
Supplementary Information

Ultracompact On-chip Coiled Waveguide-Integrated Photodetectors Enabled by 2D materials with Enhanced Responsivity

Maaz Ahmed Qureshi,*a‡ Fooqia Khalid,b‡ Janvit Tippinit,a Faisal Ahmed,b Md Gius Uddin,b Abde Mayeen Shafi,b Xiaoqi Cui,b Matthieu Roussey,a Harri Lipsanen,b Zhipei Sun,b and Markku Kuittinen

^a Center for Photonics, University of Eastern Finland, Joensuu, Finland. Email: maaz.qureshi@uef.fi, markku.kuittinen@uef.fi

^b Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland. Email: faisal.ahmed@aalto.fi, zhipei.sun@aalto.fi

^{*} Corresponding author

[‡] Contributed equally

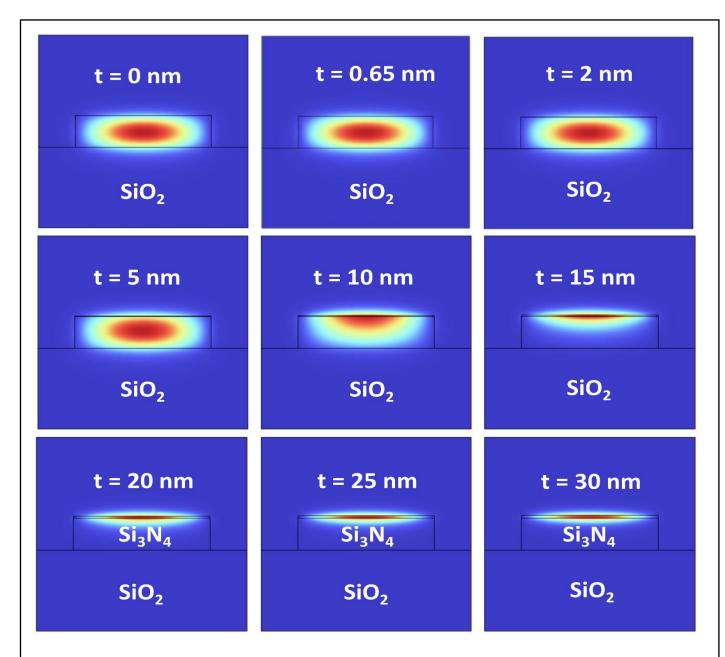
Table of Contents

Figure:

- S1: Thickness dependence of MoS₂ on optical mode profile, transmittance, absorption.
- S2: Raman characterization of MoS₂ flake.
- S3: AFM of MoS₂ flakes transferred on the waveguides.
- S4: Waveguide characterization setup and transmission loss measurements of silicon-nitride waveguides.
- S5: Photocurrent generated by a MoS₂ on a straight waveguide and a MoS₂ on a coiled waveguide structure.
- S6: Dark current of MoS₂ flakes on a straight and coiled waveguide structures.
- S7: Gate voltage curve of MoS₂ flakes on a coiled waveguide structure.
- S8: Simulated mode profile of a single layer MoS₂ film, transmittance, absorption and top-view field evolution in a Si₃N₄ waveguide with an overlaid MoS₂ layer of varying interaction length.
- S9: Simulated optical absorptance in MoS₂ on a straight and coiled waveguides.
- S10: Benchmark comparison of our waveguide-integrated coiled MoS₂-based photodetectors with previous photodetectors made with similar 2D materials.

S1: Thickness dependence of MoS₂ on optical mode profile, transmittance, absorption.

Fig. S1a: Effect of MoS₂ thickness on optical mode confinement in the waveguide-integrated structure.



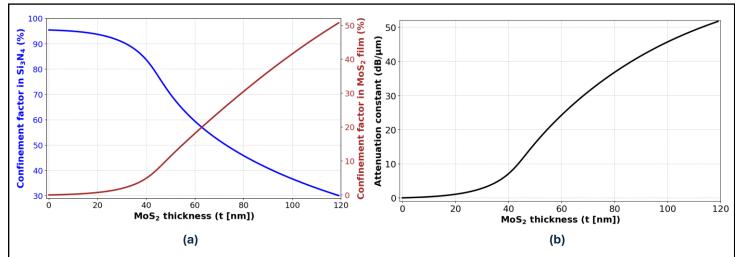

Figure S1a: Simulated optical mode profiles in a Si_3N_4 waveguide with varying MoS_2 film thicknesses from 0 to 30 nm. As the MoS_2 thickness increases, the optical mode gradually shifts upward and becomes more confined in the MoS_2 layer due to its higher refractive index. This enhanced light confinement in thicker MoS_2 layers leads to increased absorption, which directly influences photocurrent generation and responsivity. The simulations clearly visualize the evolution of mode distribution as a function of MoS_2 film thickness.

