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Experimental Sections

1. General material

All chemical reagents were used as received without any further purification.
Ruthenium trichloride (RuCls, 99%), potassium hydroxide (KOH, = 90%), Nafion
solution (5 wt.%), Pt/C (20 wt.%), Pluronic P123 tri-block copolymer (PEG-PPG-PEG,
molecular mass = 5800), 1-chloronaphthalene, hydrofluoric acid (HF, 98%), tetraethyl
orthosilicate (TEOS, CgH,,0S1, 98%), Sodium borohydride (NaBH,4, 99%), isopropyl
alcohol (IPA, (CH3),CHOH, = 99.7%) and hydrochloric acid (HCI, 36~38%), ethanol
(EtOH, CH5CH,0H, 99.7%) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. Fullerene (Cgp, 99.9%) was received from Beijing Funakang Biotechnology Co.,
Ltd. The hydrophilic carbon paper (CP) was purchased from CeTech Co., Ltd. The
anion exchange membrane (3PK-130) was obtained from Wuhan Gaoshi Ruilian
Technology Co., Ltd. Deionized water (DI, 18.25 MQ/cm) was produced from the
ultra-pure purification system (ULUPURE, UPDR-I-10T).

2. Synthesis of defective fullerene carbon fragment (FCF)

The mesoporous template of SBA-15 was synthesized according to the literature.!
Briefly, 2 g of P123 was first dissoved in 58 mL of 2 M HCI, TEOS was then slowly
added and heated at 40 °C for 12 h. The mixture was then transferred into a Teflon-
lined autoclave capped with a stainless steel vessel. After heating at 130 °C for 48 h,
the precipitate was collected, washed with DI water and dried at 100 °C for 6 h followed
by calcination at 540 °C. For the preparation of MFCg«, a modified approach was

employed.! First, a saturated solution of fullerene Cg, was prepared by dissolving 50
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mg of Cgp in 5 mL of 1-chloronaphthalene. The SBA-15 mesoporous material was then
impregnated with this solution for 48 h, allowing Cgy molecules to assemble within the
pores. The resulting solid product, Cs/SBA-15, was annealed at 900 °C for 5 h under
an argon atmosphere to enhance the interaction between Cgy and the SBA-15 matrix.
Finally, the template was removed by etching with hydrofluoric acid (HF), and the final
sample was designated as FCF.

3. Synthesis of Ru/FCF-600, Ru/FCF-500 and Ru/FCF-700.

The Ru/FCF-600 HER electrocatalyst was synthesized via a NaBH4 reduction
combined with solid-phase sintering method, with the detailed procedure as follows:
First, 43.5 mg of FCF was dispersed in a mixed solvent of ethanol (EtOH) and deionized
water (DI water) (v/v = 1:2). Subsequently, 13 mg of RuCl; was impregnated into the
above solution and vigorously stirred at 25 °C for 1 h to ensure thorough mixing. Next,
a freshly prepared NaBH. solution (1 mg mL!) was slowly added dropwise over 2 h
under continuous stirring at room temperature. After complete addition, the reaction
was allowed to proceed for an additional 2 h to ensure complete reduction. The resulting
product was then filtered and washed multiple times with DI water and ethanol to
remove impurities. The obtained solid was vacuum-dried at 60 °C for 12 h to yield the
Ru/FCF precursor. The black powder obtained was placed in a corundum porcelain boat
under the protection of Ar mixture in a tubular furnace, heated from room temperature
to 600 °C at a heating rate of 5 °C min™! , and kept for 2 h. After cooling to room
temperature, the black powder was collected and ground to obtain the target product

Ru/FCF-600 electrocatalyst. For comparison, under identical experimental conditions,
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Ru/FCF-500 and Ru/FCF-700 electrocatalysts were synthesized by adjusting the
calcination temperature to 500 °C and 700 °C, respectively, to investigate the influence
of temperature on the catalytic performance.

