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Table S1. The four reaction paths of NBRR and the elementary reactions corresponding

to each reaction path (*: Active site).

Pathway Elementary reaction

PhNO, — *PhNO, — *PhNOOH — *PhNO —*PhNOH — *PhN — *PhNH
— *PhNH, — PhNH,
PhNO, + * — *PhNO,
*PhNO, + *H + e- — *PhNOOH
*PhNOOH + *H + ¢~ — *PhNO + H,0
Pathway 1
*PhNO + *H + e — *PhNOH
*PhNOH + *H + e~ — *PhN + H,0
*PhN + *H + e — *PhNH

*PhNH+ *H + e — *PhNH,

*PhNH, — PhNH, + *

PhNO, — *PhNO, — *PhNOOH — *PhNO —*PhNOH — *PhNHOH —
Pathway 2 *PhNH — *PhNH, — PhNH,
PhNO, + * — *PhNO,
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*PhNO, + *H + e — *PhNOOH
*PhNOOH + *H + & — *PhNO + H,0
*PhNO + *H + e~ — *PhNOH
*PhNOH + *H + e — *PhNHOH
*PhNHOH + *H + ¢- — *PhNH + H,0
*PhNH+ *H + e~ — *PhNH,

*PhNH, — PhNH, + *

PhNO, — *PhNO, — *PhNOOH — *PhN(OH), — *PhNOH — *PhNHOH
— *PhNH — *PhNH, — PhNH,
PhNO; + * — *PhNO,
*PhNO, + *H + e- — *PhNOOH
*PhNOOH + *H + ¢ — *PhN(OH),
Pathway 3
*PhN(OH), + *H + e- — *PhNOH + H,0O
*PhNOH + *H + e- — *PhNHOH
*PhNHOH + *H + ¢~ — *PhNH + H,0

*PhNH+ *H + ¢ — *PhNH,

*PhNH, — PhNH, + *

PhNO, — *PhNO,; — *PhNOOH — *PhN(OH), — *PhNOH — *PhN —
*PhNH — *PhNH, — PhNH,
PhNO, + * — *PhNO,
*PhNO, + *H + e~ — *PhNOOH
*PhNOOH + *H + ¢- — *PhN(OH),
Pathway 4
*PhN(OH), + *H + e — *PhNOH + H,0
*PhNOH + *H + e~ — *PhN + H,0
*PhN + *H + e — *PhNH

*PhNH+ *H + e-— *PhNH,

*PhNH, — PhNH, + *

Table S2. The lattice parameters of optimized crystal structures of 14 TMN4-G
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monolayers.

MN,-G

Crystal structure

Lattice constant

CON4-G

a=9.84
b=9.84
c=20.00

CuN4-G

a=9.80
b=9.80
c=19.93

NiNys-G

a=9.84
b=9.84
c=20.00

FeN4-G

a=9.85
b=9.85
¢=20.03

PdN4-G

a=9.94
b=9.94
c=20.20

AUN4-G

a=9.85
b=9.85
c=20.21




AgN4-G

a=9.98
b=9.98
c=20.28

CdN4-G

a=9.97
b=9.97
¢=20.26

II‘N4-G

a=9.93
b=9.93
c=20.19

MON4-G

a=9.93
b=9.93
c=20.19

RhN4-G

a=9.93
b=9.93
c=20.18

MIIN4-G

a=9.88
b=9.88
c=20.07

ZIIN4-G

a=9.76
b=9.76
c=19.84




a=9.90
b=19.90
c=20.12

CI'N4-G




Table S3. The dyi.N, dn.o1, Ax.02, duor, and Ey (side on), E,4, (end on) of 10 SACs.

™ dun (A) | dror (A) | dvoa(B) | dvor (A) | Eaalside on) | Egqend on)
PhNO, / 1.237 1.237 / / /
Co 1.89 1.266 1.241 2.51 -0.94 -0.34
Cu 1.92 1.246 1.240 2.85 -1.08 -0.84
Ni 1.89 1.243 1.24 2.83 -0.95 -0.26
Fe 1.90 1.274 1.241 2.25 -1.08 -0.27
Pd 1.98 1.243 1.240 2.81 -0.94 -0.20
Ir 1.97 1.241 1.239 3.01 -0.95 -0.41
Mo 2.05 1.378 1.248 1.96 -1.82 -1.23
Rh 1.97 1.258 1.254 2.37 -0.93 -0.74
Mn 1.93 1.285 1.243 2.23 -1.23 -0.84
Cr 1.96 1.317 1.247 2.04 -1.52 -0.78
Au 2.01 / / / / /
Ag 2.03 / / / / /
Cd 2.21 / / / / /
Zn 1.94 / / / / /




Table S4. £}, E; and Uy, of TMNy4-G,and the adsorption energy of PhNO, on the

catalyst.

