Supplementary Information (SI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2025

Supplementary materials

Contents

LT [T 0 [T o3 101310 8T 1
2. SUPPIEMENIATY fIGUIES. ..\ttt ittt ettt e e et e et et et et e e e aeesenaeaans 2
3 SOUICE COMCS. ..ttt e 15

1. Video descriptions

Supplementary Movie 1

The experimental process of autonomous high-throughput AFM single-cell mechanical analysis on living adherent cells at 37°C
in the CO,-independent Leibovitz’s L-15 medium without operator intervention. A microsphere-modified AFM probe was used.
The AFM script program was used to automatically capture the optical bright-field image which was processed in real-time by
the deep learning image recognition algorithm deployed on a laptop connected to the AFM desktop, generating the positional
relationships between AFM probe and the cells within the horizontal detection area (100x100 pm?) of the AFM probe. The
positional relationships were passed to the AFM script program, and the script program then controlled the AFM probe to
automatically perform force measurements on cells within the detection area of the AFM probe. Subsequently, the script program
automatically moved the AFM sample stage to make the AFM probe reach a new position, captured the optical bright-field image
and repeated the above process. The whole process was autonomous and did not require manual operation.

Supplementary Movie 2

The experimental process of autonomous high-throughput AFM single-cell mechanical analysis on living heterogeneous CTC
cells at 37°C in the L-15 medium without operator intervention.

Supplementary Movie 3

Autonomous high-throughput AFM single-cell indentation assay on co-cultured HaCaT cells and HMrSV5 cells. The detection
area (100x100 pm?) of the AFM probe is denoted by the yellow square, and the microspherical position of the AFM probe is
denoted by the yellow diamond block. Recognition results of cell nuclei within the detection area are shown. The inset shows
the force curves acquired on each probed cell.

Supplementary Movie 4

Autonomous high-throughput AFM single-cell indentation assay on co-cultured HaCaT cells and MCF-7 cells.
Supplementary Movie 5

Autonomous high-throughput AFM single-cell indentation assay on co-cultured HaCaT cells and MGC-803 cells.
Supplementary Movie 6

Collecting mixed CTCs (HaCaT cells and MCF-7cells) from blood by the contraction-expansion microfluidics. HaCaT cells
(suspended) and MCF-7 cells (suspended) were added to the blood, which was then driven to pass through the contraction-
expansion microchannel. Both HaCaT cells and MCF-7 cells were labeled with red fluorescein for visual verification.
Supplementary Movie 7

Autonomous high-throughput AFM single-cell indentation assay on mixed CTCs (HaCaT and MCF-7 cells) isolated from blood.
Supplementary Movie 8

Collecting mixed CTCs containing MCF-7 cells (suspended) and Raji cells from blood by the contraction-expansion
microfluidics. Both MCF-7 cells and Raji cells were labeled with green fluorescein.

Supplementary Movie 9

Autonomous high-throughput AFM single-cell indentation assay on mixed CTCs (MCF-7 and Raji cells) isolated from blood.

1

2. Supplementary figures

AR

nition resuaf .

Recog

— —=@aptop with image proc‘éssirf i Inverted _r_!_liCroscope

S ithms deployed

Temperature cpntroller (providing
| iment for cell
n du ring experiments)

Microfluidic chip

e —

s O e, - = Sheath fluid

Inverted microscope | s = =m=p» Sample (CTCs in blood)

Figure S1 Experimental platform of autonomous high-throughput AFM single-cell indentation assay for revealing the mechanical signatures

of mixed CTCs isolated from blood. (A) The autonomous single-cell mechanical measurement AFM system. The AFM is mounted on an
inverted microscope, and the inverted microscope is used to capture the optical bright-field images of the AFM probe and cells during the
experiment. The AFM has a heating plate, which provides the temperature environment (37°C) required for cell physiological activities, so
AFM force measurements can be performed in the native states of living cells. A laptop computer deployed with deep learning image
recognition algorithms is connected to the AFM computer. Cells and the AFM probe are recognized in the captured optical bright-field images
by the deep learning algorithms, which are transmitted back to the AFM computer to guide automated force measurements on the recognized
cells, and the process is repeated in a cycle without manual involvement. (B) The contraction-expansion microfluidic system for label-free
isolation of CTCs from blood. The inset is the actual photograph of a contraction-expansion microfluidic chip (filled with blood to show the
contraction-expansion microchannel). The dual-channel syringe pump is used to simultaneously inject the sheath fluid (PBS) and the blood

sample containing CTCs. The microfluidic chip system is mounted on an inverted microscope to observe the sorting process.
2

MGC-803 cell

156.9+44.6 Pa

0' | I 1
0 100 200 300 400 500 600

Young's modulus (Pa)

Figure S2 Experimental results on MGC-803 cells cultured alone. (A) Recognition results of the nuclei regions of MGC-803 cells in the optical
bright-field images by the trained deep learning image recognition model. The blue curve indicates the outline of the recognized nucleus. (B)
Statistical results of the Young’s modulus of MGC-803cells cultured alone as reference values (200 cells were measured). The red curve

represents the Gaussian distribution fitting results.

A | 12 i o7
HaCaT G

' —~ 0.5 e|ndentation

0.8 — Approach 0.4 eHertz fitting

= Retract

Force (nN)
Force (nN
[=]
w

0 100 200 300 400 500 600 700

. = Indentation (nm)
Distance (um)
B : ‘ 0.2
I 0.2| HMrSV5 I
= 04 %‘ eIndentation
[= v
= e — Approach 3 0.1 eHertz fitting
s = Retract =
o} (=]
£ 0.8 o
107 Pa
-1
0
-10.5 -10 95 -9 -85 -8 -75 0 100 200 300 400 500
Distance (um) Indentation (nm)
C, 12 0.2
I MCF-7 I
1
- z eIndentation
Z 08 = eHertz fittin
c U =
P = Approach g 0.1 &
(]
= — Retract o
L [F' 8
129 Pa
‘ 0 - :
-12 -11.5 -11 -10.5 -10 0 100 200 300 400
Distance (um) Indentation (nm)
D o8 ‘ 0.5
I Mcec-s03 I
D6 1 o eIndentation
—— Z % e
g 0.4 — Approach _E_ 0.3 eHertz flttlng
U = Retract 2 0.2
£ 0.2 2
|.|°. 0.1
O 0
0 100 200 300 400 500 600 700 800
-0.2 Indentation (nm)
-12 -11 -10 9

Distance (um)

Figure S3 Typical force curves obtained on the four types of adherent cells cultured alone. (A) HaCaT cells. (B) HMrSVS5 cells. (C) MCF-7
cells. (D) MGC-803 cells. (I) Force curves and (II) the corresponding fitting results of the indentation curves by Hertz model (to obtain cell

Young’s modulus).