4. Materials Characterization.

The X-ray diffraction (XRD) was tested using Cu Ka radiation (A = 1.5406 A) on a
Rigaku D/max-2200PC diffractometer (Japan). The topography and structure of the
sample were analyzed using a scanning electron microscope (SEM, S4800). Raman
spectrum was recorded on a Renishaw-invia instrument. The transmission electron
microscopy (TEM) was carried out on a Themis Z/ORION704M scanning/transmission
electron microscope manipulated at 300 kV. X-ray photoelectron spectroscopy (XPS)
was obtained on a Thermo Kalpha X-ray photoelectron spectrometer with Al Ka as the
source gun. The electrochemical performance test was carried out on the CHI660E
workstation (Shanghai Chenhua).

5. Electrochemical measurement.

The electrocatalytic performance was carried out on a CHI660E electrochemical
workstation using a three-electrode system in 1 M KOH with glassy carbon electrode
(GCE, @ = 3 mm), graphitic rod and Hg/HgO as the working, counter and reference
electrode, respectively. Before all tests, the Hg/HgO reference electrode was calibrated
against the reversible hydrogen potential (RHE) in H,-saturated 1 M KOH with Pt plate
as the working electrode and Pt wire as the counter electrode. Thus, the potential can
be obtained by the equation of E(RHE) = E(Hg/HgO) + 0.926 (Figure S9). To prepare

the working electrode, 5 mg of catalyst was sonicated in 150 pL. of IPA containing 8
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uL of Nafion solution to form a homogeneous ink. Then, 2.4 puL of the suspension is
loaded onto the polished GCE at a loading of 1.076 mg cm2. The linear scanning
voltammetry (LSV) curve was recorded in a Nj-saturated 1 M KOH with a scan rate of
3 mV s, Tafel slope was obtained by plotting the LSV curve using the equation of n =
a + b log j, where n refers to the overpotential, b is the Tafel slope and a denotes the
intercept. The electrochemical impedance spectroscopy (EIS) were performed under
open circuit potentials for all materials and the frequency range from 0.1 Hz to 100 kHz
with an amplitude of 5 mV were used to carry out the experiment. For the specific
double-layer capacitor (Cg) data, cyclic voltammetry (CV) curves were recorded in the
non-Faradic region with scanning rate of 2, 4, 6, 8, 10 and 12 mV s!, and the Cy (mA
cm2) can be obtained by plotting the current difference (Aj) against the scanning rate.
The electrochemical active surface area (ECSA) was estimated by the following
equation of ECSA=Cdl / C, x S, where Cs (uF cm) represents the specific capacitance
on the electrode surface and S (cm?) is the actual area of the working electrode.
Generally, Cy is in the range of 20-60 puF cm, herein the averaged Cs value of 40 pF
cm? was used according the literature.

The Faradic efficiency of gas evolution was carried out using the water drainage

method:

NF mnkF

N e

Where Ny is the actual charge consumed, N7 is the total charge flowing through the
external circuit, m is the number of moles of hydrogen, 7 is the electron transferred by

the reaction, F is Faraday's constant 96485 C mol-!, and I and t are the current and
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reaction time, respectively.

Anion exchange membrane water electrolysis (AEMWE) measurement :

Prior to the fabrication of the anion-exchange membrane water electrolyzer (AEMWE)
system, the anion exchange membrane (AEM) was pretreated by soaking in 1.0 M KOH
solution for 24 hours. The catalyst slurries prepared with Ru/FCF-600 and IrO, were
used as the active materials for the cathode and anode, respectively. Employing the
catalyst-coated substrate method, 3 mg of the cathode catalyst and 3 mg of the anode
catalyst were separately deposited on carbon cloth with a gas diffusion layer (GDL),
each with an area of 1x1 cm?. Subsequently, the AEMWE system was filled with 1.0
M KOH electrolyte, and the flow rate was controlled at 40 mL/min using a peristaltic
pump. Thereafter, the performance of the AEMWE was evaluated using a Koster
electrochemical workstation (CS310M) equipped with an electrocatalytic cell. The
long-term stability of the device was tested via chronopotentiometry.