™ E, Ef Ne U d?ss (V) Ujiss rate-determining step
Co -7.80 -3.87 2 -0.28 1.66 *PhNO, — *PhNOOH
Cu -5.74 -1.82 2 0.34 1.25 *PhNO, — *PhNOOH
Ni -7.66 -3.74 2 -0.26 1.61 *PhNO, — *PhNOOH
Fe -7.14 -3.22 2 -0.45 1.16 *PhNO, — *PhNOOH
Pd -5.54 -1.62 2 0.95 1.76 *PhNO, — *PhNOOH
Ir -7.79 -3.86 1 1.16 5.02 *PhNO, — *PhNOOH

Mo -1.79 -3.87 3 -0.2 1.09 *PhNH —*PhNH,
Rh -6.98 -3.06 2 0.6 2.13 *PhNO, — *PhNOOH

Mn -6.65 -2.73 2 -1.19 0.18 *PhNO, — *PhNOOH
Cr -71.67 -3.75 2 -0.91 0.97 *PhNO, — *PhNOOH
Au -2.53 1.40 3 1.5 1.03 /

Ag -2.22 1.70 1 0.8 -0.90 /

Cd -1.54 2.38 2 -0.4 -1.59 /

Zn -3.79 0.13 2 -0.76 -0.82 /




Table S5. Free energy for the intermediates.

Interm *PhN *PhN( | *PhN
odiates *PhNO, OOH *PhNO | *PhNOH | *PhN | *PhNH | *PhNH, OH), | HOH
Co -1.04 -0.78 -2.25 -2.29 -291 | -4.20 -5.02 -0.74 | -2.85
Cu -1.22 -0.58 -1.96 -1.88 -2.25 | -3.71 -4.96 -0.80 | -2.76
Ni -1.07 -0.57 -1.80 -1.97 -2.07 | -3.57 -4.86 -0.71 | -2.66
Fe -1.19 -0.91 -2.59 -2.50 -3.31 | -440 -5.07 -0.72 | -2.83
Pd -1.07 -0.49 -1.76 -1.84 -1.88 | -3.31 -4.87 -0.70 | -2.67
Ir -1.11 -0.67 -2.36 -2.51 -3.17 | 433 -5.00 -0.65 | -2.85
Mo -1.99 -3.14 -5.07 -4.49 -6.76 | -6.56 -5.75 -4.68 | -3.75
Rh -1.01 -0.72 -2.19 -2.45 -3.01 | -4.30 -4.85 -0.72 | -2.64
Mn -1.31 -0.73 -2.42 -2.53 -3.63 | -4.55 -5.15 -1.06 | -2.98
Cr -1.60 -1.29 -2.87 -3.04 -4.37 | -5.06 -5.22 -1.15 | -3.01




Table S6. U;, 4G, of 10 catalysts and 4G of HER.

catalysts Uy AG ax AG(HER)

Co -0.26 0.26 0.38
Cu -0.64 0.64 1.67
Ni -0.5 0.5 1.42
Fe -0.28 0.28 0.43
Pd -0.58 0.58 1.52
Ir -0.45 0.45 -0.46
Mo -0.81 0.81 -0.42
Rh -0.29 0.29 -0.24
Mn -0.58 0.58 0.56
Cr -0.31 0.31 0.46




Table S7. hyi-m2, dvivz, and corresponding lattice parameters of 10 DACs.