Ajos TR
. Raji = : eIndentation
% 0.4 —— Approach =} eHertz fitting
o — @
§ 0.2 Retract O
o i 62 Pa
LL
0 |
. . . 0 : ‘
55 -5 -45 -4 -3.5 0 200 400 600
Distance (um) Indentation (nm)
B | 0.8 | | Il 0.6
i HaCaT (suspended) o 0.5 eIndentation
pd e
< 04 Approach = 0.4 eHertz fitting
Q ° R Q 0-3
o —— Retract o
5 0.2 c 0.2
S 2 298 Pa
0.1
0 o | |
-11 -10.5 -10 -95 -9 0 200 400 600
Distance (um) Indentation (nm)
- | 0.8 ‘ ‘ Il 0.3
MCF-7 (suspended)
> 0.6 > eIndentation
04 = Approach € 0.2 eHertz fitting
@ @
g 0.2 - Retract o 0.1
e o 138 Pa
0 L
L L L | 0 ,
-10.5 -10 95 -9 -85 0 200 400 600
Distance (um) Indentation (nm)

Figure S4 Typical force curves obtained on the three types of suspended cells cultured alone. (A) Raji cells. (B) Suspended HaCaT cells. (C)
Suspended MCF-7 cells. (I) Force curves and (II) the corresponding fitting results of the indentation curves by Hertz model.

Figure S5 Optical bright-field images of digested adherent cells showing preparing the sample of co-cultured cells with different cell mixing
ratios. (A) Digested HaCaT cells with different densities. (B) Digested HMrSV5 cells, MCF-7 cells and MGC-803 cells for adjusting cell

densities.

HaCaT cells: HMrSV5 cells

Bright-field

=

©
(&)

1Y)
z
O
(]

Dil (HMrSV5)

Fused fluorescence

Figure S6 Fluorescence staining experiments of the co-culture of HaCaT cells and HMrSV5 cells with different cell mixing ratios. HaCaT cells

were stained with green fluorescence, and HMrSVS cells were stained with red fluorescence. The scale bar is 50 pm.
7

HacCaT cells: MCF-7 cells

oy

"
&)

n
=S
o
(]

Dil (MCF-7)

Fused fluorescence

Figure S7 Fluorescence staining experiments of the co-culture of HaCaT cells and MCF-7 cells with different cell mixing ratios. HaCaT cells
were stained with green fluorescence, and MCF-7 cells were stained with red fluorescence. The scale bar is 50 pm.

8

Co-culture of HaCaT and HMrSV5 Co-culture of HaCaT and MCF-7 Co-culture of HaCaT and MGC-803
0.2 0.6 A ' '
0.8+
i 0.4 _
[—_ = —
= — Approach Z oz = Approach co06 :pproach
-0.2 — @ —
= = Retract g —— Retract S o4 etract
) S 0 2
£ .04 o w
2 . 0.2
-0.2
-0.6
0
-0.4 : : ‘ : -10 -9 -8 -7
-0.8 10 95 9 -85 -8 A
i '1‘1 -10 0 Distance (um) M
Distance (um)
0.2 0.1 ‘ ; 0.1
eIndentation eIndentation
= -Indent?tl-on z eHertz fitting %' eHertz fitting
c eHertz fitting £ = e
< o1 g 0.05 g 0
8 5 3
[=] g w
T8
91Pa 143 Pa
g % 100 200 300 % 100 200
0 100 200 300 400
Indentation (nm) Indentation (nm) Indentation (nm)
1.2 1 0.2
1! 0.8 o
Zos Approach Z 06 Approach Z —— Approach
= = = 02
s — Retract S 04 R g — Retract
5 0.6} s Y s
14 w =04
0.4} 0.2
-0.6
0.2 0
-11 -10.5 -10 95 9 -11 -10 9 -8 -6 -5 -4 3
Distance (pm) Distance (pm) Distance (um)
0.6 - 0.4 0.4
0.5 eIndentation 03 *Indentation 03 *Indentation
= 0.4 *Hertz fitting ‘%‘ eHertz fitting %‘ eHertz fitting
< — S
o 0.3 @ 0.2: o 0.2
g < <
2 02 < 0.1 & 0.1
0 : 299 Pa
0 0 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 0 100 200 300 400
Indentation (nm) Indentation (nm) Indentation (nm)

Figure S8 Typical force curves obtained during the autonomous high-throughput AFM single-cell indentation assay on co-cultured adherent
cells. (A) Co-culture of HaCaT cells and HMrSVS5 cells. (B) Co-culture of HaCaT cells and MCF-7 cells. (C) Co-culture of HaCaT cells and
MGC-803 cells. For each co-culture condition, two representative force curves (corresponding to the two co-cultured cell types) and the Hertz

fitting results are shown.

210.8+78.9 Pa 200 ¢ 128.9%38.2 Pa
2 100 447.84120.3 Pa @ 150 291.74115.6 Pa
s =
Q S 100}
(&
© 5o}
50 |
0 0
0 200 400 600 0 200 400 600
Young's modulus (Pa) Young's modulus (Pa)

Figure S9 Experimental results of high-throughput AFM single-cell indentation assay on co-cultured HaCaT and MGC-803 cells. (A, B)
Optical bright-field images showing the experimental process of two consecutive detection areas. (I) Recognition results of the optical bright-
field image of AFM probe and cells. The orange box indicates the detection area, and the yellow diamond block indicates the recognized AFM
microspherical tip. The outline of the recognized cell nucleus is indicated by a blue curve and the center of the nucleus is indicated by a green
cross. The white diamond block indicates the center of the next detection area. (II) The AFM probe has been accurately moved to each
recognized cell within the detection area to perform indentation assay one by one. Five cells were recognized and measured (denoted by the
symbols #1-#5) in the detection area in (A), and six cells were recognized and measured in the detection area (denoted by the symbols #1-#6)
in (B). (C) Statistical results of the constructed Young’s modulus profiles of the co-cultured cells with different cell mixing ratios. Double-
Gaussian fittings were performed (red and green curve respectively). (I-II) HaCaT cells and MGC-803 cells were mixed at a ratio of 10:1 (I)

and 1:1 (II) respectively. For each co-culture condition (cell mixing ratio of 10:1 and 1:1), 300 cells were measured.

10

Figure S10 Optical bright-field images showing preparing the sample of mixed CTCs. (A) Mixed HaCaT cells (suspended) and MCF-7 cells
(suspended). (I) The cultured HaCaT cells. (II) The cultured MCF-7 cells. (III) Mixture of the digested HaCaT cells and digested MCF-7 cells.
(B) Mixed MCF-7 cells (suspended) and Raji cells. (I) The cultured Raji cells. (II) The cultured MCF-7 cells. (IIT) Mixture of Raji cells and
digested MCF-7 cells.

11

0.8
=06
=
= 0.4
S
= 0.2
L

0

A Mixed CTCs (HaCaT and MCF-7)

— Approach
= Retract

& o
N w

Force (nN)
o
[T

o

-15 -1 05 0 0.5

Distance (pum)

s|ndentation
eHertz fitting

154 Pa

400 600

200
Indentation (nm)

- Approach
- Retract

-10.5 -10 95 -9 -85

Distance (pum)

e|ndentation
' eHertz fitting

287 Pa

600

200
Indentation (nm)

400

B

Mixed CTCs (MCF-7 and Raji)

__ 06
% 0.4 — Approach
& = Retract
2 0.2
o
[
0,
-10.5 -10 95 -9 -85
Distance (um)
0.1 _
> eindentation
R eHertz fitting
0
=
S 60 Pa
0 i
0 200 400 600
Indentation (nm)
0.6
% 0.4 — Approach
— - Retract
8 0.2
S
o
“- 0
-9 85 -8 -75 -7
Distance (um)
0.3
> eindentation
_50-2 eHertz fitting
S
= 0.1
o
e 138 Pa
0

200 400
Indentation (nm)

600

Figure S11 Typical force curves obtained during the autonomous high-throughput AFM single-cell indentation assay on mixed CTCs isolated

from blood. (A) Mixed HaCaT cells (suspended) and MCF-7 cells (suspended). (B) Mixed MCF-7 cells (suspended) and Raji cells. For each

condition, two representative force curves (corresponding to the two CTC types) and the Hertz fitting results are shown.

