d) PAM-b-PHFBA-AgNO₃@Li after 50 cycles at 3 mA cm⁻².

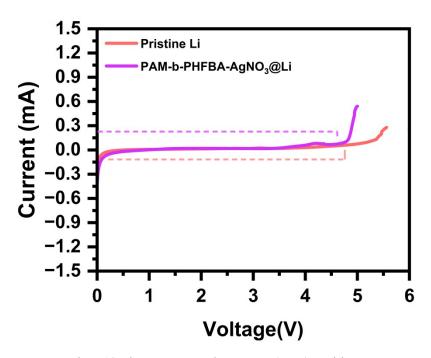


Fig. S18 Linear sweep voltammetry (LSV) positive scan current curves.

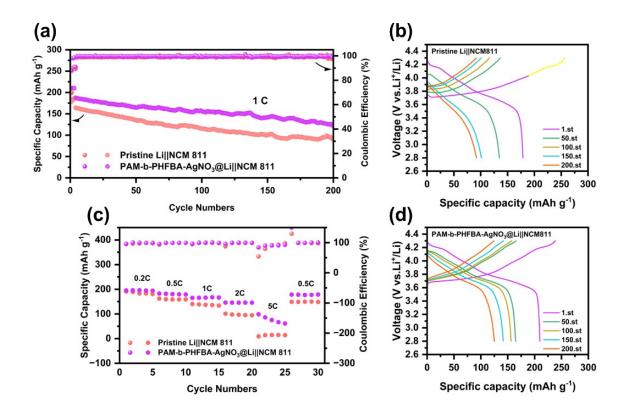


Fig. S19 (a) Cycling performance of the ternary full cells assembled with Pristine Li and PAM-b-PHFBA-AgNO₃@Li at 1 C. (c) Rate performance test. (b) Voltage-capacity curves of the full cells with Pristine Li and (d) PAM-b-PHFBA-AgNO₃@Li.

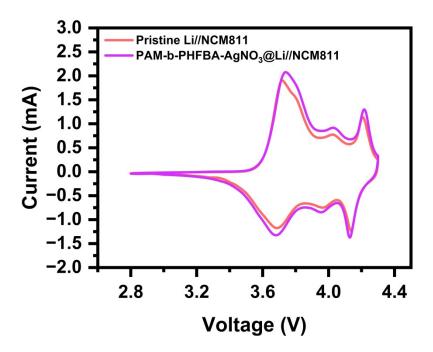


Fig. S20 CV curves of the ternary full cells assembled with Pristine Li and PAM-b-PHFBA-AgNO $_3$ @Li.

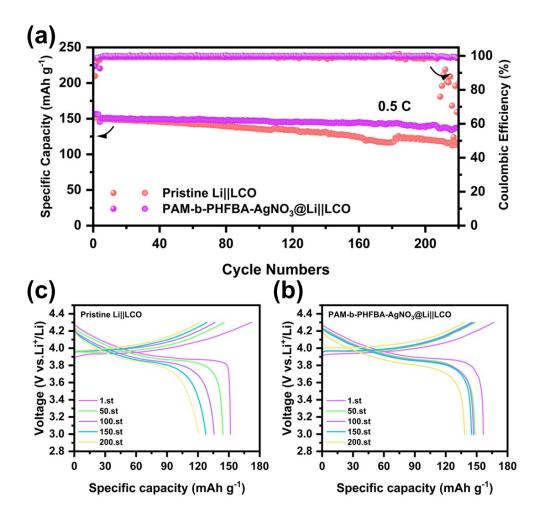


Fig. S21 (a) Cycling performance at 0.5 C of lithium cobalt oxide full cells assembled with Pristine Li and PAM-b-PHFBA-AgNO₃@Li. (b) Voltage-capacity curves of full cells with Pristine Li and (c) PAM-b-PHFBA-AgNO₃@Li.

