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Experimental Section

Materials preparation: Firstly, CuCl,-2H,0 was dissolved in deionized water, and
then PVP, NaOH and ascorbic acid were added to react in water bath at 40 °C. After
the completion of the reaction, the Cu,O catalyst was obtained by centrifugal cleaning
and freeze-drying. In order to modify the Cu,O catalyst, the Cu,O catalyst was
ultrasonically dissolved in ethanol and hydrothermally reacted at 120 °C for 10 h by
adding RuCl;-3H,0. The modified catalyst was obtained by centrifugal cleaning and
freeze-drying. By adjusting the doping amount of RuCl;-3H,0O (0.1 mmol, 0.2 mmol,
0.3 mmol, 0.4 mmol), we named it Cu,O-ClI/RuCu-Y (Y=1, 2, 3, 4). Since Cu,O-
CI/RuCu-3 has the best performance, Cu,O-Cl / RuCu-3 is denoted as Cu,O-Cl/RuCu.

Materials characterization: X-ray diffraction phase analysis (XRD) is a technique
for material structure analysis by using the diffraction effect of X-ray in crystal
materials. The catalyst was qualitatively analyzed by measuring the diffraction angle
position (peak position), and the catalyst was quantitatively analyzed by measuring the
peak intensity of the spectral line. Scanning electron microscope (SEM) is an
observation method between transmission electron microscope and optical microscope
which was used to observe the surface morphology of the catalyst. Transmission
electron microscopy (TEM) and high-resolution transmission electron microscopy
(HR-TEM) allow us to see the finer microstructure and morphology of the catalyst. In
order to further analyze the surface composition and element valence of the catalyst,
XPS technology was used to analyze the catalyst. Raman spectroscopy is an efficient,
non-destructive analysis technology without complex sample preparation which was
used for qualitative analysis and structural identification of the catalyst.

Electrochemical measurements: The electrochemical performance of the catalyst
was evaluated by assembling the button cell. 10 mg catalyst and 10 mg KB were added
to the mixed solution of 1.9 ml ethanol and 100 ul nafion (10%). The catalyst loading
was controlled at about 1 mg-cm2, and the cathode electrode was obtained by vacuum
drying at 80 °C for 12 h. The anode is metal lithium sheet with a diameter of 15.6 mm.

The separator is glass fiber with a diameter of 19 mm. The electrolyte is 1 M LiTFSI /
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DMSO, and the drop amount is 200 uL. The CR2032 battery shell with holes was used
to assemble the battery in the glove box with H,O <0.01 ppm and O, < 0.01 ppm. The
assembled battery was placed in a closed test bottle and replaced with CO, gas for 20
min to wait for the test which includes constant current charge-discharge testing, rate
performance testing, capacity testing and CV testing.

Theoretical calculation: Density functional theory (DFT) calculations were
performed carried out with the CP2K package, employing the hybrid Gaussian and
plane waves (GPW) method within its QUICKSTEP module The core-valence electron
separation was described by Goedecker—Teter—Hutter (GTH) pseudopotentials, while a
molecularly optimized double-zeta valence plus polarization basis set (DZVP-
MOLOPT-SR-GTH) was utilized for all atoms. An auxiliary plane wave basis with a
cutoff energy of 500 Ry was applied to expand the electron density. Exchange and
correlation effects were treated using the spin-polarized Perdew—Burke—Ernzerhof
(PBE) functional under the generalized gradient approximation (GGA). The Kohn—
Sham equations were solved via conventional matrix diagonalization, accelerated by
the ELPA library, and electronic convergence was facilitated by Fermi—Dirac smearing
with an electronic temperature of 300 K. To account for van der Waals interactions, the
DFT-D3 dispersion correction scheme by Grimme et al. was incorporated. Structural
relaxations were considered converged when energy and maximum force changes fell
below 1.0x10° eV and 3.0x10* eV A"l respectively. For electronic structure
calculations, a tighter energy threshold of 1.0x10® ¢V was adopted. Brillouin zone
sampling was performed using Monkhorst—Pack k-point meshes: 13x13x13 grid for Cu
and Cu,0O unit cell, and 5x3x1 grid for Cu/Cu,0 and RuCu/Cu,OCl heterostructures.
A vacuum layer of 20 A was added along the non-periodic direction to isolate periodic
images of the slabs. The optimized lattice parameters obtained for Cu and Cu,0O was
3.66 and 4.30 A. Thermodynamics corrections and density of states (DOS) analyses
were conducted using the Shermo and Multiwfn software packages, respectively. The

charge density difference was visualized using the VESTA software.