12

HaCaT cells (suspended) : MCF-7 cells (suspended)

Bright-field

=
©
O
(U
=
o
o

Dil (MCF-7)

Fused fluorescence

Figure S12 Fluorescence staining experiments of the mixed HaCaT cells (suspended) and MCF-7 cells (suspended) with different cell mixing
ratios. HaCaT cells were stained with green fluorescence, and MCF-7 cells were stained with red fluorescence. The scale bar is 50 pm.

13

Raji cells: MCF-7 cells (suspended)

Bright-field

B
L
Q
()

Dil (MCF-7)

Fused fluorescence

Figure S13 Fluorescence staining experiments of the mixed Raji cells and MCF-7 cells (suspended) with different cell mixing ratios. Raji cells
were stained with green fluorescence, and MCF-7 cells were stained with red fluorescence. The scale bar is 50 um.

14

3. Source codes

The source codes used in the work have been uploaded to GitHub website and are publicly available. Researchers can freely
download the source codes from the GitHub, including autonomous high-throughput AFM single-cell mechanical analysis on
adherent cells (https://github.com/xxxxrrrrxx/Auto-AFM/tree/main/Pyramid-Unet) and autonomous high-throughput AFM
single-cell mechanical analysis on CTC cells (https://github.com/cnncell/Combination-of-YOLOv7-and-U-Net). The instruction
documentations and the main codes are as follows.

3.1 Autonomous high-throughput AFM single-cell mechanical analysis on adherent cells
3.1.1 Instruction documentation

(1) Model Training

(DDataset Preparation: Collect bright-field cell images with diverse brightness and contrast captured by JPK to ensure data
diversity and representativeness, providing rich samples for subsequent training.

(2)Labeling: Use the professional labeling tool LabelMe for pixel-level annotation of original images, defining the
boundaries and category information of cell nuclei to generate label images consistent with the original dimensions.

(3)Pyramid-UNet Construction: Build the Pyramid-UNet network structure based on PyTorch. Set parameters such as
network layers, channel numbers, and convolution kernel size in net.py, and define input/output formats. data.py ensures one-
to-one correspondence between original images and labels, while utils.py standardizes image sizes during training.

(4)Model Training: Input the training set into the Pyramid-UNet model and run train.py for training. Calculate prediction
results via forward propagation, compute loss against labels, and update network parameters via backpropagation. Regularly
evaluate model performance using a validation set during training, adjusting hyperparameters (e.g., learning rate, batch size)
based on validation results.

(5)Image Segmentation: Run predict.py to perform semantic segmentation on cell nucleus images using the Pyramid-UNet
model. After cropping and resizing, extract contours and mark nucleus boundaries, then convert to a binary image and call
external scripts for fine-grained analysis. This is followed by template matching.py, which locates probe tips via template
matching, extracts nucleus centroid coordinates, defines a 250x250 pixel detection range centered on the probe, calculates the
relative distance from nuclei to the probe (converted by a coefficient of -0.02¢e-5), and saves results to a CSV file with visual
annotations.

(2) Automated AFM Experiments

(DRun Run.py to monitor and process input image files in specified paths. Call the prediction script predict.py to generate
output files (output_table.csv), clean temporary files, and delete original inputs after processing. It supports cyclic processing,
error retry, and logs via a logger.

(2)Run autosyn.py, an SETP-based bidirectional file synchronization program that monitors local file system changes via
Watchdog and periodically checks remote server file status to achieve automatic synchronization. The program supports
operations like upload, download, and deletion, with retry mechanisms and error handling.

(3)Run JPK.py within the JPK software to real-time acquire mechanical curves of cell nuclei within the detection range.

(3) Additional Notes

Both synchronization and neural network codes run on the PyCharm client.

The synchronization codes autosyn.py and Run.py run simultaneously.

File synchronization uses WinSCP for data transfer via SFTP.

References

https://github.com/xxxr9802/Pyramid-UNet

https://github.com/qiaofengsheng/pytorch-UNet.git
15

3.1.2 AFM script for automated control of the AFM probe and the sample stage

Python code for ExperimentPlanner

import time
import os
import csv
checkVersion('SPM', 7, 0, 178)
file path = 'Yhome/jpkuser/Desktop/data-transmit/output_table.csv'
filename = '’home/jpkuser/Desktop/data-transmit/1.tif'
count =0
def wait_for file path(file path):

while not os.path.exists(file_path):

time.sleep(2)

Snapshooter.saveOpticalSnapshot(filename)
n=0
while 1:
#Coordinates of the next area
nextAreaX =0
nextAreaY = -10e-5

#Number of detectable cells in the area

coordinate _count =0

#file path = '/home/jpkuser/Desktop/data-transmit/output_table.csv'
wait_for file path(file path)

If the file path exists, continue to execute the subsequent code

#Read coordinate points within probe detection range into script
def addposition(x,y):
ForceSpectroscopy.addPosition(x, y)

#Disabled platform moves

MotorizedStage.disengage()

#Clear coordinates, read new coordinates
ForceSpectroscopy.clearPositions()

#init

#Add initial position to software table, set to origin, index 0

16

ForceSpectroscopy.addPosition(0, 0)

#Read the coordinates of the detectable point and the center point of the next area into the script
with open(file_path, mode='r") as file:
reader = csv.reader(file)
next(reader)
for row in reader:
x = float(row[0])
y = float(row[1])
if abs(x) < 5e-5 and abs(y) < 5e-5 :
addposition(x, y)
coordinate _count += 1
#else :
#nextAreaX = x

#nextAreaY =y

#Probe tip moves back to initial position

ForceSpectroscopy.moveToForcePositionIndex(0)

#Get force curves for all detectable cells and save them automatically
i=0
for j in xrange(coordinate count):

i+=1

Scanner.retractPiezo()

Scanner.retract()

ForceSpectroscopy.moveToForcePositionIndex(i)

Scanner.approach()
ForceSpectroscopy.startScanning(5)
Scanner.retractPiezo()
Scanner.moveMotorsUp(2e-5)

time.sleep(1.0)

#After detecting each area, the probe must return to its original position

ForceSpectroscopy.moveToForcePositionIndex(0)

#Enabling the platform
MotorizedStage.engage()

#Move the platform to the next regional center

MotorizedStage.moveToRelativePosition(nextAreaX, nextAreaY)

17

n+=1
#Disabled platform
MotorizedStage.disengage()

#Probe down and up

Scanner.approach()

time.sleep(1.0)
Scanner.retract()
os.remove(file path)
time.sleep(2.0)
Snapshooter.saveOpticalSnapshot(filename)
time.sleep(2.0)
print("wait new document.....",n)
3.1.3 Synchronous real-time data transmission (optical bright-field images and recognition results)
import os
import time
import logging
import threading
import paramiko
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
from typing import Dict, List, Optional, Set, Tuple
from dataclasses import dataclass, field

from enum import Enum

Operation Type Enumeration
class OperationType(Enum):
UPLOAD = "upload"
DOWNLOAD = "download"
DELETE LOCAL = "delete local"
DELETE REMOTE = "delete remote"

