
1

Supplementary materials
Contents
1. Video descriptions………………………………………………………………..…………….1

2. Supplementary figures……………………………………………………………….…………2

3. Source codes……………………………………………………………………………………15

1. Video descriptions
Supplementary Movie 1

The experimental process of autonomous high-throughput AFM single-cell mechanical analysis on living adherent cells at 37℃

in the CO2-independent Leibovitz’s L-15 medium without operator intervention. A microsphere-modified AFM probe was used.

The AFM script program was used to automatically capture the optical bright-field image which was processed in real-time by

the deep learning image recognition algorithm deployed on a laptop connected to the AFM desktop, generating the positional

relationships between AFM probe and the cells within the horizontal detection area (100×100 μm2) of the AFM probe. The

positional relationships were passed to the AFM script program, and the script program then controlled the AFM probe to

automatically perform force measurements on cells within the detection area of the AFM probe. Subsequently, the script program

automatically moved the AFM sample stage to make the AFM probe reach a new position, captured the optical bright-field image

and repeated the above process. The whole process was autonomous and did not require manual operation.

Supplementary Movie 2

The experimental process of autonomous high-throughput AFM single-cell mechanical analysis on living heterogeneous CTC

cells at 37℃ in the L-15 medium without operator intervention.

Supplementary Movie 3

Autonomous high-throughput AFM single-cell indentation assay on co-cultured HaCaT cells and HMrSV5 cells. The detection

area (100×100 μm2) of the AFM probe is denoted by the yellow square, and the microspherical position of the AFM probe is

denoted by the yellow diamond block. Recognition results of cell nuclei within the detection area are shown. The inset shows

the force curves acquired on each probed cell.

Supplementary Movie 4

Autonomous high-throughput AFM single-cell indentation assay on co-cultured HaCaT cells and MCF-7 cells.

Supplementary Movie 5

Autonomous high-throughput AFM single-cell indentation assay on co-cultured HaCaT cells and MGC-803 cells.

Supplementary Movie 6

Collecting mixed CTCs (HaCaT cells and MCF-7cells) from blood by the contraction-expansion microfluidics. HaCaT cells

(suspended) and MCF-7 cells (suspended) were added to the blood, which was then driven to pass through the contraction-

expansion microchannel. Both HaCaT cells and MCF-7 cells were labeled with red fluorescein for visual verification.

Supplementary Movie 7

Autonomous high-throughput AFM single-cell indentation assay on mixed CTCs (HaCaT and MCF-7 cells) isolated from blood.

Supplementary Movie 8

Collecting mixed CTCs containing MCF-7 cells (suspended) and Raji cells from blood by the contraction-expansion

microfluidics. Both MCF-7 cells and Raji cells were labeled with green fluorescein.

Supplementary Movie 9

Autonomous high-throughput AFM single-cell indentation assay on mixed CTCs (MCF-7 and Raji cells) isolated from blood.

Supplementary Information (SI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2025

2

2. Supplementary figures

Figure S1 Experimental platform of autonomous high-throughput AFM single-cell indentation assay for revealing the mechanical signatures

of mixed CTCs isolated from blood. (A) The autonomous single-cell mechanical measurement AFM system. The AFM is mounted on an

inverted microscope, and the inverted microscope is used to capture the optical bright-field images of the AFM probe and cells during the

experiment. The AFM has a heating plate, which provides the temperature environment (37℃) required for cell physiological activities, so

AFM force measurements can be performed in the native states of living cells. A laptop computer deployed with deep learning image

recognition algorithms is connected to the AFM computer. Cells and the AFM probe are recognized in the captured optical bright-field images

by the deep learning algorithms, which are transmitted back to the AFM computer to guide automated force measurements on the recognized

cells, and the process is repeated in a cycle without manual involvement. (B) The contraction-expansion microfluidic system for label-free

isolation of CTCs from blood. The inset is the actual photograph of a contraction-expansion microfluidic chip (filled with blood to show the

contraction-expansion microchannel). The dual-channel syringe pump is used to simultaneously inject the sheath fluid (PBS) and the blood

sample containing CTCs. The microfluidic chip system is mounted on an inverted microscope to observe the sorting process.

3

Figure S2 Experimental results on MGC-803 cells cultured alone. (A) Recognition results of the nuclei regions of MGC-803 cells in the optical

bright-field images by the trained deep learning image recognition model. The blue curve indicates the outline of the recognized nucleus. (B)

Statistical results of the Young’s modulus of MGC-803cells cultured alone as reference values (200 cells were measured). The red curve

represents the Gaussian distribution fitting results.

4

Figure S3 Typical force curves obtained on the four types of adherent cells cultured alone. (A) HaCaT cells. (B) HMrSV5 cells. (C) MCF-7

cells. (D) MGC-803 cells. (I) Force curves and (II) the corresponding fitting results of the indentation curves by Hertz model (to obtain cell

Young’s modulus).

5

Figure S4 Typical force curves obtained on the three types of suspended cells cultured alone. (A) Raji cells. (B) Suspended HaCaT cells. (C)

Suspended MCF-7 cells. (I) Force curves and (II) the corresponding fitting results of the indentation curves by Hertz model.

6

Figure S5 Optical bright-field images of digested adherent cells showing preparing the sample of co-cultured cells with different cell mixing

ratios. (A) Digested HaCaT cells with different densities. (B) Digested HMrSV5 cells, MCF-7 cells and MGC-803 cells for adjusting cell

densities.

7

Figure S6 Fluorescence staining experiments of the co-culture of HaCaT cells and HMrSV5 cells with different cell mixing ratios. HaCaT cells

were stained with green fluorescence, and HMrSV5 cells were stained with red fluorescence. The scale bar is 50 μm.

8

Figure S7 Fluorescence staining experiments of the co-culture of HaCaT cells and MCF-7 cells with different cell mixing ratios. HaCaT cells

were stained with green fluorescence, and MCF-7 cells were stained with red fluorescence. The scale bar is 50 μm.

9

Figure S8 Typical force curves obtained during the autonomous high-throughput AFM single-cell indentation assay on co-cultured adherent

cells. (A) Co-culture of HaCaT cells and HMrSV5 cells. (B) Co-culture of HaCaT cells and MCF-7 cells. (C) Co-culture of HaCaT cells and

MGC-803 cells. For each co-culture condition, two representative force curves (corresponding to the two co-cultured cell types) and the Hertz

fitting results are shown.