Fig. S1b: Simulated confinement and optical loss versus MoS2 thickness on a Si₃N₄ waveguide.

Thickness of MoS2 film (t [nm])	Confinemer	Attenuation constant		
	Si₃N₄ waveguide	MoS ₂ film	(dB/μm)	
0	100	0	0.05	
5	93.75	0.71	0.96	
10	82.84	5.32	6.44	
15	61.47	17.39	23.50	
20	47.15	29.92	36.28	
25	37.58	41.10	45.33	
30	30.51	50.69	51.71	

Figure S1b: Simulated optical confinement factors and attenuation constant as a function of MoS_2 film thickness integrated on a Si_3N_4 waveguide. As the MoS_2 thickness increases from 0 to 30 nm, the optical mode increasingly shifts from the waveguide core to the MoS_2 layer, resulting in a significant rise in the confinement factor within MoS_2 and a corresponding increase in optical attenuation (from 0.05 to 51.71 dB/ μ m).

Fig. S1c: Simulated confinement factors and optical loss versus MoS_2 thickness on a Si_3N_4 waveguide.

Figure S1c: As tabulated in Fig. S5b, the graphs in (a) shows the simulated confinement factors in the Si_3N_4 waveguide core and MoS_2 film as a function of MoS_2 film thickness (b) shows the corresponding increase in attenuation constant (dB/ μ m), indicating light absorption in thicker MoS_2 layers.

S2: Raman characterization of MoS₂ flake.

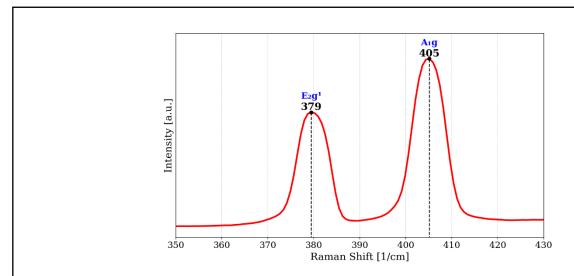


Fig. S2: Raman response of MoS₂ flake transferred onto a Si₃N₄ waveguide: The two distinct peaks at ~379 cm⁻¹ and ~405 cm⁻¹ correspond to the E_2g^1 (in-plane vibrational mode) and A_1g (out-of-plane vibrational mode) of the MoS₂ flake, respectively. The vertical black dashed lines mark the peak positions for clarity, and the peak separation (~26 cm⁻¹) indicates a multilayer MoS₂.

S3: AFM of MoS₂ flakes transferred on the waveguides.

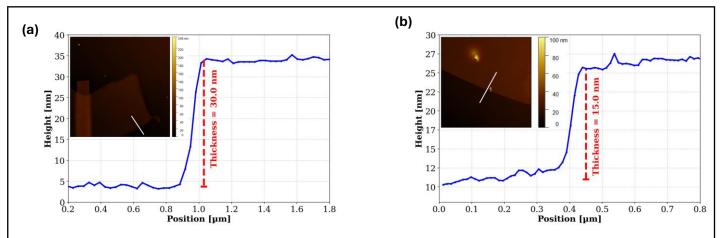


Fig. S3: Atomic Force Microscopy (AFM) height profiles of MoS₂ flakes in different structural configurations. (a) shows the MoS₂ flake on a straight waveguide with a measured thickness of 30 nm, while (b) shows the MoS₂ flake on a coiled waveguide structure with a thickness of 15 nm. The lateral axis corresponds to the white line drawn across the flakes in the insets. The measurements confirm the multilayer nature of the flakes used in the electro-optical characterization.

S4: Waveguide characterization setup and transmission loss measurements of silicon-nitride waveguides.