Configuration Class

(@dataclass

class Config:
host: str ="10.254.254.1"
port: int =22

username: str = "jpkuser"

password: str = "jpkjpk" # Password hardcoded in configuration

18

local dir: str = r"C:\Users\17105\Desktop\data-transmit"

remote_dir: str = "/home/jpkuser/Desktop/data-transmit"

log file: str =1"C:\sync_logs\sftp sync.log"

check interval: int=10 # Interval (seconds) for checking remote changes
max_retries: int =3 # Maximum retries for failed operations

excluded patterns: List[str] = field(default factory=lambda: [

'.git', 'node_modules', "*.tmp', '*.log', 'logs/'

File Status Class

(@dataclass

class FileState:
mtime: float
size: int
exists: bool

last_checked: float = field(default factory=time.time)

SFTP Connection Manager
class SftpConnector:
def init (self, config: Config, logger: logging.Logger):
self.config = config
self.logger = logger
self.ssh = None
self.sftp = None

self.connected = False

def connect(self) -> bool:
"""Establish SFTP connection"""
try:
if self.connected:

self.disconnect()

self.ssh = paramiko.SSHClient()
self.ssh.set missing_host_key policy(paramiko.AutoAddPolicy())
self.ssh.connect(

self.config.host,

port=self.config.port,

username=self.config.username,

password=self.config.password,

19

timeout=10

self.sftp = self.ssh.open_sftp()
self.connected = True
self.logger.info("SFTP connection established successfully")
return True

except Exception as e:
self.logger.error(f"'Failed to establish SFTP connection: {e}")
self.connected = False

return False

def disconnect(self):

nmn

"""Disconnect SFTP connection
try:
if self.sftp:
self.sftp.close()
if self.ssh:
self.ssh.close()
self.connected = False
self.logger.info("SFTP connection disconnected")
except Exception as e:

self.logger.error(f'Error disconnecting SFTP connection: {e}")

def execute with_retry(self, func, *args, **kwargs):
"""SFTP operation executor with retry mechanism"""
retries = 0
while retries < self.config.max_retries:
try:
if not self.connected and not self.connect():
retries += 1
time.sleep(2)
continue
return func(*args, **kwargs)
except FileNotFoundError as e:
self.logger.warning(f"File not found: {e}")
self.connected = False
return False # File not found, no need to retry
except Exception as e:
self.logger.error(f'SFTP operation failed: {e}")

self.connected = False

20

retries += 1
time.sleep(2)
self.logger.error(f'Operation reached maximum retries: {func. name }")

return None

def file_exists(self, remote path: str) -> bool:

"""Check if remote file exists

def check():
try:
self.sftp.stat(remote path)
return True
except FileNotFoundError:

return False

return self.execute_with_retry(_check)

def get remote_file list(self) -> Optional[Dict[str, Dict]]:

"""Get list of files in remote directory

def list_files():
files = {}
try:
for item in self.sftp.listdir_attr(self.config.remote dir):
if item.filename in ['.", '.."]:
continue
files[item.filename] = {
'size': item.st_size,
'mtime'": item.st_mtime,
'is_dir": item.st_ mode & 0040000 !=0
}
except Exception as e:
self.logger.error(f'Failed to get remote file list: {e}")
return None

return files

return self.execute_with retry(_list_files)

def upload_file(self, local path: str, remote_path: str) -> bool:

mnnn

nnnUpload file to remote

21

def upload():
Ensure target directory exists
remote_dir = os.path.dirname(remote_path)

self._ensure remote dir_exists(remote_dir)

Upload file
self.sftp.put(local_path, remote path)

return True

return self.execute_with_retry(_upload)

def download _file(self, remote path: str, local path: str) -> bool:

nmn

"""Download file from remote

def download():
Check if remote file exists
if not self.file exists(remote path):
self.logger.warning(f"Remote file does not exist, skipping download: {remote path}")

return False

Ensure local directory exists
local_dir = os.path.dirname(local_path)
if not os.path.exists(local_dir):

os.makedirs(local_dir)

Download file
self.sftp.get(remote path, local path)

return True

return self.execute_with_retry(_download)

def delete remote file(self, remote path: str) -> bool:

"""Delete remote file

def delete():
Check if remote file exists
if not self.file exists(remote path):
self.logger.warning(f"Remote file does not exist, skipping deletion: {remote path}")

return True

Delete file

22

self.sftp.remove(remote_path)

return True

return self.execute_with_retry(_delete)

def ensure remote dir_exists(self, remote_dir: str):

nnn

"""Ensure remote directory exists
try:
self.sftp.stat(remote_dir)
except FileNotFoundError:
parent_dir = os.path.dirname(remote_dir)
if parent_dir !=remote_dir:
self. ensure remote dir exists(parent dir)

self.sftp.mkdir(remote dir)

Local File System Event Handler
class LocalSyncHandler(FileSystemEventHandler):
def init (self, sync_manager):

self.sync_manager = sync_manager

defon_any event(self, event):
"""Handle file system events"""
if event.is_directory or self.sync_manager.is_excluded(event.src_path):

return

Brief delay to avoid incomplete file operations

time.sleep(0.1)

Calculate relative path and remote path
rel path = os.path.relpath(event.src_path, self.sync_manager.config.local dir)

remote path = os.path.join(self.sync_manager.config.remote dir, rel path).replace("\\', /")

if event.event_type == 'created' or event.event_type == 'modified":
self.sync_manager.logger.info(f"Local creation/modification detected: {rel path}")

self.sync_manager.perform_sync(OperationType.UPLOAD, event.src_path, remote path)
elif event.event type == 'deleted":

self.sync_manager.logger.info(f"Local deletion detected: {rel path}")
self.sync_manager.perform_sync(OperationType. DELETE REMOTE, None, remote path)

23

File Synchronization Manager
class SyncManager:
def init_(self, config: Config):

self.config = config
self.logger = self._setup logger()
self.sftp = SftpConnector(config, self.logger)
self.running = False
self.observer = None
self.remote watcher thread = None
self.sync_lock = threading.Lock() # Synchronization lock
self.local_state: Dict[str, FileState] = {} # Local file state
self.-remote_state: Dict[str, FileState] = {} # Remote file state

def setup logger(self):

nmn

"""Setup logger

logger = logging.getLogger("sftp_sync")
logger.setLevel(logging. INFO)

if not logger.handlers:
Ensure log directory exists
log_dir = os.path.dirname(self.config.log_file)
if not os.path.exists(log_dir):

os.makedirs(log_dir)

file_handler = logging.FileHandler(self.config.log_file, encoding="utf-8")
console_handler = logging.StreamHandler()

formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s’)
file_handler.setFormatter(formatter)

console handler.setFormatter(formatter)

logger.addHandler(file handler)

logger.addHandler(console handler)

return logger

defis_excluded(self, path: str) -> bool:
"""Check if path should be excluded"""
for pattern in self.config.excluded patterns:
if pattern.startswith('*.") and path.endswith(pattern[1:]):
return True

if pattern in path:

24

return True

return False

def start(self):
"""Start synchronization service"""
self.logger.info("Starting file synchronization service...")