10

Figure S9 Experimental results of high-throughput AFM single-cell indentation assay on co-cultured HaCaT and MGC-803 cells. (A, B)

Optical bright-field images showing the experimental process of two consecutive detection areas. (I) Recognition results of the optical bright-

field image of AFM probe and cells. The orange box indicates the detection area, and the yellow diamond block indicates the recognized AFM

microspherical tip. The outline of the recognized cell nucleus is indicated by a blue curve and the center of the nucleus is indicated by a green

cross. The white diamond block indicates the center of the next detection area. (II) The AFM probe has been accurately moved to each

recognized cell within the detection area to perform indentation assay one by one. Five cells were recognized and measured (denoted by the

symbols #1-#5) in the detection area in (A), and six cells were recognized and measured in the detection area (denoted by the symbols #1-#6)

in (B). (C) Statistical results of the constructed Young’s modulus profiles of the co-cultured cells with different cell mixing ratios. Double-

Gaussian fittings were performed (red and green curve respectively). (I-II) HaCaT cells and MGC-803 cells were mixed at a ratio of 10:1 (I)

and 1:1 (II) respectively. For each co-culture condition (cell mixing ratio of 10:1 and 1:1), 300 cells were measured.

11

Figure S10 Optical bright-field images showing preparing the sample of mixed CTCs. (A) Mixed HaCaT cells (suspended) and MCF-7 cells

(suspended). (I) The cultured HaCaT cells. (II) The cultured MCF-7 cells. (III) Mixture of the digested HaCaT cells and digested MCF-7 cells.

(B) Mixed MCF-7 cells (suspended) and Raji cells. (I) The cultured Raji cells. (II) The cultured MCF-7 cells. (III) Mixture of Raji cells and

digested MCF-7 cells.

12

Figure S11 Typical force curves obtained during the autonomous high-throughput AFM single-cell indentation assay on mixed CTCs isolated

from blood. (A) Mixed HaCaT cells (suspended) and MCF-7 cells (suspended). (B) Mixed MCF-7 cells (suspended) and Raji cells. For each

condition, two representative force curves (corresponding to the two CTC types) and the Hertz fitting results are shown.

13

Figure S12 Fluorescence staining experiments of the mixed HaCaT cells (suspended) and MCF-7 cells (suspended) with different cell mixing
ratios. HaCaT cells were stained with green fluorescence, and MCF-7 cells were stained with red fluorescence. The scale bar is 50 μm.

14

Figure S13 Fluorescence staining experiments of the mixed Raji cells and MCF-7 cells (suspended) with different cell mixing ratios. Raji cells
were stained with green fluorescence, and MCF-7 cells were stained with red fluorescence. The scale bar is 50 μm.

15

3. Source codes
The source codes used in the work have been uploaded to GitHub website and are publicly available. Researchers can freely

download the source codes from the GitHub, including autonomous high-throughput AFM single-cell mechanical analysis on

adherent cells (https://github.com/xxxxrrrrxx/Auto-AFM/tree/main/Pyramid-Unet) and autonomous high-throughput AFM

single-cell mechanical analysis on CTC cells (https://github.com/cnncell/Combination-of-YOLOv7-and-U-Net). The instruction

documentations and the main codes are as follows.

3.1 Autonomous high-throughput AFM single-cell mechanical analysis on adherent cells

3.1.1 Instruction documentation

(1) Model Training

①Dataset Preparation: Collect bright-field cell images with diverse brightness and contrast captured by JPK to ensure data

diversity and representativeness, providing rich samples for subsequent training.

②Labeling: Use the professional labeling tool LabelMe for pixel-level annotation of original images, defining the

boundaries and category information of cell nuclei to generate label images consistent with the original dimensions.

③Pyramid-UNet Construction: Build the Pyramid-UNet network structure based on PyTorch. Set parameters such as

network layers, channel numbers, and convolution kernel size in net.py, and define input/output formats. data.py ensures one-

to-one correspondence between original images and labels, while utils.py standardizes image sizes during training.

④Model Training: Input the training set into the Pyramid-UNet model and run train.py for training. Calculate prediction

results via forward propagation, compute loss against labels, and update network parameters via backpropagation. Regularly

evaluate model performance using a validation set during training, adjusting hyperparameters (e.g., learning rate, batch size)

based on validation results.

⑤Image Segmentation: Run predict.py to perform semantic segmentation on cell nucleus images using the Pyramid-UNet

model. After cropping and resizing, extract contours and mark nucleus boundaries, then convert to a binary image and call

external scripts for fine-grained analysis. This is followed by template_matching.py, which locates probe tips via template

matching, extracts nucleus centroid coordinates, defines a 250×250 pixel detection range centered on the probe, calculates the

relative distance from nuclei to the probe (converted by a coefficient of -0.02e-5), and saves results to a CSV file with visual

annotations.

(2) Automated AFM Experiments

①Run Run.py to monitor and process input image files in specified paths. Call the prediction script predict.py to generate

output files (output_table.csv), clean temporary files, and delete original inputs after processing. It supports cyclic processing,

error retry, and logs via a logger.

②Run autosyn.py, an SFTP-based bidirectional file synchronization program that monitors local file system changes via

Watchdog and periodically checks remote server file status to achieve automatic synchronization. The program supports

operations like upload, download, and deletion, with retry mechanisms and error handling.

③Run JPK.py within the JPK software to real-time acquire mechanical curves of cell nuclei within the detection range.

(3) Additional Notes

Both synchronization and neural network codes run on the PyCharm client.

The synchronization codes autosyn.py and Run.py run simultaneously.

File synchronization uses WinSCP for data transfer via SFTP.

References

https://github.com/xxxr9802/Pyramid-UNet

https://github.com/qiaofengsheng/pytorch-UNet.git

16

3.1.2 AFM script for automated control of the AFM probe and the sample stage

Python code for ExperimentPlanner

import time

import os

import csv

checkVersion('SPM', 7, 0, 178)

file_path = '/home/jpkuser/Desktop/data-transmit/output_table.csv'

filename = '/home/jpkuser/Desktop/data-transmit/1.tif'

count = 0

def wait_for_file_path(file_path):

 while not os.path.exists(file_path):

 time.sleep(2)

Snapshooter.saveOpticalSnapshot(filename)

n = 0

while 1:

 #Coordinates of the next area

 nextAreaX = 0

 nextAreaY = -10e-5

 #Number of detectable cells in the area

 coordinate_count = 0

 #file_path = '/home/jpkuser/Desktop/data-transmit/output_table.csv'

 wait_for_file_path(file_path)

 # If the file path exists, continue to execute the subsequent code

 #Read coordinate points within probe detection range into script

 def addposition(x,y):

 ForceSpectroscopy.addPosition(x, y)

 #Disabled platform moves

 MotorizedStage.disengage()

 #Clear coordinates, read new coordinates

 ForceSpectroscopy.clearPositions()

 #init

 #Add initial position to software table, set to origin, index 0

17

 ForceSpectroscopy.addPosition(0, 0)

 #Read the coordinates of the detectable point and the center point of the next area into the script

 with open(file_path, mode='r') as file:

 reader = csv.reader(file)

 next(reader)

 for row in reader:

 x = float(row[0])

 y = float(row[1])

 if abs(x) < 5e-5 and abs(y) < 5e-5 :

 addposition(x, y)

 coordinate_count += 1

 #else :

