Van der Waals Stacked CdS /WSe₂ Heterostructure For High-Performance Photodetection

Lei Liu^{a,b,d}, Dafei Chen^{a,b}, Fan Mu^{a,b}, Yan Yang^{a,b,d}, Lujun Yang^{a,b}, Haiqiang Huang^{a,b,d}, Yifei Huang^{a,b,d}, Hui Zhang^{a,b}, Yingkai Liu^{a,b,c,d,*}

^b Yunnan Key Laboratory of Opto-electronic Information Technology, Yunnan Normal University, Kunming 650500, China.

^c Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China.

Tel.: +86-871-6594-1166

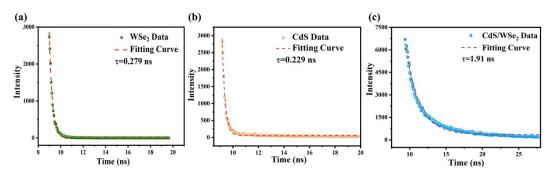


Figure S1. Time-resolved PL spectra of (a) isolated WSe2 and (b) isolated CdS and CdS/WSe2 HT.

^a Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

^d Southwest United Graduate School, Kunming 650092, China.

^{*} Correspondence: <u>liuyingkai99@163.com</u>;

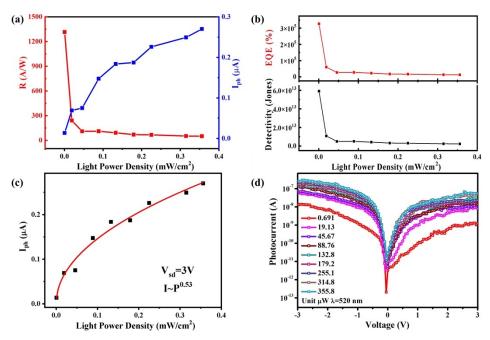


Figure S2. The incident light power of CdS/WSe₂ photodetector as a function of (a) photoresponse and photocurrent, (b) EQE and detectivity; (c)The relationship between photocurrent and incident light power density; (d) I-V curves (logarithmic form) at different optical powers. (the incident wavelength is 520 nm).

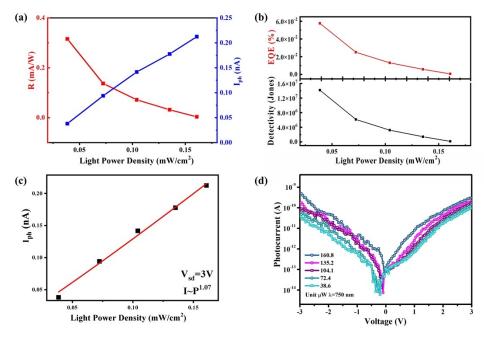
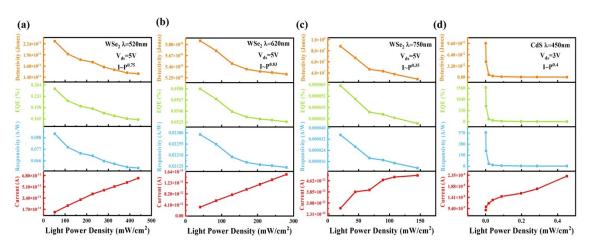



Figure S3. The incident light power of CdS/WSe₂ photodetector as a function of (a) photoresponse and photocurrent, (b) EQE and detectivity; (c)The relationship between photocurrent and incident light power density; (d) I-V curves (logarithmic form) at different optical powers. (the incident wavelength is 750 nm).

Figure S4. I-V curves (logarithmic form) of single WSe₂ at different optical powers. (the incident wavelength is 520 (a), 620 (b), 750 (c) nm, respectively); I-V curves (logarithmic form) of single CdS at different optical powers. (the incident wavelength is 450 (d) nm).

Figure S5. The photoelectric performance parameters of a single WSe₂ photodetector, with the incident light being 520 (a), 620 (b), and 750 (c) nm, respectively; The photoelectric performance parameters of a single CdS photodetector, with the incident light of 450 nm.