self.running = True

self.initial sync()
self._start local watcher()

self. start remote watcher()

self.logger.info("File synchronization service started")

def stop(self):
"""Stop synchronization service"""
self.logger.info("Stopping file synchronization service...")

self.running = False

if self.observer:
self.observer.stop()

self.observer.join(timeout=5)

if self.remote_watcher thread:

self.remote watcher thread.join(timeout=5)

self.sftp.disconnect()

self.logger.info("File synchronization service stopped")

def perform_sync(self, action: OperationType, local_path: Optional[str], remote path: Optional[str]):

"""Perform synchronization operation

self.logger.info(f"Performing synchronization operation: {action.value} {local path or remote path}")

with self.sync_lock: # Ensure only one synchronization operation at a time
success = False

retries = 0

while retries < self.config.max_retries:

try:
if action == OperationType.UPLOAD:
if not os.path.exists(local_path):

25

self.logger.warning(f"'Local file does not exist, skipping upload: {local path}")

return False

success = self.sftp.upload_file(local path, remote_path)
if success:
Update local and remote states

rel path = os.path.relpath(local_path, self.config.local dir)

try:

stat = os.stat(local path)

self.local_state[rel path] = FileState(
mtime=stat.st_mtime,
size=stat.st_size,
exists=True,
last_checked=time.time()

)

self.remote_state[rel path] = FileState(
mtime=stat.st_mtime,
size=stat.st_size,
exists=True,
last_checked=time.time()
)
except Exception as e:

self.logger.warning(f"Failed to update file state: {e}")

elif action == OperationType. DOWNLOAD:
success = self.sftp.download_file(remote path, local path)
if success:
Update local and remote states
rel path = os.path.relpath(local_path, self.config.local dir)
try:
stat = os.stat(local path)
self.local_state[rel path] = FileState(
mtime=stat.st_mtime,
size=stat.st_size,
exists=True,
last_checked=time.time()
)
self.remote_state[rel path] = FileState(
mtime=stat.st mtime,
size=stat.st_size,

exists=True,

26

last_checked=time.time()
)
except Exception as e:

self.logger.warning(f"Failed to update file state: {e}")

elif action == OperationType. DELETE REMOTE:
Calculate relative path
rel_path = os.path.basename(remote_path) if remote path else ""

Check if remote file exists
if self.sftp.file exists(remote path):
success = self.sftp.delete_remote file(remote path)
if success:
Update remote state immediately to prevent duplicate operations
self.remote_state[rel path] = FileState(
mtime=0,
size=0,
exists=False,

last_checked=time.time()

else:

success = True # File does not exist, consider operation successful

elif action == OperationType. DELETE LOCAL:
if os.path.exists(local path):
try:
Attempt to delete file
os.remove(local path)
success = True
Update local state
rel _path = os.path.relpath(local_path, self.config.local dir)
self.local_state[rel path] = FileState(
mtime=0,
size=0,
exists=False,
last_checked=time.time()
)
except PermissionError as e:
self.logger.warning(f"File is locked, cannot delete: {local path}, Error: {e}")
success = False

else:

27

success = True # File does not exist, consider operation successful

if success:
self.logger.info(f"Synchronization successful: {action.value} {local path or remote path}")
break
else:
retries += 1
self.logger.warning(f"Synchronization failed, retrying ({retries}/{self.config.max_retries}):
{action.value}")

time.sleep(1)

except Exception as e:
retries += 1
self.logger.error(f'Synchronization error, retrying ({retries}/{self.config.max retries}): {e}")

time.sleep(1)

if not success:

self.logger.error(f'Final synchronization failure: {action.value} {local path or remote path}")

def initial sync(self):

"""Perform initial two-way synchronization

self.logger.info("Performing initial two-way synchronization...")

local files = self. get local file list()

remote_files = self.sftp.get remote file list()

if not local files or not remote_files:
self.logger.warning("Initial synchronization failed: Cannot retrieve file lists")

return

Compare files on both sides, use latest modification time as criterion
for filename in set(local files.keys()).union(set(remote_files.keys())):
local info =1local files.get(filename)

remote_info = remote_files.get(filename)

if local info and not remote_info:
Local file exists, remote does not -> Upload
local path = os.path.join(self.config.local dir, filename)
remote_path = os.path.join(self.config.remote_dir, filename).replace("\', /')

self.perform_sync(OperationType.UPLOAD, local path, remote_path)

28

elif not local info and remote_info:
Local file does not exist, remote does -> Download
local_path = os.path.join(self.config.local_dir, filename)
remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', /")

self.perform_sync(OperationType. DOWNLOAD, local path, remote path)

elif local_info and remote_info:
Both exist, compare modification times
if local info['mtime'] > remote_info['mtime']:
Local is newer -> Upload
local path = os.path.join(self.config.local dir, filename)
remote_path = os.path.join(self.config.remote_dir, filename).replace(\\', '/")
self.perform_sync(OperationType.UPLOAD, local path, remote path)
elif remote_info['mtime'] > local info['mtime']:
Remote is newer -> Download
local path = os.path.join(self.config.local dir, filename)
remote_path = os.path.join(self.config.remote_dir, filename).replace('\\', '/")

self.perform_sync(OperationType. DOWNLOAD, local path, remote path)

Update states

self. update file states(local files, remote files)

def update file states(self, local files: Dict, remote_files: Dict):
"""Update file states™""

current_time = time.time()

Update local state
for filename, info in local _files.items():
self.local_state[filename] = FileState(
mtime=info['mtime'],
size=info['size'],
exists=True,

last checked=current time

Handle deleted local files
for filename in list(self.local_state.keys()):
if filename not in local_files:
if self.local state[filename].exists:
self.local_state[filename] = FileState(

mtime=0,

29

size=0,
exists=False,
last_checked=current time
)
else:
If already marked as non-existent and not checked for a long time, remove state
if current_time - self.local_state[filename].last checked > 3600:

del self.local_state[filename]

Update remote state
for filename, info in remote_files.items():
self.remote_state[filename] = FileState(
mtime=info['mtime'],
size=info['size'],
exists=True,

last checked=current time

Handle deleted remote files
for filename in list(self.remote_state.keys()):
if filename not in remote_files:
if self.remote_state[filename].exists:
self.remote_state[filename] = FileState(
mtime=0,
size=0,
exists=False,
last_checked=current time
)
else:
If already marked as non-existent and not checked for a long time, remove state
if current_time - self.remote_state[filename].last checked > 3600:

del self.remote_state[filename]

def get local file list(self) -> Dict[str, Dict]:
""Get list of local directory files"""
files = {}
try:
for item in os.listdir(self.config.local dir):
item_path = os.path.join(self.config.local dir, item)
if self.is_excluded(item_path):

continue

30

try:
stat = os.stat(item_path)
files[item] = {
'size': stat.st_size,
'mtime': stat.st_mtime,
'is_dir': os.path.isdir(item_path)
}
except Exception as e:
self.logger.warning(f"Failed to retrieve file information: {item_path}, Error: {e}")
return files
except Exception as e:
self.logger.error(f'Failed to get local file list: {e}")

return {}

def start local watcher(self):

"""Start local file monitoring
event_handler = LocalSyncHandler(self)

self.observer = Observer()

self.observer.schedule(event_handler, self.config.local dir, recursive=True)
self.observer.start()

self.logger.info(f"'Started monitoring local directory: {self.config.local dir}")

def start remote watcher(self):