 #nextAreaX = x

 #nextAreaY = y

 #Probe tip moves back to initial position

 ForceSpectroscopy.moveToForcePositionIndex(0)

 #Get force curves for all detectable cells and save them automatically

 i = 0

 for j in xrange(coordinate_count):

 i+=1

 Scanner.retractPiezo()

 Scanner.retract()

 ForceSpectroscopy.moveToForcePositionIndex(i)

 Scanner.approach()

 ForceSpectroscopy.startScanning(5)

 Scanner.retractPiezo()

 Scanner.moveMotorsUp(2e-5)

 time.sleep(1.0)

 #After detecting each area, the probe must return to its original position

 ForceSpectroscopy.moveToForcePositionIndex(0)

 #Enabling the platform

 MotorizedStage.engage()

 #Move the platform to the next regional center

 MotorizedStage.moveToRelativePosition(nextAreaX, nextAreaY)

18

 n+=1

 #Disabled platform

 MotorizedStage.disengage()

 #Probe down and up

 Scanner.approach()

 time.sleep(1.0)

 Scanner.retract()

 os.remove(file_path)

 time.sleep(2.0)

 Snapshooter.saveOpticalSnapshot(filename)

 time.sleep(2.0)

 print("wait new document.....",n)

3.1.3 Synchronous real-time data transmission (optical bright-field images and recognition results)

import os

import time

import logging

import threading

import paramiko

from watchdog.observers import Observer

from watchdog.events import FileSystemEventHandler

from typing import Dict, List, Optional, Set, Tuple

from dataclasses import dataclass, field

from enum import Enum

Operation Type Enumeration

class OperationType(Enum):

 UPLOAD = "upload"

 DOWNLOAD = "download"

 DELETE_LOCAL = "delete_local"

 DELETE_REMOTE = "delete_remote"

Configuration Class

@dataclass

class Config:

 host: str = "10.254.254.1"

 port: int = 22

 username: str = "jpkuser"

 password: str = "jpkjpk" # Password hardcoded in configuration

19

 local_dir: str = r"C:\Users\17105\Desktop\data-transmit"

 remote_dir: str = "/home/jpkuser/Desktop/data-transmit"

 log_file: str = r"C:\sync_logs\sftp_sync.log"

 check_interval: int = 10 # Interval (seconds) for checking remote changes

 max_retries: int = 3 # Maximum retries for failed operations

 excluded_patterns: List[str] = field(default_factory=lambda: [

 '.git', 'node_modules', '*.tmp', '*.log', 'logs/'

])

File Status Class

@dataclass

class FileState:

 mtime: float

 size: int

 exists: bool

 last_checked: float = field(default_factory=time.time)

SFTP Connection Manager

class SftpConnector:

 def __init__(self, config: Config, logger: logging.Logger):

 self.config = config

 self.logger = logger

 self.ssh = None

 self.sftp = None

 self.connected = False

 def connect(self) -> bool:

 """Establish SFTP connection"""

 try:

 if self.connected:

 self.disconnect()

 self.ssh = paramiko.SSHClient()

 self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 self.ssh.connect(

 self.config.host,

 port=self.config.port,

 username=self.config.username,

 password=self.config.password,

20

 timeout=10

)

 self.sftp = self.ssh.open_sftp()

 self.connected = True

 self.logger.info("SFTP connection established successfully")

 return True

 except Exception as e:

 self.logger.error(f"Failed to establish SFTP connection: {e}")

 self.connected = False

 return False

 def disconnect(self):

 """Disconnect SFTP connection"""

 try:

 if self.sftp:

 self.sftp.close()

 if self.ssh:

 self.ssh.close()

 self.connected = False

 self.logger.info("SFTP connection disconnected")

 except Exception as e:

 self.logger.error(f"Error disconnecting SFTP connection: {e}")

 def execute_with_retry(self, func, *args, **kwargs):

 """SFTP operation executor with retry mechanism"""

 retries = 0

 while retries < self.config.max_retries:

 try:

 if not self.connected and not self.connect():

 retries += 1

 time.sleep(2)

 continue

 return func(*args, **kwargs)

 except FileNotFoundError as e:

 self.logger.warning(f"File not found: {e}")

 self.connected = False

 return False # File not found, no need to retry

 except Exception as e:

 self.logger.error(f"SFTP operation failed: {e}")

 self.connected = False

21

 retries += 1

 time.sleep(2)

 self.logger.error(f"Operation reached maximum retries: {func.__name__}")

 return None

 def file_exists(self, remote_path: str) -> bool:

 """Check if remote file exists"""

 def _check():

 try:

 self.sftp.stat(remote_path)

 return True

 except FileNotFoundError:

 return False

 return self.execute_with_retry(_check)

 def get_remote_file_list(self) -> Optional[Dict[str, Dict]]:

 """Get list of files in remote directory"""

 def _list_files():

 files = {}

 try:

 for item in self.sftp.listdir_attr(self.config.remote_dir):

 if item.filename in ['.', '..']:

 continue

 files[item.filename] = {

 'size': item.st_size,

 'mtime': item.st_mtime,

 'is_dir': item.st_mode & 0o40000 != 0

 }

 except Exception as e:

 self.logger.error(f"Failed to get remote file list: {e}")

 return None

 return files

 return self.execute_with_retry(_list_files)

 def upload_file(self, local_path: str, remote_path: str) -> bool:

 """Upload file to remote"""

22

 def _upload():

 # Ensure target directory exists

 remote_dir = os.path.dirname(remote_path)

 self._ensure_remote_dir_exists(remote_dir)

 # Upload file

 self.sftp.put(local_path, remote_path)

 return True

 return self.execute_with_retry(_upload)

 def download_file(self, remote_path: str, local_path: str) -> bool:

 """Download file from remote"""

 def _download():

 # Check if remote file exists

 if not self.file_exists(remote_path):

 self.logger.warning(f"Remote file does not exist, skipping download: {remote_path}")

 return False

 # Ensure local directory exists

 local_dir = os.path.dirname(local_path)

 if not os.path.exists(local_dir):

 os.makedirs(local_dir)

 # Download file

 self.sftp.get(remote_path, local_path)

 return True

 return self.execute_with_retry(_download)

 def delete_remote_file(self, remote_path: str) -> bool:

 """Delete remote file"""

 def _delete():

 # Check if remote file exists

 if not self.file_exists(remote_path):

 self.logger.warning(f"Remote file does not exist, skipping deletion: {remote_path}")

 return True

 # Delete file

23

 self.sftp.remove(remote_path)

 return True

 return self.execute_with_retry(_delete)

 def _ensure_remote_dir_exists(self, remote_dir: str):

 """Ensure remote directory exists"""

 try:

 self.sftp.stat(remote_dir)

 except FileNotFoundError:

 parent_dir = os.path.dirname(remote_dir)

 if parent_dir != remote_dir:

 self._ensure_remote_dir_exists(parent_dir)

 self.sftp.mkdir(remote_dir)