hcom | deom | deo- dco- dco- dvnt | due dwm-
il IV N S S S O B B Bl
Co-Al | 0.00 | 235 | 1.88 | 1.98 | 1.94 | 1.93 | 1.93 | 1.96 | 14.80 | 14.80 | 20.06
Co-Ga | 0.05 | 2.65 | 1.94 | 2.00 | 1.91 | 2.15 | 2.17 | 2.45 | 14.70 | 14.70 | 19.92
Co-Ge | 0.05 | 2.52 | 1.92 | 2.00 | 1.91 | 2.09 | 2.13 | 2.35 | 14.71 | 14.71 | 19.93
Co-In | 0.09 | 2.80 | 1.99 | 1.99 | 191 | 2.51 | 255 | 2.73 | 14.86 | 14.86 | 20.13
Co-Sn | 0.07 | 274 | 196 | 197 | 191 | 2.31 | 238 | 2.43 | 14.80 | 14.80 | 20.06
Co-Sb | 0.06 | 2.56 | 191 1.95 | 1.92 | 2.27 | 2.36 | 2.27 | 14.81 | 14.81 | 20.07
Co-Tl | 0.10 | 2.81 | 1.98 | 1.90 | 1.83 | 2.60 | 2.70 | 2.73 | 14.77 | 14.77 | 20.01
Co-Pb | 0.08 | 2.79 | 1.96 | 1.96 | 1.90 | 2.43 | 2.54 | 2.53 | 14.80 | 14.80 | 20.06
Co-Bi | 0.07 | 253 | 1.92 | 195 | 191 | 235 | 240 | 2.36 | 14.81 | 14.81 | 20.07
Co-Co | 0.00 | 234 | 193 | 196 | 1.87 | 1.87 | 1.96 | 1.93 | 14.77 | 14.77 | 20.00




Table S8. Epr, Escon, Ease-Eacor, Eforms Uaiss 0f 10 DACs.

Catalysts | Eupe | Eacon | Ease- Eacon | Eprm (€V) | Ne Ugies V) | Uliss
Co-Al -7.46 -5.05 -2.41 -4.62 3 -0.24 1.61
Co-Ga -6.59 -3.90 -2.70 -3.75 3 0.32 1.81
Co-Ge -6.11 -4.55 -1.55 -3.26 2 0.71 2.34
Co-In -7.08 -4.13 -2.95 -4.23 3 0.42 2.11
Co-Sn -7.19 -4.44 -2.75 -4.34 2 0.52 2.69
Co-Sb -5.25 -4.35 -0.90 -2.40 3 0.71 1.67
Co-Tl -6.88 -3.93 -2.95 -4.03 2 -0.23 1.79
Co-Pb -7.12 -4.35 -2.77 -4.27 2 0.69 2.83
Co-Bi -5.88 -4.37 -1.51 -3.03 1 0.84 2.86
Co-Co -6.32 -5.62 -0.70 -3.47 2 1.18 2.92




Table S9. The change of N-O bond and the adsorption energy of parallel adsorption

and vertical adsorption when PhNO, is adsorbed on DAC:s.

/ dnool dn.on E 4 (side on) E 4 (end on)
NB 1.237 1.237 / /
Co-Al 1.382 1.297 -1.88 -1.50
Co-Ga 1.349 1.325 -1.05 -0.94
Co-Ge 1.273 1.246 -1.09 -0.67
Co-In 1.276 1.314 -1.28 -1.05
Co-Sn 1.259 1.272 -1.32 -1.23
Co-Sb 1.268 1.275 -1.08 -0.77
Co-Tl 1.274 1.319 -1.27 -0.96
Co-Pb 1.259 1.256 -1.23 -1.00
Co-Bi 1.288 1.272 -1.01 -0.84
Co-Co 1.291 1.286 -1.44 -1.11




Table S10. The Gibbs free energy 4G,,..(NBRR), U, (NBRR) of 10 DACs NBRR PDS
and the Gibbs free energy AG(HER) and U, (HER) of hydrogen evolution reaction.

AGpe NBRR) | 4G (HER) | U, (NBRR) U, (HER)
Co-Al 0.57 -0.55 -0.57 0.55
Co-Ga 0.48 -0.05 -0.48 0.05
Co-Ge 0.3 0.44 0.3 -0.44
Co-In 0.21 0.37 -0.21 -0.37
Co-Sn 0.32 0.38 -0.32 -0.38
Co-Sb 0.3 0.35 0.3 -0.35
Co-TI 0.26 0.34 -0.26 -0.34
Co-Pb 0.44 0.35 -0.44 -0.35
Co-Bi 0.18 0.38 -0.18 -0.38
Co-Co 0.46 -0.28 -0.46 0.28




Table S11. Four reaction pathways for the reduction of -NO, in p-CIC¢H4NO, over Co-
Bi-NV,4-G DAC and the elementary reactions corresponding to each reaction pathway

were proposed (*: Active site).