"""Start remote file monitoring thread"""
self.remote watcher thread = threading. Thread(target=self. watch remote changes, daemon=True)
self.remote_watcher thread.start()

self.logger.info("'Started monitoring remote directory")

def watch remote changes(self):

"""Monitor remote file system changes
while self.running:
try:
Get current remote file list
remote_files = self.sftp.get remote _file list()
if not remote_files:
time.sleep(self.config.check interval)

continue

Compare with previous state
for filename in set(remote_files.keys()).union(set(self.remote_state.keys())):

remote_info = remote_files.get(filename)

31

remote_state = self.remote_state.get(filename)

Remote file added

if remote_info and (not remote_state or not remote_state.exists):
self.logger.info(f'"Remote addition detected: {filename}")
local_path = os.path.join(self.config.local dir, filename)
remote_path = os.path.join(self.config.remote_dir, filename).replace("\\, '/")

self.perform_sync(OperationType. DOWNLOAD, local path, remote path)

Remote file deleted
elif not remote_info and remote_state and remote_state.exists:
self.logger.info(f'Remote deletion detected: {filename}")
local path = os.path.join(self.config.local dir, filename)
First check if local file exists
if os.path.exists(local_path):
self.perform_sync(OperationType. DELETE LOCAL, local_path, None)
else:
File already deleted, directly update state
rel_path = os.path.relpath(local path, self.config.local dir)
self.local_state[rel path] = FileState(
mtime=0,
size=0,
exists=False,
last_checked=time.time()

)
self.logger.info(f'Local file already deleted, updating state directly: {local path}")

Update remote state
self. update file states({}, remote files)

except Exception as e:

self.logger.error(f"Error monitoring remote changes: {e}")

time.sleep(self.config.check interval)

Main program

def main():

config = Config()

Validate configuration

32

if not os.path.exists(config.local dir):
print(f"Error: Local directory does not exist - {config.local dir}")

return 1

sync_manager = SyncManager(config)

try:
sync_manager.start()
print("Press Ctrl+C to stop service...")
while True:
time.sleep(1)
except KeyboardInterrupt:
pass
finally:
sync_manager.stop()

return 0

if name ==" main_":
main()

3.2 Autonomous high-throughput AFM single-cell mechanical analysis on CTC cells
3.2.1 Instruction documentation

(1) Training datasets

Step 1: Create your dataset using Labellmg. Place the original images in VOCdevkit/VOC2007/JPEGImages and the
corresponding annotation files in VOCdevkit/VOC2007/Annotations. Run voc_annotation.py to split the dataset into training
and test sets. Finally, execute train_yolov7.py to train the YOLOvV7 model.

Step 2: Execute crop.py and use the Batch Crop Images function in yolo.py to crop all detected cells from a folder using
the trained YOLOv7 model.

Step 3: Label the cropped cells with LabelMe and place the results in the datasets/before folder. Run json to dataset.py to
convert JSON annotations into PNG format. Store the original images in datasets/JPEGImages and the labels in
datasets/SegmentationClass. Transfer these to VOCdevkit unet/VOC2007, then run voc annotation unet.py to partition the

training and validation sets. Train the U-Net model with train_unet.py.

(2) AFM automatic detection
Run predict.py.

(3) Additional Notes

1.The program runs in Visual Studio Code.

2.Trained models are saved in the logs/ directory. Ensure you update the model paths in configuration files during testing
3.The integration of U-Net into YOLOvV7 is implemented in yolo.py.

4.The combination of template matching and network predictions is handled in yolo.py.

33

5.Connect the local computer to the JPK microscope control computer via an Ethernet switch, ensuring both devices are on
the same local area network (LAN).

6.Copy the code from auto jpk.txt into JPK NanoWizard software and execute it.

References:
https://github.com/bubbliiiing/yolov7-pytorch
https://github.com/bubbliiiing/yolov7-tiny-pytorch
https://github.com/bubbliiiing/unet-pytorch/tree/bilibili
https://github.com/WongKinYiu/yolov7
3.2.2 Main codes
import cv2
import numpy as np
from PIL import Image
import pandas as pd
from yolo import YOLO
import csv
import math
import time
import 0s
import subprocess
import logging
import shutil

from typing import List, Tuple, Optional, Dict

Synchronization
Configure logging
logging.basicConfig(

level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s',

filename='sync.log'

def generate_script(session_name: str, host: str, username: str, password: str,
local path: str, remote path: str) -> str:
"""Generate WinSCP script"""
Verify local path existence
if not os.path.exists(local_path):
raise FileNotFoundError(f'Local path does not exist: {local path}")

34

Proper way to disable host key verification
script = f"""'# Sync script - accept any host key
open sftp://{username}: {password} @ {host}/ -hostkey=*
option batch on
option confirm off
led {local_path}
cd {remote path}
synchronize both -delete -criteria=time -mirror
close
exit

script_path = " {session_name}.txt"

with open(script_path, "w", encoding="utf-8") as f:
f.write(script)

logging.info(f"Script saved to: {os.path.abspath(script_path)}")
return script_path

def run_winscp(script_path: str, winscp_path: str = r'C:/Program Files (x86)/WinSCP/WinSCP.exe'") -> str:
"""Execute WinSCP script"""
try:
Verify script file existence
if not os.path.exists(script_path):
raise FileNotFoundError(f'Script file does not exist: {script path}")

Check WinSCP executable existence
if not os.path.exists(winscp_path):
raise FileNotFoundError(f"WinSCP executable does not exist: {winscp path}")

logging.info("Starting synchronization task")

Build and execute command
command = [
winscp_path,
'/script='+ script_path,
'/log=sync.log',
'loglevel=2',
'/noverifycert' # Alternative: disable certificate verification

]

logging.info(f"Executing command: {''join(command)}")

35

Use communicate with timeout

process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,

text=True

try:

stdout, stderr = process.communicate(timeout=300) # 5-minute timeout
except subprocess. TimeoutExpired:

process.kill()

stdout, stderr = process.communicate()

raise TimeoutError("Synchronization operation timed out")

return_code = process.returncode

if return_code !=0:

raise subprocess.CalledProcessError(return_code, command, stdout, stderr)

Log WinSCP output
if stdout:
logging.info(f"WinSCP standard output:\n{stdout}")

logging.info("Synchronization task completed")

return stdout

except subprocess.CalledProcessError as e:
logging.error(f"Error during synchronization (return code: {e.returncode}):")
if e.stdout:
logging.error(f"'Standard output:\n{e.stdout}")
if e.stderr:

logging.error(f"Error output:\n{e.stderr}")

Extract potential WinSCP error messages
if e.stderr:
for line in e.stderr.splitlines():
if "Error" in line or "Authentication failed" in line:

logging.error(f"Critical error: {line}")

36

raise
except Exception as e:
logging.error(f"Unexpected error executing WinSCP: {str(e)}")

raise

def cleanup(script_path: str) -> None:

"""Clean up temporary files
try:
if os.path.exists(script_path):
os.remove(script_path)
logging.info(f"Temporary script deleted: {script_path}")
except Exception as e:

logging.error(f'Error cleaning up temporary file: {str(e)}")

def synchronize() -> None:
"""Perform file synchronization"""
Configuration
config = {
"session_name": "UbuntuSync",
"host": ""10.254.254.1",
"username": "jpkuser",
"password": "jpkjpk",
"local_path": r"C:/Users/qixia/Desktop/RUNJPK",