Local File System Event Handler

class LocalSyncHandler(FileSystemEventHandler):

 def __init__(self, sync_manager):

 self.sync_manager = sync_manager

 def on_any_event(self, event):

 """Handle file system events"""

 if event.is_directory or self.sync_manager.is_excluded(event.src_path):

 return

 # Brief delay to avoid incomplete file operations

 time.sleep(0.1)

 # Calculate relative path and remote path

 rel_path = os.path.relpath(event.src_path, self.sync_manager.config.local_dir)

 remote_path = os.path.join(self.sync_manager.config.remote_dir, rel_path).replace('\\', '/')

 if event.event_type == 'created' or event.event_type == 'modified':

 self.sync_manager.logger.info(f"Local creation/modification detected: {rel_path}")

 self.sync_manager.perform_sync(OperationType.UPLOAD, event.src_path, remote_path)

 elif event.event_type == 'deleted':

 self.sync_manager.logger.info(f"Local deletion detected: {rel_path}")

 self.sync_manager.perform_sync(OperationType.DELETE_REMOTE, None, remote_path)

24

File Synchronization Manager

class SyncManager:

 def __init__(self, config: Config):

 self.config = config

 self.logger = self._setup_logger()

 self.sftp = SftpConnector(config, self.logger)

 self.running = False

 self.observer = None

 self.remote_watcher_thread = None

 self.sync_lock = threading.Lock() # Synchronization lock

 self.local_state: Dict[str, FileState] = {} # Local file state

 self.remote_state: Dict[str, FileState] = {} # Remote file state

 def _setup_logger(self):

 """Setup logger"""

 logger = logging.getLogger("sftp_sync")

 logger.setLevel(logging.INFO)

 if not logger.handlers:

 # Ensure log directory exists

 log_dir = os.path.dirname(self.config.log_file)

 if not os.path.exists(log_dir):

 os.makedirs(log_dir)

 file_handler = logging.FileHandler(self.config.log_file, encoding='utf-8')

 console_handler = logging.StreamHandler()

 formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')

 file_handler.setFormatter(formatter)

 console_handler.setFormatter(formatter)

 logger.addHandler(file_handler)

 logger.addHandler(console_handler)

 return logger

 def is_excluded(self, path: str) -> bool:

 """Check if path should be excluded"""

 for pattern in self.config.excluded_patterns:

 if pattern.startswith('*.') and path.endswith(pattern[1:]):

 return True

 if pattern in path:

25

 return True

 return False

 def start(self):

 """Start synchronization service"""

 self.logger.info("Starting file synchronization service...")

 self.running = True

 self.initial_sync()

 self._start_local_watcher()

 self._start_remote_watcher()

 self.logger.info("File synchronization service started")

 def stop(self):

 """Stop synchronization service"""

 self.logger.info("Stopping file synchronization service...")

 self.running = False

 if self.observer:

 self.observer.stop()

 self.observer.join(timeout=5)

 if self.remote_watcher_thread:

 self.remote_watcher_thread.join(timeout=5)

 self.sftp.disconnect()

 self.logger.info("File synchronization service stopped")

 def perform_sync(self, action: OperationType, local_path: Optional[str], remote_path: Optional[str]):

 """Perform synchronization operation"""

 self.logger.info(f"Performing synchronization operation: {action.value} {local_path or remote_path}")

 with self.sync_lock: # Ensure only one synchronization operation at a time

 success = False

 retries = 0

 while retries < self.config.max_retries:

 try:

 if action == OperationType.UPLOAD:

 if not os.path.exists(local_path):

26

 self.logger.warning(f"Local file does not exist, skipping upload: {local_path}")

 return False

 success = self.sftp.upload_file(local_path, remote_path)

 if success:

 # Update local and remote states

 rel_path = os.path.relpath(local_path, self.config.local_dir)

 try:

 stat = os.stat(local_path)

 self.local_state[rel_path] = FileState(

 mtime=stat.st_mtime,

 size=stat.st_size,

 exists=True,

 last_checked=time.time()

)

 self.remote_state[rel_path] = FileState(

 mtime=stat.st_mtime,

 size=stat.st_size,

 exists=True,

 last_checked=time.time()

)

 except Exception as e:

 self.logger.warning(f"Failed to update file state: {e}")

 elif action == OperationType.DOWNLOAD:

 success = self.sftp.download_file(remote_path, local_path)

 if success:

 # Update local and remote states

 rel_path = os.path.relpath(local_path, self.config.local_dir)

 try:

 stat = os.stat(local_path)

 self.local_state[rel_path] = FileState(

 mtime=stat.st_mtime,

 size=stat.st_size,

 exists=True,

 last_checked=time.time()

)

 self.remote_state[rel_path] = FileState(

 mtime=stat.st_mtime,

 size=stat.st_size,

 exists=True,

27

 last_checked=time.time()

)

 except Exception as e:

 self.logger.warning(f"Failed to update file state: {e}")

 elif action == OperationType.DELETE_REMOTE:

 # Calculate relative path

 rel_path = os.path.basename(remote_path) if remote_path else ""

 # Check if remote file exists

 if self.sftp.file_exists(remote_path):

 success = self.sftp.delete_remote_file(remote_path)

 if success:

 # Update remote state immediately to prevent duplicate operations

 self.remote_state[rel_path] = FileState(

 mtime=0,

 size=0,

 exists=False,

 last_checked=time.time()

)

 else:

 success = True # File does not exist, consider operation successful

 elif action == OperationType.DELETE_LOCAL:

 if os.path.exists(local_path):

 try:

 # Attempt to delete file

 os.remove(local_path)

 success = True

 # Update local state

 rel_path = os.path.relpath(local_path, self.config.local_dir)

 self.local_state[rel_path] = FileState(

 mtime=0,

 size=0,

 exists=False,

 last_checked=time.time()

)

 except PermissionError as e:

 self.logger.warning(f"File is locked, cannot delete: {local_path}, Error: {e}")

 success = False

 else:

28

 success = True # File does not exist, consider operation successful

 if success:

 self.logger.info(f"Synchronization successful: {action.value} {local_path or remote_path}")

 break

 else:

 retries += 1

 self.logger.warning(f"Synchronization failed, retrying ({retries}/{self.config.max_retries}):

{action.value}")

 time.sleep(1)

 except Exception as e:

 retries += 1

 self.logger.error(f"Synchronization error, retrying ({retries}/{self.config.max_retries}): {e}")

 time.sleep(1)

 if not success:

 self.logger.error(f"Final synchronization failure: {action.value} {local_path or remote_path}")

 def initial_sync(self):

 """Perform initial two-way synchronization"""

 self.logger.info("Performing initial two-way synchronization...")