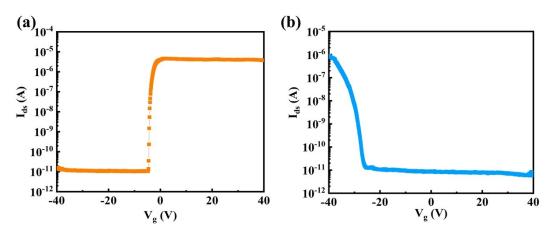


Figure S6. (a) Transfer characteristic curve of CdS-FET;

(b) Transfer characteristic curve of WSe₂-FET.

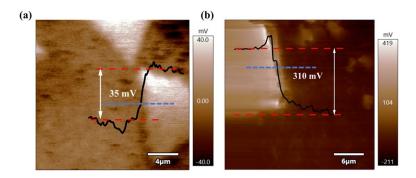
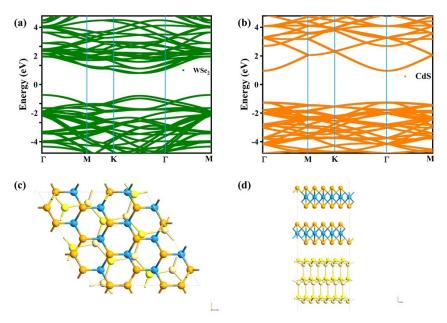



Figure S7. SKPFM characterization of the surface potential of (a) WSe₂/Au, (b) CdS/Au.

Figure S8. The calculated band structure for WSe₂ (a) and CdS (b) device along some high symmetry directions of the Brillouin zone; Top (c) and side (d) views of the heterojunction model used in the calculations.

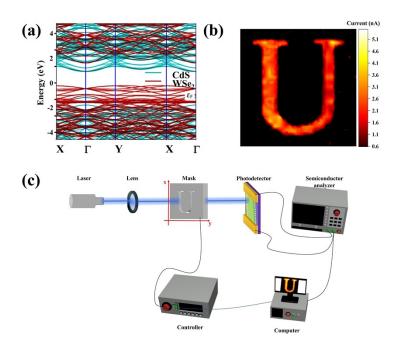
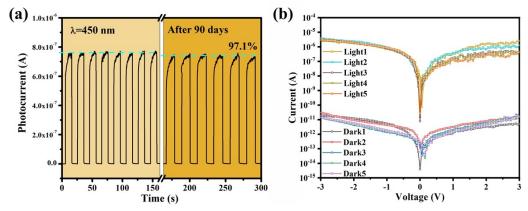



Figure S9. (a)The calculated band structure for CdS/WSe $_2$ HTs along some high symmetry directions of the Brillouin zone; (b) CdS/WSe $_2$ HTs photodetector imaging at 490 nm illumination (50 μ W/cm 2 , V_{ds} = 3V); (c) Schematic diagram of the imaging system.

Figure S10. (a) The long-term stability tests of the WSe₂/CdS HTs under 450 nm (0.45 mW/cm²) periodic illumination with 3 V bias voltage; (b) The reproducibility tests of five WSe₂/CdS HTs by 3 V under white-light illumination at controlled power densities (22.6 mW/cm²) and dark condition.

Table S1 The reproducibility of WSe2/CdS HTs devices

	I_{light} (-3V)	I_{light} (3V)	I_{dark} (-3V)	I _{dark} (3V)	On/off ratio (-3V)	On/off ratio (3V)
Mean	3.03×10 ⁻⁶	1.02×10 ⁻⁶	1.87×10 ⁻¹¹	1.42×10^{-11}	1.62×10^{5}	7.15×10 ⁴
SD	4.87×10 ⁻⁷	9.06×10 ⁻⁷	6.95×10^{-12}	5.19×10^{-12}	3.63×10^{4}	5.10×10^4
RSD	16.06%	89.15%	37.12%	36.59%	22.46%	71.31%