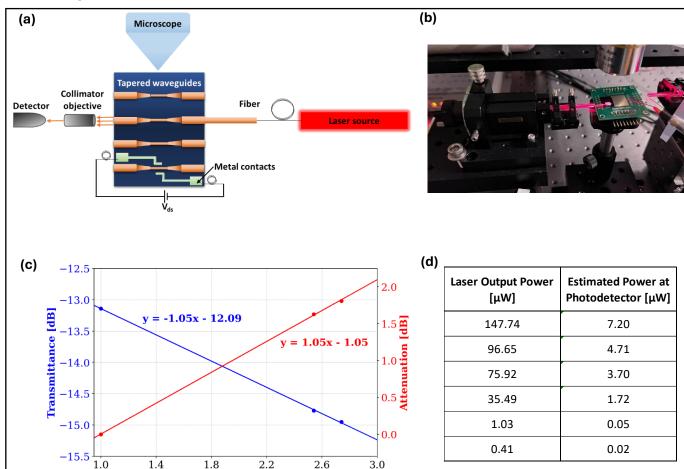


Fig. S4: Top-view illustration and image of custom-built waveguide characterization setup with the optical transmittance and attenuation measurements as functions of propagation length in a waveguide.

Length [cm]

An optical fiber of 2 μ m was used to inject light in a 3 μ m tapered waveguide, as shown in (a). The tapered waveguides are used both at the input and output to ease light coupling. The output light is collimated by an objective lens and detected by the power meter or output camera to observe the optical mode. A top-view microscope was employed to align the fiber and waveguide for optimal light propagation in the waveguide, while metal contacts were used to enable the electrical measurements in 2D material. The experimental setup captured in (b) validates the successful light coupling into the waveguide and device. The transmittance and attenuation measurements graphs shown in (c) illustrate the relationship between detected output power and the change in waveguide length. The cut-back method was employed to determine the losses by varying the length of the waveguides. A linear fit to the data was applied and extrapolated, and an insertion loss of ~12.09 dB was obtained, while the propagation loss was ~1.05 dB/cm. Low propagation and moderate insertion loss indicate efficient light transmission to the photodetector, which enhances light-matter interactions. (d) Table showing the measured laser output from the laser source and the actual power reaching the photodetector using the transmittance loss equation in S3c.

S5: Photocurrent generated by a MoS_2 on a straight waveguide and a MoS_2 on a coiled waveguide structure.

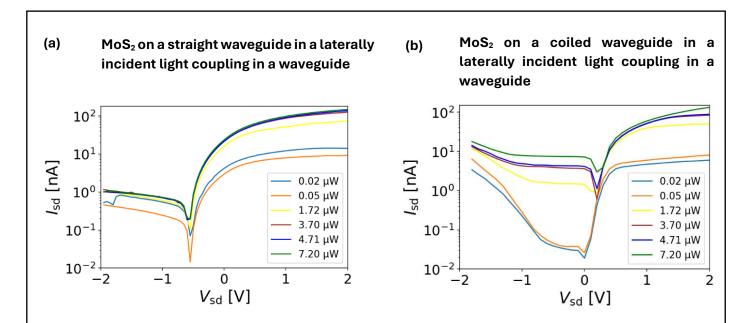
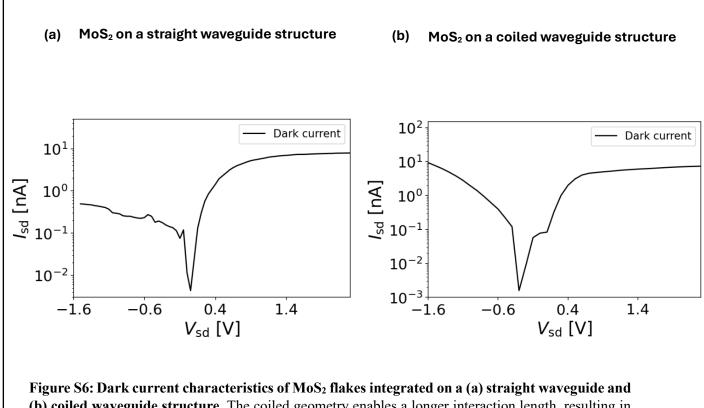



Figure S5: Photocurrent generated in MoS₂ integrated on (a) a straight waveguide and (b) a coiled waveguide under lateral light coupling at varying optical powers. The photocurrent increases with optical power in both configurations, with a steeper slope in the coiled waveguide structure. The light propagates through the waveguide and generates an electric field perpendicular to the waveguide plane, enabling light-matter interaction with MoS₂.

S6: Dark current of MoS₂ flakes on a straight and coiled waveguide structures.