 local_files = self._get_local_file_list()

 remote_files = self.sftp.get_remote_file_list()

 if not local_files or not remote_files:

 self.logger.warning("Initial synchronization failed: Cannot retrieve file lists")

 return

 # Compare files on both sides, use latest modification time as criterion

 for filename in set(local_files.keys()).union(set(remote_files.keys())):

 local_info = local_files.get(filename)

 remote_info = remote_files.get(filename)

 if local_info and not remote_info:

 # Local file exists, remote does not -> Upload

 local_path = os.path.join(self.config.local_dir, filename)

 remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', '/')

 self.perform_sync(OperationType.UPLOAD, local_path, remote_path)

29

 elif not local_info and remote_info:

 # Local file does not exist, remote does -> Download

 local_path = os.path.join(self.config.local_dir, filename)

 remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', '/')

 self.perform_sync(OperationType.DOWNLOAD, local_path, remote_path)

 elif local_info and remote_info:

 # Both exist, compare modification times

 if local_info['mtime'] > remote_info['mtime']:

 # Local is newer -> Upload

 local_path = os.path.join(self.config.local_dir, filename)

 remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', '/')

 self.perform_sync(OperationType.UPLOAD, local_path, remote_path)

 elif remote_info['mtime'] > local_info['mtime']:

 # Remote is newer -> Download

 local_path = os.path.join(self.config.local_dir, filename)

 remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', '/')

 self.perform_sync(OperationType.DOWNLOAD, local_path, remote_path)

 # Update states

 self._update_file_states(local_files, remote_files)

 def _update_file_states(self, local_files: Dict, remote_files: Dict):

 """Update file states"""

 current_time = time.time()

 # Update local state

 for filename, info in local_files.items():

 self.local_state[filename] = FileState(

 mtime=info['mtime'],

 size=info['size'],

 exists=True,

 last_checked=current_time

)

 # Handle deleted local files

 for filename in list(self.local_state.keys()):

 if filename not in local_files:

 if self.local_state[filename].exists:

 self.local_state[filename] = FileState(

 mtime=0,

30

 size=0,

 exists=False,

 last_checked=current_time

)

 else:

 # If already marked as non-existent and not checked for a long time, remove state

 if current_time - self.local_state[filename].last_checked > 3600:

 del self.local_state[filename]

 # Update remote state

 for filename, info in remote_files.items():

 self.remote_state[filename] = FileState(

 mtime=info['mtime'],

 size=info['size'],

 exists=True,

 last_checked=current_time

)

 # Handle deleted remote files

 for filename in list(self.remote_state.keys()):

 if filename not in remote_files:

 if self.remote_state[filename].exists:

 self.remote_state[filename] = FileState(

 mtime=0,

 size=0,

 exists=False,

 last_checked=current_time

)

 else:

 # If already marked as non-existent and not checked for a long time, remove state

 if current_time - self.remote_state[filename].last_checked > 3600:

 del self.remote_state[filename]

 def _get_local_file_list(self) -> Dict[str, Dict]:

 """Get list of local directory files"""

 files = {}

 try:

 for item in os.listdir(self.config.local_dir):

 item_path = os.path.join(self.config.local_dir, item)

 if self.is_excluded(item_path):

 continue

31

 try:

 stat = os.stat(item_path)

 files[item] = {

 'size': stat.st_size,

 'mtime': stat.st_mtime,

 'is_dir': os.path.isdir(item_path)

 }

 except Exception as e:

 self.logger.warning(f"Failed to retrieve file information: {item_path}, Error: {e}")

 return files

 except Exception as e:

 self.logger.error(f"Failed to get local file list: {e}")

 return {}

 def _start_local_watcher(self):

 """Start local file monitoring"""

 event_handler = LocalSyncHandler(self)

 self.observer = Observer()

 self.observer.schedule(event_handler, self.config.local_dir, recursive=True)

 self.observer.start()

 self.logger.info(f"Started monitoring local directory: {self.config.local_dir}")

 def _start_remote_watcher(self):

 """Start remote file monitoring thread"""

 self.remote_watcher_thread = threading.Thread(target=self._watch_remote_changes, daemon=True)

 self.remote_watcher_thread.start()

 self.logger.info("Started monitoring remote directory")

 def _watch_remote_changes(self):

 """Monitor remote file system changes"""

 while self.running:

 try:

 # Get current remote file list

 remote_files = self.sftp.get_remote_file_list()

 if not remote_files:

 time.sleep(self.config.check_interval)

 continue

 # Compare with previous state

 for filename in set(remote_files.keys()).union(set(self.remote_state.keys())):

 remote_info = remote_files.get(filename)

32

 remote_state = self.remote_state.get(filename)

 # Remote file added

 if remote_info and (not remote_state or not remote_state.exists):

 self.logger.info(f"Remote addition detected: {filename}")

 local_path = os.path.join(self.config.local_dir, filename)

 remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', '/')

 self.perform_sync(OperationType.DOWNLOAD, local_path, remote_path)

 # Remote file deleted

 elif not remote_info and remote_state and remote_state.exists:

 self.logger.info(f"Remote deletion detected: {filename}")

 local_path = os.path.join(self.config.local_dir, filename)

 # First check if local file exists

 if os.path.exists(local_path):

 self.perform_sync(OperationType.DELETE_LOCAL, local_path, None)

 else:

 # File already deleted, directly update state

 rel_path = os.path.relpath(local_path, self.config.local_dir)

 self.local_state[rel_path] = FileState(

 mtime=0,

 size=0,

 exists=False,

 last_checked=time.time()

)

 self.logger.info(f"Local file already deleted, updating state directly: {local_path}")

 # Update remote state

 self._update_file_states({}, remote_files)

 except Exception as e:

 self.logger.error(f"Error monitoring remote changes: {e}")

 time.sleep(self.config.check_interval)

Main program

def main():

 config = Config()

 # Validate configuration

33

 if not os.path.exists(config.local_dir):

 print(f"Error: Local directory does not exist - {config.local_dir}")

 return 1

 sync_manager = SyncManager(config)

 try:

 sync_manager.start()

 print("Press Ctrl+C to stop service...")

 while True:

 time.sleep(1)

 except KeyboardInterrupt:

 pass

 finally:

 sync_manager.stop()

 return 0

if __name__ == "__main__":

 main()

3.2 Autonomous high-throughput AFM single-cell mechanical analysis on CTC cells

3.2.1 Instruction documentation

(1) Training datasets

Step 1: Create your dataset using LabelImg. Place the original images in VOCdevkit/VOC2007/JPEGImages and the

corresponding annotation files in VOCdevkit/VOC2007/Annotations. Run voc_annotation.py to split the dataset into training

and test sets. Finally, execute train_yolov7.py to train the YOLOv7 model.

Step 2: Execute crop.py and use the Batch Crop Images function in yolo.py to crop all detected cells from a folder using

the trained YOLOv7 model.