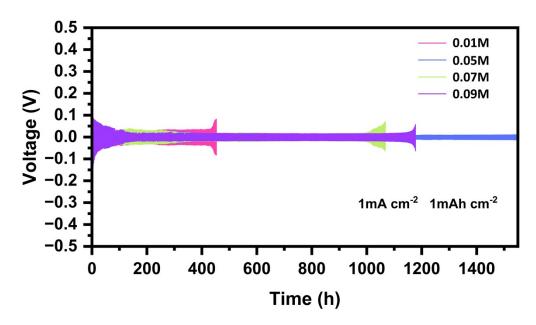


Fig. S22 Cycling images of lithium symmetric cells assembled with PAM-b-PHFBA-AgNO₃ (prepared using silver nitrate at concentrations of 0.01, 0.05, 0.07, and 0.09 M)

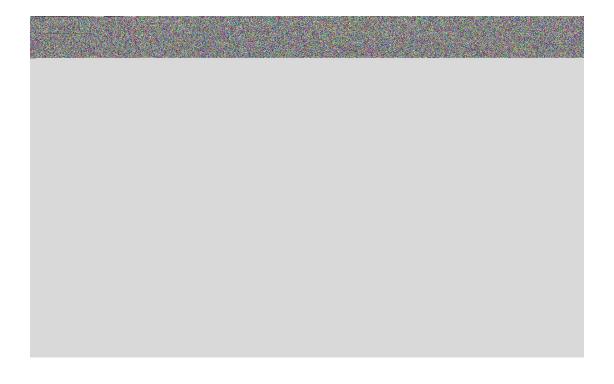


Fig. S23. Cross-sectional and top-view SEM images of Li anodes after 50 cycles at 3 mA cm⁻². Cross-sectional views of (a) Pristine Li and (b) PAM-b-PHFBA-AgNO₃@Li; Top views of (c) Pristine Li and (d) PAM-b-PHFBA-AgNO₃@Li. The Pristine Li anode shows severe dendrite growth and structural damage, while the composite-coated Li anode maintains a compact and intact structure, confirming the dendrite suppression effect of the in-situ adaptive ASEI

Table 1 Performance comparison between this work and recent interface modifications (2017 - 2025).

Reference(DOI)	Title	Battery performance	Year
(10.1149/1945-7111/aa8d12)	Altering the Solid Electrolyte Interface Through Surface- Modification of Lithium Metal Anode for High- Voltage Lithium Battery	NMC622/Li full cell: ~141 mAh g ⁻¹ after 100 cycles; Li/Li symmetrical cell: stable plating/stripping over 450 h at 0.5 mA cm ⁻² ; Improved capacity retention and rate capability via optimized	2024

		organic/inorganic SEI.	
		Ionic conductivity:	
(10.1016/j.jechem.2022.02.041)		$2.1 \times 10^{-4} \mathrm{S cm^{-1}}$ at	
	Bifunctional LiI	45° C; Li/Li	
	additive for	symmetrical cell:	
	poly(ethylene oxide)	stable cycling >600 h	
	electrolyte with high	at 0.2 mA cm ⁻² ;	2022
	ionic conductivity	Solid-state LFP/Li and	
	and stable interfacial	NCM811/Li cells	
	chemistry	show excellent	
		cycling stability and	
		rate performance.	
		Li/Li symmetrical	
(10.1016/j.matchemphys.2023.128177)		cell: stable for 500 h	
	Surface modification	at 1 mA cm ⁻² ; LFP/Li	
	of lithium metal	full cell: good cycling	
	anode with lithium	stability over 300	
	silicate-lithium	cycles at 1C;	2023
	phosphate composite	Enhanced Li ⁺	
	layer for enhanced	conductivity and	
	cycling stability	mechanical strength	
		suppress dendrite	
		growth.	
		Li/Li symmetrical	
(10.1002/anie.201709305)		cell: >2000 h cycling	
		at 0.1 mA cm ⁻² ; All-	
	Lithium Azide as an Electrolyte Additive for All-Solid-State	solid-state Li - S cell:	
		high reversible	2017
		capacity (~800 mAh	
		g ⁻¹) and improved	
	Lithium - Sulfur	capacity retention	
	Batteries	over 30 cycles at	
		70° C; Li ₃ N-rich SEI	
		enhances interfacial	
		stability.	
This study	1	3 mA cm ⁻² /1 mAh	
		cm ⁻² : Cycling for	
		>1200 h; NCM811	
		high-nickel cathode	