"remote_path": r"/home/jpkuser/Desktop/RUNJPK"

try:

script_path = generate_script(**config)
except Exception as e:

print(f"Failed to generate script: {str(e)}")

return

try:
Execute synchronization
output = run_winscp(script_path)
print("Synchronization successful!")
if output:
print(output)
except Exception as e:
print(f"Synchronization failed: {str(e)}")
print(f'Detailed information in log file: {os.path.abspath('sync.log')}")

37

finally:

cleanup(script_path) # Clean up temp file regardless of success/failure

#
i i

Template Matching
H

#

7 7

def template_matching and save center(img_path: str) -> Image.Image:
"""Perform template matching and save center coordinates"""
template_image path = "template/tpl5.jpg"

csv_path ='center_coordinates.csv'

Read source image
src_image = Image.open(img_path)

src_np = np.array(src_image)

Read template image
template image = Image.open(template image path)

template_np = np.array(template_image)

match_ method=5 #CV_TM_CCOEFF NORMED
result rows = src_np.shape[0] - template np.shape[0] + 1

result cols = src_np.shape[1] - template np.shape[1] + 1

Perform matching on grayscale

gray src =src_np[:, :, 0]

gray template = template np[:, :, 0]

result_gray = cv2.matchTemplate(gray src, gray template, match method)

cv2.normalize(result_gray, result gray, 0, 1, cv2.2NORM MINMAX)

Find best match
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result_gray)

match _loc =max loc # Use max for TM_CCOEFF _NORMED

Calculate center
center_x = match_loc[0] + template_np.shape[1] /2
center_y = match_loc[1] + template_np.shape[0] // 2

Save to CSV

data = {'x" [center_x],'y": [center y]}
df = pd.DataFrame(data)
df.ito_csv(csv_path, index=False)

38

return src_image

#
i i

Find Densest Point
H

#

7 7

def find_nearest_center(input_file: str) -> Optional[Tuple[float, float]]:
"""Find the center of the densest point cluster""
points =[]
with open(input_file, 'r', encoding="utf-8', newline=") as f:
reader = csv.reader(f)
for row in reader:
try:
x = float(row[0])
y = float(row[1])
if abs(x) > 4.9 and abs(y) > 4.9 and y < 0:
points.append((x, y))
except (IndexError, ValueError):

continue

Check data sufficiency
if len(points) < 1:
print("Error: At least one valid coordinate point is required")

return None

Find densest point
max_point_count =0
best point = None
for center point in points:

point_count =0

for point in points:

if (center_point[0] - 3 <= point[0] <= center_point[0] + 3) and (
center_point[1] - 6 <= point[1] <= center point[1] + 6):

point_count += 1

if point_count > max_point_count:
max_point_count = point_count

best_point = center point

return (

round(best_point[0], 2),

39

round(best_point[1], 2)
) if best_point else None

#

7

#
#

1

Draw Points on Image

#

7

7

def draw_points_on_image(image: np.ndarray, csv_file paths: List[str],

point_color: Tuple[int, int, int] = (0, 125, 0),
point_size: int = 5) -> np.ndarray:
"""Draw points from CSV files on an image"""
for csv_file path in csv_file paths:
try:
with open(csv_file path, 'r') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
if len(row) == 2:
try:
x = int(float(row[0]))
y = int(float(row[1]))
Check if coordinates are within image bounds
if 0 <= x < image.shape[1] and 0 <=y < image.shape[0]:
cv2.circle(image, (X, y), point_size, point_color, -1)
except ValueError:
print(f"Invalid coordinate value: {row}")
except FileNotFoundError:
print(f"Error: File not found {csv_file path}")
except Exception as e:
print(f"Unknown error: {e}")

return image

7

#
#

Convert TIF to JPG

H
H

7

deftif to jpg(input_path: str, output_path: str) -> bool:

"""Convert TIF image to JPG"""

try:
Open TIF image
image = Image.open(input_path)
Convert to RGB mode
rgb_image = image.convert('/RGB")
Save as JPG

40

rgb_image.save(output_path, 'JPEG")
print(f"Successfully converted {input path} to {output path}")
return True
except Exception as e:
print(f'Error during conversion: {e}")

return False

#
i i

Utility Functions
#

#

7 i

def find_nearest(current: Tuple[float, float], points: List[Tuple[float, float]]) -> Optional[Tuple[float, float]]:
"""Find the nearest point to the current point"""
if not points:
return None

return min(points, key=lambda p: math.hypot(p[0]-current[0], p[1]-current[1]))

def clear folder(folder path: str) -> None:
"""Clear all files and subfolders in a folder"""
if not os.path.exists(folder path):
print(f'Folder does not exist: {folder path}")

return

Iterate through all items
for item in os.listdir(folder_path):
item_path = os.path.join(folder path, item)
try:
if os.path.isfile(item_path):
os.remove(item_path)
print(f"File deleted: {item_path}") # Commented for performance
elif os.path.isdir(item_path):
shutil.rmtree(item_path)
print(f"Folder deleted: {item path}") # Commented for performance
except Exception as e:

print(f'Failed to delete {item path}: {e}")

def delete_file(file path: str) -> None:

"""Delete a file with error handling
try:
if os.path.exists(file path):
os.remove(file path)
print(f"File deleted: {file path}") # Commented for performance

41

else:
print(f"File not found: {file path}") # Commented for performance
pass
except PermissionError:
print(f'Permission error: Cannot delete {file path}, possibly in use by another program")
except Exception as e:

print(f"Unknown error: {e}, cannot delete {file path}")

H #
T T
Main Function

if name ==" main_ "

yolo = YOLO()
crop = True

count = False

File paths

input_file = 'coordinates.csv'

output_file = 'C:/Users/qixia/Desktop/RUNJPK/output.csv'
output_file2 = 'C:/Users/qixia/Desktop/RUNJPK/output2.csv'
test_file ='C:/Users/qixia/Desktop/RUNJPK/test.csv'
image extensions = ('.jpg', '.jpeg', '.png', '.gif, ".tif")
usb_drive path ='C:/Users/qixia/Desktop/RUNJPK'
input_tif file ='C:/Users/qixia/Desktop/RUNJPK/1.tif'
test_tif = 'C:/Users/qixia/Desktop/RUNJPK/2.tif'
output_jpg file ='C:/Users/qixia/Desktop/RUNJPK/1.jpg'
csv_file paths = [output file, output file2]

while True:
clear folder(usb drive path)
print(f"Folder cleared: {usb drive path}")
synchronize()

print(f"Start detection: {usb_drive path}")

Wait for test image

while not os.path.exists(test_tif):
print("Test image not detected, waiting...")
time.sleep(5) # Check every 5 seconds
delete file(output_file)
delete_file(output_file2)

synchronize()

42

print(f"Start detection: {usb_drive path}")

try:
delete_file(output_file)
delete_file(output_file2)