Calculation of the turnover frequency (TOF):

The turnover of frequency (TOF) was evaluated by CO-stripping measurement. Firstly,
the prepared catalysts were tested in the Nj-saturated 1.0 M KOH solution, and CV
curves from 0.05 to 1.00 V vs. RHE were measured at a scan rate of 10 mV s
Secondly, a reduction potential (0.05 V vs. RHE) was applied to the working electrode
while passing CO for 15 min, followed by N, for 15 min to drive the escape of excess
CO out of the electrolyte. Then, re-running the CV test as described above, a distinct
oxidation peak of CO can be observed at 0.6-0.8 V vs. RHE. Ultimately, the number of

exposed active sites in the catalyst is determined by integrating the area of this oxidation
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peak.

The TOF (s™') for HER can be obtained by the following equation:

Where I is the current (A) during the linear scaning process, N, is Avogadro number,
the factor 2 refers to two electrons required to produce one hydrogen molecule. F is the
Faraday constant (96485 C mol '), and I is the number of exposed active sites.

I' can be quantified by the CO stripping method and calculated from the following

equation:
r Aunder CO peak
2Xexv

where Anger co peak 18 the area of the CO oxidation peak, e is the charge of an electron,

and V is the scan rate through the CV scans.
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Additional Figures and Tables

Figure S1. SEM image of a) C4(/SBA-15, b) FCF, c¢) Ru/FCF, d) Ru/FCF-600.
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Figure S2. TEM images of a) SBA-15 and b) FCF.
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Figure S3. TEM images of the Ru/FCF-600.
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Figure S4. Structural and morphological characterization of Ru/FCF-500. a) HRTEM

image, b) SAED pattern, c) Corresponding elemental mapping images of C (green) and

Ru (red).
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Figure S5. Structural and morphological characterization of Ru/FCF-700. a) HRTEM

image, b) SAED pattern, c¢) Corresponding elemental mapping images of C (green) and

Ru (red).
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Figure S6. a) XPS survey spectra of Ru/FCF-500 and Ru/FCF-700. b) C 1s, c) Ru 3p
spectra of Ru/FCF-500 and Ru/FCF-700. d) O 1s spectra of Ru/FCF-500, Ru/FCF-600,

Ru/FCF-700, and commercial Ru/C.
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Figure S7. XRD patterns of Ru-RuO,/FCF-600 and Ru/CNT-600.
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Figure S8. a) XPS survey spectra of Ru-RuO,/FCF-600 and Ru/CNT-600. b) C 1s, ¢)
Ru 3p spectra of Ru-RuO,/FCF-600 and Ru/CNT-600. d) O 1s spectra of Ru-
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Figure S9. CV curve for calibration of Hg/HgO reference electrode in 1 M KOH.

Prior to all measurements, the reference electrode (Hg/HgO in alkaline medium) was
calibrated against a reversible hydrogen electrode (RHE) in H:-saturated electrolyte
using a standard three-electrode system, with a Pt plate as the working electrode and a
Pt wire as the counter electrode. The measured potentials were then converted to the
RHE scale according to the following equation:

E(RHE) = E(Hg/HgO) + 0.926(1 M KOH)
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Figure S10. LSV curves of Ru-RuO2/FCF-600 and Ru/CNT-600.
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Figure S11. Nyquist plots of Ru/FCF-500, Ru/FCF-600, Ru/FCF-700, 20% Pt/C and

commercial Ru/C of HER in 1.0 M KOH.
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Figure S13. XPS spectra of Ru/FCF-600 after HER measurement. a) XPS survey

spectrum, b) C 1s, ¢) Ru 3p, d) O 1s.