Step 3: Label the cropped cells with LabelMe and place the results in the datasets/before folder. Run json_to_dataset.py to

convert JSON annotations into PNG format. Store the original images in datasets/JPEGImages and the labels in

datasets/SegmentationClass. Transfer these to VOCdevkit_unet/VOC2007, then run voc_annotation_unet.py to partition the

training and validation sets. Train the U-Net model with train_unet.py.

(2) AFM automatic detection

Run predict.py.

(3) Additional Notes

1.The program runs in Visual Studio Code.

2.Trained models are saved in the logs/ directory. Ensure you update the model paths in configuration files during testing

3.The integration of U-Net into YOLOv7 is implemented in yolo.py.

4.The combination of template matching and network predictions is handled in yolo.py.

34

5.Connect the local computer to the JPK microscope control computer via an Ethernet switch, ensuring both devices are on

the same local area network (LAN).

6.Copy the code from auto_jpk.txt into JPK NanoWizard software and execute it.

References:

https://github.com/bubbliiiing/yolov7-pytorch

https://github.com/bubbliiiing/yolov7-tiny-pytorch

https://github.com/bubbliiiing/unet-pytorch/tree/bilibili

https://github.com/WongKinYiu/yolov7

3.2.2 Main codes

import cv2

import numpy as np

from PIL import Image

import pandas as pd

from yolo import YOLO

import csv

import math

import time

import os

import subprocess

import logging

import shutil

from typing import List, Tuple, Optional, Dict

#-------------------------------------#

Synchronization

#-------------------------------------#

Configure logging

logging.basicConfig(

 level=logging.INFO,

 format='%(asctime)s - %(levelname)s - %(message)s',

 filename='sync.log'

)

def generate_script(session_name: str, host: str, username: str, password: str,

 local_path: str, remote_path: str) -> str:

 """Generate WinSCP script"""

 # Verify local path existence

 if not os.path.exists(local_path):

 raise FileNotFoundError(f"Local path does not exist: {local_path}")

35

 # Proper way to disable host key verification

 script = f"""# Sync script - accept any host key

open sftp://{username}:{password}@{host}/ -hostkey=*

option batch on

option confirm off

lcd {local_path}

cd {remote_path}

synchronize both -delete -criteria=time -mirror

close

exit

"""

 script_path = f"{session_name}.txt"

 with open(script_path, "w", encoding="utf-8") as f:

 f.write(script)

 logging.info(f"Script saved to: {os.path.abspath(script_path)}")

 return script_path

def run_winscp(script_path: str, winscp_path: str = r'C:/Program Files (x86)/WinSCP/WinSCP.exe') -> str:

 """Execute WinSCP script"""

 try:

 # Verify script file existence

 if not os.path.exists(script_path):

 raise FileNotFoundError(f"Script file does not exist: {script_path}")

 # Check WinSCP executable existence

 if not os.path.exists(winscp_path):

 raise FileNotFoundError(f"WinSCP executable does not exist: {winscp_path}")

 logging.info("Starting synchronization task")

 # Build and execute command

 command = [

 winscp_path,

 '/script=' + script_path,

 '/log=sync.log',

 '/loglevel=2',

 '/noverifycert' # Alternative: disable certificate verification

]

 logging.info(f"Executing command: {' '.join(command)}")

36

 # Use communicate with timeout

 process = subprocess.Popen(

 command,

 stdout=subprocess.PIPE,

 stderr=subprocess.PIPE,

 text=True

)

 try:

 stdout, stderr = process.communicate(timeout=300) # 5-minute timeout

 except subprocess.TimeoutExpired:

 process.kill()

 stdout, stderr = process.communicate()

 raise TimeoutError("Synchronization operation timed out")

 return_code = process.returncode

 if return_code != 0:

 raise subprocess.CalledProcessError(return_code, command, stdout, stderr)

 # Log WinSCP output

 if stdout:

 logging.info(f"WinSCP standard output:\n{stdout}")

 logging.info("Synchronization task completed")

 return stdout

 except subprocess.CalledProcessError as e:

 logging.error(f"Error during synchronization (return code: {e.returncode}):")

 if e.stdout:

 logging.error(f"Standard output:\n{e.stdout}")

 if e.stderr:

 logging.error(f"Error output:\n{e.stderr}")

 # Extract potential WinSCP error messages

 if e.stderr:

 for line in e.stderr.splitlines():

 if "Error" in line or "Authentication failed" in line:

 logging.error(f"Critical error: {line}")

37

 raise

 except Exception as e:

 logging.error(f"Unexpected error executing WinSCP: {str(e)}")

 raise

def cleanup(script_path: str) -> None:

 """Clean up temporary files"""

 try:

 if os.path.exists(script_path):

 os.remove(script_path)

 logging.info(f"Temporary script deleted: {script_path}")

 except Exception as e:

 logging.error(f"Error cleaning up temporary file: {str(e)}")

def synchronize() -> None:

 """Perform file synchronization"""

 # Configuration

 config = {

 "session_name": "UbuntuSync",

 "host": "10.254.254.1",

 "username": "jpkuser",

 "password": "jpkjpk",

 "local_path": r"C:/Users/qixia/Desktop/RUNJPK",

 "remote_path": r"/home/jpkuser/Desktop/RUNJPK"

 }

 try:

 script_path = generate_script(**config)

 except Exception as e:

 print(f"Failed to generate script: {str(e)}")

 return

 try:

 # Execute synchronization

 output = run_winscp(script_path)

 print("Synchronization successful!")

 if output:

 print(output)

 except Exception as e:

 print(f"Synchronization failed: {str(e)}")

 print(f"Detailed information in log file: {os.path.abspath('sync.log')}")

38

 finally:

 cleanup(script_path) # Clean up temp file regardless of success/failure

#-------------------------------------#

Template Matching

#-------------------------------------#

def template_matching_and_save_center(img_path: str) -> Image.Image:

 """Perform template matching and save center coordinates"""

 template_image_path = "template/tp15.jpg"

 csv_path = 'center_coordinates.csv'

 # Read source image

 src_image = Image.open(img_path)

 src_np = np.array(src_image)

 # Read template image

 template_image = Image.open(template_image_path)

 template_np = np.array(template_image)

 match_method = 5 # CV_TM_CCOEFF_NORMED

 result_rows = src_np.shape[0] - template_np.shape[0] + 1

 result_cols = src_np.shape[1] - template_np.shape[1] + 1

 # Perform matching on grayscale

 gray_src = src_np[:, :, 0]

 gray_template = template_np[:, :, 0]

 result_gray = cv2.matchTemplate(gray_src, gray_template, match_method)

 cv2.normalize(result_gray, result_gray, 0, 1, cv2.NORM_MINMAX)

 # Find best match

 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result_gray)

 match_loc = max_loc # Use max for TM_CCOEFF_NORMED

 # Calculate center

 center_x = match_loc[0] + template_np.shape[1] // 2

 center_y = match_loc[1] + template_np.shape[0] // 2

 # Save to CSV

 data = {'x': [center_x], 'y': [center_y]}

 df = pd.DataFrame(data)

 df.to_csv(csv_path, index=False)