W



cu,0 | b

Fig. S1. SEM images of Cu,O



Fig. S2. (a) TEM image and (b) SAED image of Cu,O



Cu,O-Cl/RuCu

Fig. S3. SEM images of Cu,O-Cl/RuCu



Cu,O-ClI/RuCu-1

Fig. S4. SEM images of Cu,O-Cl/RuCu-1



CuO-CliRuCu:2| b Cu,0-Cl/RuCY-2

SR | 100 nm

Fig. S5. SEM images of Cu,O-Cl/RuCu-2
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Fig. S6. SEM images of Cu,O-Cl/RuCu-4
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Fig. S7. Nitrogen adsorption-desorption isotherm of (a) Cu,O and (b) Cu,O-Cl/RuCu

electrocatalysts. (c) The corresponding pore size distributions of (c) Cu,O and (d)
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Fig. S8. XRD spectrum of Cu,O-Cl/RuCu-1 powder
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Fig. S9. XRD spectrum of Cu,O-Cl/RuCu-2 powder
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Fig. S10. XRD spectrum of Cu,O-Cl/RuCu-4 powder
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Fig. S11. (a) full XPS spectra for Cu,O and Cu,O-Cl/RuCu. High-resolution XPS
spectra of (b) Ru 3p for Cu,O-Cl/RuCu. (c¢) O 1s for Cu,O and Cu,O-ClI/RuCu
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Fig. S12. Capacity-voltage curves of (a) Cu,O and (b) Cu,O-Cl/RuCu at different

current densities
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Fig. S13. Capacity-voltage curves of Cu,O at different cycles
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Fig. S14. Cycling performance diagram for CuO-Cl/RuCu-1 electrocatalyst. (a)
Charge-discharge cut-off voltage curves. (b) Capacity-voltage curves. (c) Time-voltage
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Fig. S16. Cycling performance diagram for Cu,O-Cl/RuCu-4 electrocatalyst. (a)
Charge-discharge cut-off voltage curves. (b) Capacity-voltage curves. (¢) Time-voltage
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Fig. S17. SEM images of Cu,O cathode after charge and discharge
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Fig. S18. The optimized structure for (a) Cu,O, (b) Cu,O/Cu and (c¢) Cu,O-Cl/RuCu
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Fig. S20. The side views of adsorption configuration on Cu,O
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Fig. S21. The side views of adsorption configuration on Cu,O/Cu
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Table S1. The BET surface area and pore size for Cu,O and Cu,O-Cl/RuCu e

lectrocatalysts
BET Surface Area ( Total Pore Volume ( Avg. Pore Diameter (
Electrocatalyst
m2-g!) cmd-g) nm)
Cu,0 11.63 0.0253 8.7167
Cu,O-Cl/RuCu 53.34 0.1774 13.3045

Table S2. The element ratio of Cu,O-Cl/RuCu

Element Atomic ratio (%) Mass ratio (%)
0] 25.85 7.50
Cu 57.41 66.14
Ru 13.12 24.04
Cl 3.62 2.33
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Table S3. The comparison of Li-CO, battery electrocatalystsS!-!1?

Cycling Discharge
Electrocatalyst Overpotential Charge Voltage . Ref.
performance capacity
180 cycles 8041.73 pAh-cm?  This
Cu,O-Cl/RuCu 0.54 VvV 359V
at 50 pA-cm? at 50 pA-cm? work
600 h 4637.6 pAh-cm™
CoS-Vs-1.0 0.62V 361V S1
at 20 pA-cm? at 50 pA-cm?
800 h 6950 pAh-cm™
Cu-Co30,4 0.73V 3.8V S2
at 20 pA-cm? at 50 pA-cm?
162 cycles 5620 pAh-cm?
CoSe,/CMF 072V 3.86 V S3
at 20 pA-cm? at 50 pA-cm?
V- 630 h 3954 nAh-cm™
0.68 V 3.67V S4
MoS,/CoySs@CP at 20 pA-cm? at 40 pA-cm?
50 cycles 9434 mAh-g’!
P-Mn,05/KB 1.8V 43V S5
at 50 mA-g’! at 50 mA-g’!
538 cycles 23560 mAh-g-!
N,S-doped CNTs 1.67V 43V S6
at 200 mA-g’! at 200 mA-g’!
. 100 cycles 17358 mAh-g-!
Adjacent Co/GO 1.64 V 415V S7
at 100 mA-g’! at 100 mA-g!
50 cycles 11495 mAh-g-!
Ru/ACNF 1.35V 415V S8
at 100 mA-g’! at 200 mA-g!
100 cycles 12448 mAh-g!
Ru/NS-G 1.13V 4.04V S9
at 100 mA-g’! at 100 mA-g!
360 cycles 23 328 mAh-g’!
B-NCNT 1.04V 405V S10
at 1000 mA-g! at 50 mA-g’!
. 50 cycles 5871 mAh-g!
C00<1N10'9OX/CNT 1.27V 394V S11
at 100 mA-g’! at 100 mA-g!
200 cycles 23174 mAh-g’!
Fe-ISA/N, S-HGs 117V 395V S12
at 1000 mA-g! at 100 mA-g!
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