Pathway Elementary reaction

C1C6H4N02 — C1C6H4N02* — C1C6H4NOOH* — C1C6H4NO* — ClC6H4NC)H>!< —
CIC¢H4N* — CIC¢H4NH* — CIC¢H4NH,* — CICsH4NH,
C1C6H4N02 +* - *C1C6H4N02
*CICsH4NO, + *H + e — *CICqH4NOOH
*C1C6H4NOOH +*H+e — *C1C6H4NO + HzO
Pathway 1
*CICsH4NO + *H + e« — *CIC4HsNOH
*CIC6H4NOH +*H+e — *C1C6H4N + HzO
*CICsH4N + *H + e — *CICcH4NH
*C1C6H4NH+ *H+e — *C1C6H4NH2

*CIC¢H4NH, — CIC(H4NH, + *

CIC¢H4NO, — *CIC¢H4NO,; — *CIC¢H4NOOH — *CIC¢H4NO — *CICcH4NOH —
*CIC¢H4NHOH — *CIC¢H4NH — *CIC¢H4NH, — CICcH4,NH,
*CICeH4NO, + * — *CICcH4NO,
*CIC¢H4sNO, + *H + e — *CICcH4NOOH
*CIC¢H4sNOOH + *H + e — *CIC¢H4NO + H,O
Pathway 2
*CIC¢H4NO + *H + - — *CICcH4NOH
*CIC¢H4NOH + *H + e- — *CICcH4NHOH
*CIC¢H,;NHOH + *H + ¢ — *CIC¢H,NH + H,O
*CICgH4,NH+ *H + ¢ — *CIC¢H4,NH,

*CIC¢H4NH, — CIC(H4NH, + *

CIC¢H4NO, — *CIC¢H4NO, — *CIC¢H,NOOH — *CICcH4N(OH), —
*CIC¢HsNOH — *CIC¢H,NHOH — *CIC¢HsNH — *CICsH4NH, — CICsH4NH,
Pathway 3 CICcH4NO,; + * — *CIC4H4NO,
*CIC¢H4NO, + *H + e- — *CICcH,NOOH

*CICsH,NOOH + *H + e~ — *CICH,N(OH),
14



*CIC¢H4N(OH); + *H + e~ — *CIC¢H4sNOH + H,O
*CICcH4NOH + *H + e — *CICcH4NHOH
*CIC¢H4sNHOH + *H + e — *CIC¢H4NH + H,O
*CIC¢H4NH+ *H + e — *CIC¢H4NH,

*C1C6H4NH2 — C1C6H4NH2 + ¥

C1C6H4N02 — *C1C6H4N02 — >kCIC6H4NOOH — *C1C6H4N(OH)2 —
Pathway 4
*C1C6H4NOH — *C1C6H4N — *C1C6H4NH — *C1C6H4NH2 — C1C6H4NH2
C1C6H4N02 +* - *C1C6H4N02
*C1C6H4N02 +*H+e — *C1C6H4NOOH
*CICgH,NOOH + *H + e~ — *CICgH,N(OH),
*CICgHsN(OH), + *H + e — *CIC¢H,NOH + H,0
*CIC¢H4NOH + *H + e~ — *CIC¢H4N + H,O
*CIC¢H4N + *H + e- — *CICcH4NH
*CIC¢H4NH+ *H + e — *CIC¢H4NH,

*C1C6H4NH2 — C1C6H4NH2 + *




Table S12. The reaction pathway of —Cl reduction in p-CIC¢H4NO, over Co-Bi-

N¢V4-G DAC and the corresponding elementary reactions (*: Active site).

Elementary reaction

Pathway
CICcH4NO, — *CICcH4NO, — *HCICcH4NO, — *CcH4NO,
— *C¢HsNO, — C4¢HsNO,
CIC¢H4NO, + * — *CICsH4NO,
Pathway *CIC¢H4NO, + *H + e- — *HCICcH4NO,

*HC1C6H4N02 — *C6H4N02 + HCI
*C(,H4N02 +*H+e — *C(,H5NOZ

*C6H5N02 — C6H5N02 + ¥




e o

Fig. S1 (a) Vertical monodentate adsorption of PhNO, on TM-N4-G. (b) Vertical bidentate

adsorption of PANO, on TM-N4-G. (¢) Parallel monodentate adsorption of PhANO, on TM-N,4-G. (d)

Parallel bidentate adsorption of PANO, on TM-Ny4-G.
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Fig. S2 The free energy diagrams of four reaction paths of Cu-N4-G, Ni-N4-G, Fe-N4-G SAC were

obtained.