39

 return src_image

#-------------------------------------#

Find Densest Point

#-------------------------------------#

def find_nearest_center(input_file: str) -> Optional[Tuple[float, float]]:

 """Find the center of the densest point cluster"""

 points = []

 with open(input_file, 'r', encoding='utf-8', newline='') as f:

 reader = csv.reader(f)

 for row in reader:

 try:

 x = float(row[0])

 y = float(row[1])

 if abs(x) > 4.9 and abs(y) > 4.9 and y < 0:

 points.append((x, y))

 except (IndexError, ValueError):

 continue

 # Check data sufficiency

 if len(points) < 1:

 print("Error: At least one valid coordinate point is required")

 return None

 # Find densest point

 max_point_count = 0

 best_point = None

 for center_point in points:

 point_count = 0

 for point in points:

 if (center_point[0] - 3 <= point[0] <= center_point[0] + 3) and (

 center_point[1] - 6 <= point[1] <= center_point[1] + 6):

 point_count += 1

 if point_count > max_point_count:

 max_point_count = point_count

 best_point = center_point

 return (

 round(best_point[0], 2),

40

 round(best_point[1], 2)

) if best_point else None

#-------------------------------------#

Draw Points on Image

#-------------------------------------#

def draw_points_on_image(image: np.ndarray, csv_file_paths: List[str],

 point_color: Tuple[int, int, int] = (0, 125, 0),

 point_size: int = 5) -> np.ndarray:

 """Draw points from CSV files on an image"""

 for csv_file_path in csv_file_paths:

 try:

 with open(csv_file_path, 'r') as csvfile:

 reader = csv.reader(csvfile)

 for row in reader:

 if len(row) == 2:

 try:

 x = int(float(row[0]))

 y = int(float(row[1]))

 # Check if coordinates are within image bounds

 if 0 <= x < image.shape[1] and 0 <= y < image.shape[0]:

 cv2.circle(image, (x, y), point_size, point_color, -1)

 except ValueError:

 print(f"Invalid coordinate value: {row}")

 except FileNotFoundError:

 print(f"Error: File not found {csv_file_path}")

 except Exception as e:

 print(f"Unknown error: {e}")

 return image

#-------------------------------------#

Convert TIF to JPG

#-------------------------------------#

def tif_to_jpg(input_path: str, output_path: str) -> bool:

 """Convert TIF image to JPG"""

 try:

 # Open TIF image

 image = Image.open(input_path)

 # Convert to RGB mode

 rgb_image = image.convert('RGB')

 # Save as JPG

41

 rgb_image.save(output_path, 'JPEG')

 print(f"Successfully converted {input_path} to {output_path}")

 return True

 except Exception as e:

 print(f"Error during conversion: {e}")

 return False

#-------------------------------------#

Utility Functions

#-------------------------------------#

def find_nearest(current: Tuple[float, float], points: List[Tuple[float, float]]) -> Optional[Tuple[float, float]]:

 """Find the nearest point to the current point"""

 if not points:

 return None

 return min(points, key=lambda p: math.hypot(p[0]-current[0], p[1]-current[1]))

def clear_folder(folder_path: str) -> None:

 """Clear all files and subfolders in a folder"""

 if not os.path.exists(folder_path):

 print(f"Folder does not exist: {folder_path}")

 return

 # Iterate through all items

 for item in os.listdir(folder_path):

 item_path = os.path.join(folder_path, item)

 try:

 if os.path.isfile(item_path):

 os.remove(item_path)

 # print(f"File deleted: {item_path}") # Commented for performance

 elif os.path.isdir(item_path):

 shutil.rmtree(item_path)

 # print(f"Folder deleted: {item_path}") # Commented for performance

 except Exception as e:

 print(f"Failed to delete {item_path}: {e}")

def delete_file(file_path: str) -> None:

 """Delete a file with error handling"""

 try:

 if os.path.exists(file_path):

 os.remove(file_path)

 # print(f"File deleted: {file_path}") # Commented for performance

42

 else:

 # print(f"File not found: {file_path}") # Commented for performance

 pass

 except PermissionError:

 print(f"Permission error: Cannot delete {file_path}, possibly in use by another program")

 except Exception as e:

 print(f"Unknown error: {e}, cannot delete {file_path}")

#-------------------------------------#

Main Function

#-------------------------------------#

if __name__ == "__main__":

 yolo = YOLO()

 crop = True

 count = False

 # File paths

 input_file = 'coordinates.csv'

 output_file = 'C:/Users/qixia/Desktop/RUNJPK/output.csv'

 output_file2 = 'C:/Users/qixia/Desktop/RUNJPK/output2.csv'

 test_file = 'C:/Users/qixia/Desktop/RUNJPK/test.csv'

 image_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.tif')

 usb_drive_path = 'C:/Users/qixia/Desktop/RUNJPK'

 input_tif_file = 'C:/Users/qixia/Desktop/RUNJPK/1.tif'

 test_tif = 'C:/Users/qixia/Desktop/RUNJPK/2.tif'

 output_jpg_file = 'C:/Users/qixia/Desktop/RUNJPK/1.jpg'

 csv_file_paths = [output_file, output_file2]

 while True:

 clear_folder(usb_drive_path)

 print(f"Folder cleared: {usb_drive_path}")

 synchronize()

 print(f"Start detection: {usb_drive_path}")

 # Wait for test image

 while not os.path.exists(test_tif):

 print("Test image not detected, waiting...")

 time.sleep(5) # Check every 5 seconds

 delete_file(output_file)

 delete_file(output_file2)

 synchronize()

43

 print(f"Start detection: {usb_drive_path}")

 try:

 delete_file(output_file)

 delete_file(output_file2)

 # Verify image integrity

 img = Image.open(input_tif_file)

 img.verify()

 img.close()

 is_corrupted = False

 except (IOError, SyntaxError):

 delete_file(output_file)

 delete_file(output_file2)

 is_corrupted = True

 if is_corrupted:

 print("Detected corrupted image.")

 with open(output_file, 'w') as f:

 f.write("0,0")

 with open(output_file2, 'w') as f:

 f.write("0,0")

 with open(test_file, 'w') as f:

 pass # Empty file

 print("Test CSV file generated!")

 else:

 # Initialize coordinates file

 with open("coordinates.csv", "w") as f:

 pass # Empty file

 # Convert TIF to JPG

 if tif_to_jpg(input_tif_file, output_jpg_file):

 # Perform template matching

 result_image = template_matching_and_save_center(output_jpg_file)

 # Perform object detection

 r_image = yolo.detect_image(result_image, crop=crop, count=count)

 ############ Write coordinates with |x|<5 and |y|<5 to output.csv ################

 try:

 # Read all coordinates

44

 coords = []

 with open(input_file, 'r', encoding='utf-8', newline='') as infile:

 reader = csv.reader(infile)

 for row in reader:

 try:

 x = float(row[0])

 y = float(row[1])

 if abs(x) < 5 and abs(y) < 5:

 coords.append((x, y))

 except (IndexError, ValueError):

 continue

 # Handle empty coordinates

 if not coords:

 x, y = 0.0, 0.0

 coords.append((x, y))

 print("No valid coordinates found!")