Verify image integrity
img = Image.open(input_tif file)
img.verify()
img.close()
is_corrupted = False
except (IOError, SyntaxError):
delete file(output _file)
delete file(output file2)

is_corrupted = True

if is_corrupted:
print("Detected corrupted image.")
with open(output_file, 'w') as f:
f.write("0,0")
with open(output_file2, 'w') as f:
f.write("0,0")
with open(test_file, 'w') as f:
pass # Empty file
print("Test CSV file generated!")
else:
Initialize coordinates file
with open("coordinates.csv", "w") as f:

pass # Empty file

Convert TIF to JPG
if tif to jpg(input_tif file, output jpg file):
Perform template matching

result_image = template_matching_and_save center(output_jpg_file)

Perform object detection

r_image = yolo.detect_image(result_image, crop=crop, count=count)

HiHHEHHHA# Write coordinates with [x|<5 and |y|<5 to output.csv #HHHHHHHHHHTHHHHHH
try:

Read all coordinates

43

coords =[]
with open(input_file, 'r', encoding="utf-8', newline=") as infile:
reader = csv.reader(infile)
for row in reader:
try:
x = float(row[0])
y = float(row[1])
if abs(x) < 5 and abs(y) < 5:
coords.append((x, y))
except (IndexError, ValueError):

continue

Handle empty coordinates
if not coords:
x,y=0.0,0.0
coords.append((x, y))

print("No valid coordinates found!")

Greedy algorithm for nearest neighbor ordering
path =[]

unvisited = set(coords)

Start from point nearest to origin
start = min(coords, key=lambda p: math.hypot(p[0], p[1]))
path.append(start)

unvisited.remove(start)

Find nearest points sequentially

current = start

while unvisited:
next point = find nearest(current, unvisited)
path.append(next point)
unvisited.remove(next_point)

current = next_point

Write ordered coordinates
with open(output_file, 'w', encoding="utf-8', newline=") as outfile:
writer = csv.writer(outfile)
for x, y in path:
writer.writerow([X, y])

print(f'Target point ({x}, {y}) saved to {output file}") # Commented for performance

44

except FileNotFoundError:
print(f"Error: File not found {input file}.")
except Exception as e:

print(f'"Unknown error: {e}")

HIHHHHHHHHHHE R Find nearest center point ##HHHHHHHHHHHHHIHHHHHHEHHEHEHE
Find nearest center point
result = find nearest center(input_file)
Write to CSV file
if result:
with open(output file2, 'w', newline=", encoding="utf-8') as f:
writer = csv.writer(f)
writer.writerow(result)
print(f"Nearest center coordinates {result} saved to {output file2}")
else:
with open(output_file2, 'w', newline=", encoding="utf-8') as f:
writer = csv.writer(f)
writer.writerow([0, 0])

print(f'Default coordinates (0, 0) saved to {output file2}")

HHHHHHHHHAHHRRAHRRA Process and save result image #HHH#HHHHHHHHHHHHHRHAHRHAH T
if r_image and len(r_image) > 0:

image obj =r image[0] # Assumingr image is a tuple containing the image

Convert PIL image to numpy array

image np = np.array(image_obj)

Convert RGB to BGR for OpenCV

if len(image np.shape) == 3 and image np.shape[2] == 3:

image np = cv2.cvtColor(image np, cv2.COLOR RGB2BGR)

Draw points on image
try:
result image = draw_points on image(image np, csv_file paths)
Save image as output.jpg
cv2.imwrite('output.jpg', result_image)
print("Image successfully saved as output.jpg")
except Exception as e:
print(f"Error saving image: {e}")
Fallback to saving original image
cv2.imwrite('output.jpg', image np)

else:

45

print("No detection result image available")
Create a blank image as fallback
blank image = np.zeros((600, 800, 3), np.uint8)

cv2.imwrite('output.jpg', blank image)

Generate empty test CSV file

with open(test_file, 'w') as f:
pass # Empty file

print("Test CSV file generated!")

Clean up image files
for root, dirs, files in os.walk(usb_drive path):
for file in files:
if file.lower().endswith(image extensions):
file_path = os.path.join(root, file)
try:
os.remove(file path)
print(f"File deleted: {file path}") # Commented for performance
except Exception as e:

print(f'Failed to delete {file path}: {e}")

Perform synchronization
synchronize()
wait_time = 1
print(f"Synchronization completed, waiting {wait time} second")
time.sleep(wait_time)
3.2.3 AFM script

import time

import os

import csv

Check the SPM version

checkVersion('SPM', 7, 0, 178)

The path to the output table file

file_path = '/home/jpkuser/Desktop/RUNJPK/output.csv'

The path to the output table file

file path2 = '/home/jpkuser/Desktop/RUNJPK//output2.csv'
test_path = '/home/jpkuser/Desktop/RUNJPK//test.csv'

File name

filename = '/home/jpkuser/Desktop/RUNJPK/1'

testname = '/home/jpkuser/Desktop/RUNJPK/2'

46

imagel = 'Yhome/jpkuser/Desktop/RUNJPK/1.tif
image2 = '"home/jpkuser/Desktop/RUNJPK/2.tif'
Wait for the file corresponding to the file path to appear
def wait_for_file path(file path):
while not os.path.exists(file_path):

pass

Main function
while True:

Securely delete files

for path in [file path, file path2,test path,imagel,image2]:

try:
os.remove(path)
except:
pass
print("Remote all file")
Snapshooter.saveOpticalSnapshot(filename)
time.sleep(3.0)
Snapshooter.saveOpticalSnapshot(testname)

print("Save the image")

MotorizedStage.disengage()
ForceSpectroscopy.clearPositions()

ForceSpectroscopy.addPosition(0, 0)

the origin with index 0

ForceSpectroscopy.moveToForcePositionIndex(0)

coordinate_count =0

wait_for file path(test path)
print("The path has been successfully detected")
Securely delete files
for path in [test_path,imagel,image2]:
try:
os.remove(path)
except:

pass

47

Save the image

Save the image

Disable platform movement
Clear the coordinates and read new ones
Add the initial position to the software table and set it as

Move the probe back to the initial position

Variable initialization

Wait for the file to appear

print("remote the imagel")
with open(file_path, mode='r") as file: # Read the coordinates of detectable points
reader = csv.reader(file)
for row in reader:
x = float(row[0])*1e-5
y = float(row[1])*1e-5
ForceSpectroscopy.addPosition(x, y) # Add coordinate points
coordinate _count += 1 # Count
i=0
for j in xrange(coordinate count):
i+=1

ForceSpectroscopy.moveToForcePositionIndex(i) # Move to the specified force position index

Scanner.approach() # Lower the probe
ForceSpectroscopy.startScanning(5) # Start force spectroscopy scanning, scan 5 times
Scanner.retractPiezo() # Raise the probe
Scanner.moveMotorsUp(2e-5) # Raise the probe height

time.sleep(1.0)

ForceSpectroscopy.addPosition(0, 0) # The probe must return to zero

for path in [test_path,imagel,image2]:
try:
os.remove(path)
except:
pass
print("remote the image2")
MotorizedStage.engage() # Enable platform movement
#--Read the large-scale movement coordinates and add them to the JPK system--#
with open(file path2, mode="r'") as file: # Read the coordinates of detectable points
reader = csv.reader(file)
for row in reader:
next x = float(row[0])*1e-5
next_y = float(row[1])*1e-5

MotorizedStage.moveToRelativePosition(next x,next y) # Move to the next position on a large scale

MotorizedStage.disengage() # Disable the moving platform

48