Free energy (eV) &

Free energy (eV) &

Free energy (eV) ©

0 o, Pd-N,-G
S *PhNOOH i
it = *PhN(O
107" «phNO, e R ( H?z
N ' 0.58
-4
-6 i : i
0 10 20 30 40 50
Reaction coordinate
0 PhNOZE ; : iIr—N‘,-G
*PhNOOH: “PhN(OH |
A1t M
T 0.02 T—
186
22 p—
"Ph\O I] 14’MH 0 iiPh\HDH
-4
-6 : i
0 10 20 30 40 50
Reaction coordinate
0 _IPhNOi: fMo-N4-G
-1;95; = 3
22 - '«*Ph\'Oi‘ ‘
-141'% *Ph\OOH “ i
. 155 ; *PhNHOH
-4 1 1. 394 *Ph\(OH),O 19 ‘ -
— _::57';'8*%.\:0_ ______
p *Ph.\'05 -~
R e : ............ \ ...... *PhNo‘zo*PhI\'H
_8 : : . |
0 10 20 30 40 50

Reaction coordinate
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SAC were plotted.
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(a) The free energy diagrams of *PhNO — *PhNOH and *PhNO — *PhNHO elementary reactions.
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Fig.S11 (a) The free energy diagram of the —NO, reduction pathway in p-CICcH4NO, and the
optimal intermediate configuration on Co-Bi-N¢V4-G DAC. (b) The free energy diagram of the —Cl
reduction pathway in p-CIC4H4NO, and the optimal intermediate configuration on Co-Bi-NgV4-G

DAC. (¢) 4G,y and Uy, of the —NO,; reduction pathway and the —CI reduction pathway.

Halogenated anilines and their derivatives, as key organic intermediates in the
large-scale production of drugs and fine chemicals, are usually prepared via the
reduction reaction of the corresponding halogenated nitrobenzene [1]. Designing
catalysts that can inhibit the hydrogenolysis of carbon—halogen bonds to improve
selectivity is the core challenge of this type of reaction. Therefore, herein, p-
CICcH4NO, was used as the catalytic substrate, and the Co-Bi-NgV4-G DAC was
selected as the representative catalyst. By calculating different reaction paths, the
selective reduction mechanism on the Co-Bi-N¢V4,-G DAC was explored. The
reduction path of —NO, in p-CIC¢H4NO; is similar to that of PANO,, which involves
six PCET steps. The total reaction is as follows: p-CICgH4NO, + 6H" +6¢~ — p-

CIC¢H4NH; + 2H,0. The reduction path of —CI contains two PCET steps, and the total
27



reaction is as follows: p-CICcH4;NO, + 2H" +2e~ — C4HsNO, + HCI (Table S11, Table
S12). The path for the reduction of —NO, in p-CIC¢H4NO; on the Co-Bi-N¢V,4-G DAC
and the optimal intermediate configuration are shown in Fig. S11a. The results show
that the optimal reaction path is Pathway 1. The specific process is as follows: p-
CICcH4NO, — p-CIC¢gH4NO,* — p-CICcHyNOOH* —  p-CICGH4NO* —  p-
CIC¢H4NOH* — p-CICcH4N* — p-CICcH4NH* —p-CIC¢H4NH,* — p-CICcH4NH,,
where the PDS is p-CICcH4NO,* — p-CIC¢H4NOOH*. The path for the reduction of
—Cl in p-CIC¢H4NO, on the Co-Bi-NgV,4;-G DAC and the optimal intermediate
configuration are shown in Fig. S11b, where the PDS is *HCICcH4NO, — *C¢H4NO,.
Further comparisons show that the 4G,,,, of the -NO, and —Cl reduction paths are 0.55
eV and 1.33 eV, respectively, and the corresponding U, are — 0.55 V and — 1.33 V,
respectively (Fig. S11c). These results show that the —NO, of p-CIC4H4NO, can be
preferentially reduced on the Co-Bi-N¢V4-G DAC. Hence, the Co-Bi-NgV4-G DAC

exhibits excellent catalytic activity and selectivity for the reduction of p-CICsH4NO,.
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Fig. S16 The Mulliken charge transfer of Co-Bi-NsV4-G DAC.
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