(b) coiled waveguide structure. The coiled geometry enables a longer interaction length, resulting in improved carrier transport effects. Both structures demonstrate asymmetric current-voltage behavior under dark conditions.

S7: Gate voltage curve of MoS₂ flakes on a coiled waveguide structure.

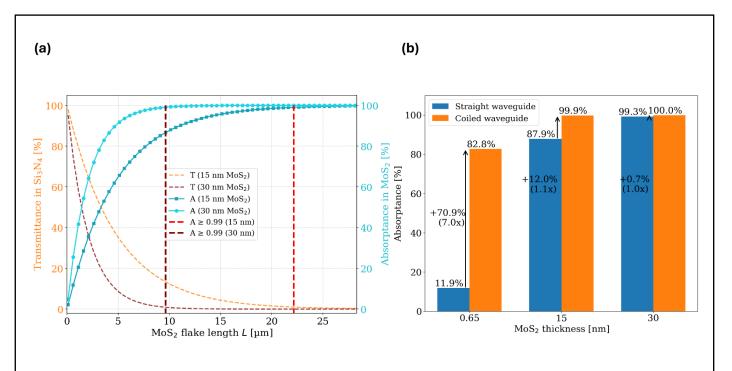

Figure S7: Gate-dependent source-drain current I_{sd} and resistance R_{sd} of the coiled MoS₂ photodetector.

Fig. S8: Simulated mode profile of a single layer MoS_2 film, transmittance, absorption and topview field evolution in a Si_3N_4 waveguide with an overlaid MoS_2 layer of varying interaction length.

Figure S8: (a) Simulated optical mode profile of a Si₃N₄ waveguide covered with a monolayer (0.65 nm) MoS₂ film, showing evanescent coupling into the 2D material. (b) Variation of transmittance and absorptance as the interaction length increases up to 400 nm, highlighting that a substantial length is required for significant absorption when using a single MoS₂ layer. (c) Top-view simulation illustrating the gradual attenuation of the optical mode along the waveguide due to interaction with the monolayer MoS₂. These results highlight the critical role of extending the light-matter interaction length, achievable through compact coiled waveguide designs, in boosting optical absorption and responsivity when utilizing atomically thin 2D materials.

Fig. S9: Simulated optical absorptance in MoS2 on a straight and coiled waveguides.

Figure S9. (a) Simulated transmittance and MoS₂ absorptance at 532 nm versus flake length for 15 nm and 30 nm films. (b) Total MoS₂ absorptance for straight and coiled waveguides at 0.65 nm, 15 nm and 30 nm thickness, highlighting the stronger absorption provided by the coiled geometry, especially for ultrathin MoS₂.

Fig. S10: Benchmark comparison of our waveguide-integrated coiled MoS_2 -based photodetectors with previous photodetectors made with similar 2D materials.

Device materials	Material thickness	Device architecture	Incident Wavelength [nm]	Vg / Vsd	Responsivity [A/W]	Reference
MoS ₂	30 nm	Waveguide-integrated	532	2 V	0.61	This work
MoS ₂	60 nm	Waveguide-integrated	1550	1 V	1.05	[1]
MoS2	Not specified	Non-waveguide-integrated	1550	2 V	34	[2]
MoS ₂ /Au	3 nm	Waveguide-integrated	1550	5 V	0.3	[3]
MoS2	0.65 nm	Non-waveguide-integrated	561	-70V/8V	0.88	[4]
MoS2	0.65 nm	Waveguide-integrated	647	0 V / 1 V	1000	[5]
TaSe2-MoS2-graphene	0.7 nm	Non-waveguide-integrated	532	0 V / 0.2 V	10	[6]
Graphene- MoS2	1 nm	Waveguide-integrated	532	30 V / 0 V	0.44	[7]
Graphene-MoS ₂ heterostructure	0.65 nm / 3 nm	Waveguide-integrated	520	1 V	10^7	[8]
MoS2-InSe	242 nm / 107 nm	Waveguide-integrated	532	-60V/2V	0.11	[9]
GQDs/InSe	Not specified	Non-waveguide-integrated	635	Not specified	27.48	[10]
MoTe2/graphene	Not specified	Non-waveguide-integrated	1310	Not specified	0.567	[11]
MoSe2-WS2	20 nm / 1 nm	Waveguide-integrated	780	0 V / 2 V	0.97	[12]
MoSe2-WS2	20 nm / 1 nm	Waveguide-integrated	780	0 V / 2 V	0.97	[13]
BP-MoTe2	13 nm/ 10.6 nm	Waveguide-integrated	1503	0 V / 0 V	0.27	[14]
MoTe2	60 nm	Waveguide-integrated	1550	0 V / -2 V	0.50	[15]
Graphene	0.37 nm	Waveguide-integrated	1550	3.2 V / -0.3 V	0.40	[16]
Black phosphorus	40 nm	Waveguide-integrated	2000	0 V / 0.4 V	0.31	[17]