The fluorine (F) element signal detected in XPS survey spectrum S9a after the

stability test is presumably attributed to the perfluorosulfonic acid polymer (Nafion

binder) employed in the preparation of the working electrode, featuring a molecular

structure rich in fluorine atoms.
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Figure S14. Structural and morphological characterization of Ru/FCF-600 after

stability testing in 1 M KOH. a) TEM image, b) HRTEM image, c) SAED pattern, d)

Corresponding elemental mapping images of C (green) and Ru (red).
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Figure S15. a-d) Background cycles (blue curves) and subsequent CO-stripping cycles

(red curves) for Ru/FCF-500, Ru/FCF-600, Ru/FCF-700, and commercial Ru/C,

respectively. The corresponding stripping charges, indicated by the red shaded areas,

are obtained from the integrated peak areas.
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Table S1. HER performance of the Ru/FCF-600 electrocatalyst in 1 M KOH.

Tafel slope (mV
Sample N0 (mV) ECSA (cm?) R ()
dec)
Ru/FCF-500 58 137.60 94.03 21.02
Ru/FCF-600 23 37.80 139.35 5.59
Ru/FCF-700 62 70.70 80.58 21.96
20% Pt/C 57 85.60 -- 61.65
Ru/C 77 73.72 40.01 22.02
Ru-RuO,/FCF- 46
600
Ru/CNT-600 61 = - -
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Table S2. Comparison of TOFs of the Ru/FCF-600 under alkaline conditions with other

reported HER catalysts.
No. Catalyst
1 Ru/FCF-600
2 20% Pt/C
3 Ru/Cyp-300
4 RuNi/CQDs
5 Runps-RuCrp-N-
C
6 Ru/Ni;V-LDH
7 Ru@Mn;0,
8 Ruy 4-ZnFe,0,-C
9 Ru/O-CNT
10 c-PRP DWNT/C
11 Ru/NDC-4
12 Rugane/NiO-NF
13 RuP/C
14 Ru/p-NC
15  Ru-FeP-CoP/NPC
o

Overpotential

™

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.05

0.05

0.05

0.05

0.05

0.02

0.025

0.15

0.20
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TOF per
active site
(Hys™)

21.42

7.62

10.50

5.03

13.15

3.49

8.50

10.30

2.96

6.55

13.4

1.91

3.50

8.90

13.22

18.20
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Table S3. Summary of the recently reported Ru-based HER catalyst in 1 M KOH.

No.
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15
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Table S4.

No.

10

11

12

13

14

15

16

17

18

19

20

Catalyst

Ru@V-Ru0O,/C
HMS

RuO,-300Ar

Ru-MoO; NF ||
FG304-NiFe LDH
NF

Ru/FCF-600 || IrO,

Ru-NiFeP/NF

Ru-MnFeP

CoRu/C

M2Ru1 H MzRU]O

RuCo@CDs

Ru/Co-N-C-800 °C

Ru/RuS,-2

NiFeRu-LDH

Pt/C/NF ||
RuO,/NF

20% P/C || IrO,

Ru/RuO,-
MoO,(RRMC-500)
Rupnp-Russ@CFN-
800 || IrO,

RU/RU,OQ/NC| ‘RUOQ

RuNi nanoplates

Ru-
FeRu@C/NC|Ru-
FeRu@C/NC

Ru@N-graphene

E;p (mV)

1.437

1.45

1.46

1.47

1.47

1.47

1.49

1.49

1.50

1.50

1.501

1.52

1.53

1.54

1.54

1.54

1.58

1.58

1.63

1.65
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Table S5. The comparison of AEMWE performance for Ru/FCF-600 with other

Cathodic

catalysts

Ru/FCF-600

NS-Ru

MOOz@Ru

MnRu/ C60-3

Ru1 -M02C

Pt@S-NiFe
LDH

20% Pt/C

CeOz-Ru

aerogel

reported electrocatalysts in alkaline solution.

Anodic

catalysts
II'02

Commercial
II'02

NiFe-LDH/NF

NiFeLDH

NiFe-LDH/NF

S-NiFe LDH

II‘OZ

NiFe-LDH/NF

Activity

1.65V@ 1A cm?

1.70V@ 1A cm?2

1.78V@ 1A cm??

1.79V@ 1A cm

1.83V@ 1A cm?

1.90V@ 1A cm??

1.91@ 1A cm?

1.99V@ 1A cm?
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