 # Greedy algorithm for nearest neighbor ordering

 path = []

 unvisited = set(coords)

 # Start from point nearest to origin

 start = min(coords, key=lambda p: math.hypot(p[0], p[1]))

 path.append(start)

 unvisited.remove(start)

 # Find nearest points sequentially

 current = start

 while unvisited:

 next_point = find_nearest(current, unvisited)

 path.append(next_point)

 unvisited.remove(next_point)

 current = next_point

 # Write ordered coordinates

 with open(output_file, 'w', encoding='utf-8', newline='') as outfile:

 writer = csv.writer(outfile)

 for x, y in path:

 writer.writerow([x, y])

 # print(f"Target point ({x}, {y}) saved to {output_file}") # Commented for performance

45

 except FileNotFoundError:

 print(f"Error: File not found {input_file}.")

 except Exception as e:

 print(f"Unknown error: {e}")

 ###################### Find nearest center point #################################

 # Find nearest center point

 result = find_nearest_center(input_file)

 # Write to CSV file

 if result:

 with open(output_file2, 'w', newline='', encoding='utf-8') as f:

 writer = csv.writer(f)

 writer.writerow(result)

 print(f"Nearest center coordinates {result} saved to {output_file2}")

 else:

 with open(output_file2, 'w', newline='', encoding='utf-8') as f:

 writer = csv.writer(f)

 writer.writerow([0, 0])

 print(f"Default coordinates (0, 0) saved to {output_file2}")

 ###################### Process and save result image #################################

 if r_image and len(r_image) > 0:

 image_obj = r_image[0] # Assuming r_image is a tuple containing the image

 # Convert PIL image to numpy array

 image_np = np.array(image_obj)

 # Convert RGB to BGR for OpenCV

 if len(image_np.shape) == 3 and image_np.shape[2] == 3:

 image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)

 # Draw points on image

 try:

 result_image = draw_points_on_image(image_np, csv_file_paths)

 # Save image as output.jpg

 cv2.imwrite('output.jpg', result_image)

 print("Image successfully saved as output.jpg")

 except Exception as e:

 print(f"Error saving image: {e}")

 # Fallback to saving original image

 cv2.imwrite('output.jpg', image_np)

 else:

46

 print("No detection result image available")

 # Create a blank image as fallback

 blank_image = np.zeros((600, 800, 3), np.uint8)

 cv2.imwrite('output.jpg', blank_image)

 # Generate empty test CSV file

 with open(test_file, 'w') as f:

 pass # Empty file

 print("Test CSV file generated!")

 # Clean up image files

 for root, dirs, files in os.walk(usb_drive_path):

 for file in files:

 if file.lower().endswith(image_extensions):

 file_path = os.path.join(root, file)

 try:

 os.remove(file_path)

 # print(f"File deleted: {file_path}") # Commented for performance

 except Exception as e:

 print(f"Failed to delete {file_path}: {e}")

 # Perform synchronization

 synchronize()

 wait_time = 1

 print(f"Synchronization completed, waiting {wait_time} second")

 time.sleep(wait_time)

3.2.3 AFM script

import time

import os

import csv

Check the SPM version

checkVersion('SPM', 7, 0, 178)

The path to the output table file

file_path = '/home/jpkuser/Desktop/RUNJPK/output.csv'

The path to the output table file

file_path2 = '/home/jpkuser/Desktop/RUNJPK//output2.csv'

test_path = '/home/jpkuser/Desktop/RUNJPK//test.csv'

File name

filename = '/home/jpkuser/Desktop/RUNJPK/1'

testname = '/home/jpkuser/Desktop/RUNJPK/2'

47

image1 = '/home/jpkuser/Desktop/RUNJPK/1.tif'

image2 = '/home/jpkuser/Desktop/RUNJPK/2.tif'

Wait for the file corresponding to the file path to appear

def wait_for_file_path(file_path):

 while not os.path.exists(file_path):

 pass

Main function

while True:

 # Securely delete files

 for path in [file_path, file_path2,test_path,image1,image2]:

 try:

 os.remove(path)

 except:

 pass

 print("Remote all file")

 Snapshooter.saveOpticalSnapshot(filename) # Save the image

 time.sleep(3.0)

 Snapshooter.saveOpticalSnapshot(testname) # Save the image

 print("Save the image")

 #-------------Initialization-------------#

 MotorizedStage.disengage() # Disable platform movement

 ForceSpectroscopy.clearPositions() # Clear the coordinates and read new ones

 ForceSpectroscopy.addPosition(0, 0) # Add the initial position to the software table and set it as

the origin with index 0

 ForceSpectroscopy.moveToForcePositionIndex(0) # Move the probe back to the initial position

 coordinate_count = 0 # Variable initialization

 #-------------Small area movement-------------#

 wait_for_file_path(test_path) # Wait for the file to appear

 print("The path has been successfully detected")

 # Securely delete files

 for path in [test_path,image1,image2]:

 try:

 os.remove(path)

 except:

 pass

48

 print("remote the image1")

 with open(file_path, mode='r') as file: # Read the coordinates of detectable points

 reader = csv.reader(file)

 for row in reader:

 x = float(row[0])*1e-5

 y = float(row[1])*1e-5

 ForceSpectroscopy.addPosition(x, y) # Add coordinate points

 coordinate_count += 1 # Count

 i=0

 for j in xrange(coordinate_count):

 i+=1

 ForceSpectroscopy.moveToForcePositionIndex(i) # Move to the specified force position index

 Scanner.approach() # Lower the probe

 ForceSpectroscopy.startScanning(5) # Start force spectroscopy scanning, scan 5 times

 Scanner.retractPiezo() # Raise the probe

 Scanner.moveMotorsUp(2e-5) # Raise the probe height

 time.sleep(1.0)

 ForceSpectroscopy.addPosition(0, 0) # The probe must return to zero

 #-----------Move the probe in a wide area---------------#

 for path in [test_path,image1,image2]:

 try:

 os.remove(path)

 except:

 pass

 print("remote the image2")

 MotorizedStage.engage() # Enable platform movement

 #--Read the large-scale movement coordinates and add them to the JPK system--#

 with open(file_path2, mode='r') as file: # Read the coordinates of detectable points

 reader = csv.reader(file)

 for row in reader:

 next_x = float(row[0])*1e-5

 next_y = float(row[1])*1e-5

 MotorizedStage.moveToRelativePosition(next_x,next_y) # Move to the next position on a large scale

 MotorizedStage.disengage() # Disable the moving platform