References

- [1] F. Yang, Y. Hu, J. Ou, Q. Li, X. Xie, H. Han, C. Cai, S. Ruan, B. Xiang, *ACS Photonics*, DOI: 10.1021/acsphotonics.4c02618.
- [2] X. Liu, J. Zhu, Y. Shan, C. Liu, C. Pan, T. Zhang, C. Liu, T. Chen, J. Ling, J. Duan, F. Qiu, S. Rahman, H. Deng and N. Dai, *Advanced Science*, DOI:10.1002/advs.202408299.
- [3] C. Hong, S. Oh, V. K. Dat, S. Pak, S. N. Cha, K. H. Ko, G. M. Choi, T. Low, S. H. Oh and J. H. Kim, *Light Sci Appl*, DOI:10.1038/s41377-023-01308-x.
- [4] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nat Nanotechnol, 2013, 8, 497–501.
- [5] J. F. Gonzalez Marin, D. Unuchek, K. Watanabe, T. Taniguchi and A. Kis, NPJ 2D Mater Appl, DOI:10.1038/s41699-019-0096-4.
- [6] M. Mahajan, S. Kallatt, M. Dandu, N. Sharma, S. Gupta and K. Majumdar, Commun Phys, DOI:10.1038/s42005-019-0190-0.
- [7] Z. Wu, T. Zhang, Y. Chen, Y. Zhang and S. Yu, Physica Status Solidi Rapid Research Letters, 2019, 13.
- [8] W. Zhang, C. Chuu, J. Huang, C. Chen, M. Tsai, Y. Chang, C. Liang, Yu. Chen, Yu. Chueh, Jr. He, Mei. Chou, Lain, Li, *Scientific Reports*, DOI: 10.1038/srep03826.
- [9] X. Cui, M. Du, S. Das, H. H. Yoon, V. Y. Pelgrin, D. Li and Z. Sun, Nanoscale, DOI:10.1039/d2nr01042a.
- [10] S. R. Tamalampudi, J. E. Villegas, G. Dushaq, R. Sankar, B. Paredes and M. Rasras, Adv Photonics Res, DOI:10.1002/adpr.202300162.
- [11] C. Yang, Z. Liu, H. Cai, D. Li, Y. Yu, X. Zhang, ACS Photonics, DOI:10.1021/acsnano.4c14937.
- [12] R. Gherabli, S. R. K. C. Indukuri, R. Zektzer, C. Frydendahl and U. Levy, Light Sci Appl, DOI:10.1038/s41377-023-01088-4.
- [13] N. Flöry, P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold and L. Novotny, Nat Nanotechnol, 2020, 15, 118–124.
- [14] R. Tian, X. Gan, C. Li, X. Chen, S. Hu, L. Gu, D. Van Thourhout, A. Castellanos-Gomez, Z. Sun and J. Zhao, Light Sci Appl, DOI:10.1038/s41377-022-00784-x.
- [15] R. Maiti, C. Patil, M. A. S. R. Saadi, T. Xie, J. G. Azadani, B. Uluutku, R. Amin, A. F. Briggs, M. Miscuglio, D. Van Thourhout, S. D. Solares, T. Low, R. Agarwal, S. R. Bank and V. J. Sorger, Nat Photonics, 2020, 14, 578–584.
- [16] J. Guo, J. Li, C. Liu, Y. Yin, W. Wang, Z. Ni, Z. Fu, H. Yu, Y. Xu, Light Sci Appl, DOI:10.1038/s41377-020-0263-6.
- [17] Y. Yin, R. Cao, J. Guo, C. Liu, J. Li, X. Feng, H. Wang, W. Du, A. Qadir, H. Zhang, Y. Ma, S. Gao, Y. Xu, Y. Shi, L. Tong, D. Dai, Laser & Photonics Reviews, DOI: 10.1002/lpor.201900032.