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I.  Models for calculating edge formation energies

To determine the most stable configurations, we systematically calculated the
formation energies of various MoS: edges. Unlike graphene, MoS: possesses two
distinct zigzag (ZZ) edge types, making it impossible to obtain both S edge and Mo
edge formation energies using solely ZZ-oriented nanoribbons. Therefore, we
developed an approach combining triangular clusters (with single ZZ edge type) and

nanoribbon structures.

1. In vacuum:

1.1 Two sized triangular clusters with pristine Mo edges were constructed (Figure S1):

Ey—E; = AN by, — ANSI“S#(l)
3(1,- 1)

EMo edge =

where E./E: are total energies, 4N,;,/ANs denote atom number differences, p /i, are

. . . . €Mos €Mos., .
chemical potentials, which satisfy 2u,tuy, = 2, where 2 is the energy of a

MoS; pair in a MoS, monolayer sheet, and /;/l: are side lengths.

lf\-
Yy
Y Yy
Y'Yy N
Y'Y Yy Yy
rYYY Y Yy Yy
rYYYyYyys Y
Y YYYYYY'y Y'Yy
Y'Y YyYyyYyvyyyy Yy
r Y vYvyYyYvYvyvyyYyys YV Y Y
B e LAttt

Figure S1. Two optimized triangular MoS, domains with only raw Mo edge.



1.2 Nanoribbons containing pristine ZZ-Mo edge and ZZ-S edges were built (such as

Figure S2) to calculate the formation energy of reconstructed ZZ-S edges:

EO - ANMol’tMo - ANSHS - EMo edgexLﬂ
ESedge = I "(2)

where E| is nanoribbon energy, L is the length of nanoribbons, and Ej cqge 1s formation

energy of ZZ-Mo edge.
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Figure S2. The optimized nanoribbon with pristine ZZ-Mo edge on one side and

pristine ZZ-S edge on the other side.

1.3 For armchair (AC) edges, symmetric nanoribbons were used directly (Figure S3)
to calculate the edge formation energy. The other reconstructed AC edges were

calculated based on nanoribbons with one pristine AC edge.

Figure S3. The optimized nanoribbon with pristine AC edge one two sides.
2. On Au (111) surface:
2.1 Since pristine Mo edges are unstable (Mo atom would extract Au atoms on the

surface, Figure S9), Mo-III triangular clusters were built to calculate the formation



energy with considering vdW interactions (Figure S4):

Ei—E; - AE gy — AN yoliyo — AN gl

E = #(3
Mo - III on Au 30,-1) 3)

where E; and E: are the total energies of the two triangular clusters on Au (111) surface,
AE, 4, denotes the energy difference in the vdW interaction between the two triangular

clusters with Au (111) surface.

Figure S4. Two optimized triangular MoS, domains on Au (111) surface with only Mo-

11T edge.

The vdW interaction can be calculated (Figure S5):

E dw = (Etotal - EAu - EMoSZ)/N#(4)

where N represents the number of MoS: units (one unit is equal to 1Mo+2S)

incorporated in the MoS; monolayer sheet in Figure S5.
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Figure SS5. Periodic computational model for calculating vdW interactions.

2.2 Nanoribbons with ZZ-Mo edge and ZZ-S edges were used to calculate the



formation energy of ZZ-S edges on Au (111) surface (Figure S6):

Etotar = Eau = AN yolipgo = ANgtig = E gy XN = Eygo 111 on au™

L
ES edge on Au = L #(5)

Figure S6. The optimized nanoribbon on Au (111) surface with Mo-III edge on one

side and pristine ZZ-S edge on the other side.

2.3 For AC edges, similarly, symmetric nanoribbons were used directly (Figure S7)

to calculate the edge formation energy.

Figure S7. The optimized nanoribbon on Au (111) surface with pristine AC edge on

two sides.

3. All edge structures are shown below in Figures S8-S14.
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Figure S9. Optimized ZZ-Mo edges on Au (111) surface. Front and sides views are

given.
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Figure S11. Optimized ZZ-S edges on Au (111) surface. Front and sides views are

given.
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Figure S13. Optimized AC edges on Au (111) surface. Front and sides views are

given.

4. The stability of Au-passivated edges.



Considering the strong interaction between Au and Mo atoms, the exposed Mo atoms
at the edges are expected to be passivated by Au atoms from the Au(111) substrate.
Accordingly, we examined the stability of Au-passivated edges for both ZZ-Mo edge
(Mo-t edge) and AC edge (AC-t), as shown in Fig. S14. Although the results indicate
that Au-passivated Mo edge is energetically favorable under Mo-rich conditions, it does
not exhibit energetic advantages in S-rich environment. Since the CVD growth of MoS:
for morphology control is generally conducted in S-rich conditions, Au-passivated edge

structures are not considered in the subsequent calculations.
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Figure S14. Thermodynamic exploration on the morphology of MoS; on the Au(111)
surface. (a-b) Formation energies of various ZZ-Mo edges as a function of g and ZZ-

Mo edge passivated by Au atoms (Mo-t edge) on Au(111) surface. (c-d) Formation



energies of various AC edges as a function of xs and AC edge passivated by Au atoms

(AC-t edge) on Au(111) surface.
5. Calculation of S chemical potential range

The chemical potential range of S captures the transition of the system from Mo-rich to

S-rich conditions. In the S-rich environment, the chemical potential of S is referenced

. ES bulk

Us =

to an Sg molecular crystal, which is obtained by N

. Similarly, in the Mo-rich

environment, the chemical potential of Mo was determined using bulk Mo in its body-

EMo bulk

Hyo =
centered cubic (BCC) crystal structure as the reference, we got ™Mo . The

2Uc + Uy, = €
chemical potential of S then can be obtained based on S FMo TMos,

II. Thermodynamically preferred edge structures and Wulff construction for the

equilibrium shape of MoS: under different y.
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Figure S15. (a) Diagram of the most stable edges of MoS, at different ug ranges in

vacuum. (b) Wulff construction for the equilibrium shape of MoS, domain at different

s during the entire process of the change of .
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Figure S16. Diagram of the most stable edges of MoS, at different ug ranges on Au

(111) surface. (b) Wulff construction and corresponding atomic configuration for the

equilibrium shape of MoS, domain at different g during the entire process of the

change of us.



III. Calculation of kinetic growth of MoS:

We employ the kinetic Wulff construction to model the evolution of crystal
morphology. During crystal growth, edges with different orientations propagating
along their normal directions. Edges with higher growth rates tend to vanish over time,
while those with slower velocities persist. As a result, the final crystal morphology is
primarily governed by the slowest-growing edges, which ultimately define the overall

shape of the crystal.

We computed the growth rates of the ZZ and AC edge as follows'2:

S,(x) = cosy —~[3siny#(6)

, 05 X<P
Sa00 = [\/—gsin)( -cosyx=p #(7)

2
—siny x<p
sean =V i #(8)
2sin (——)())(Zﬁ
6
~ “z *z
S0 = e T || 1+ 25,00 + (Sg00)?e T )2 — 1|#(9)
Sz =500 = (Sx00) - Sx(0))#(10)
5A={ v e ASE wan
5400 = (2%xSx00) = S0 - S,(0) x 2 B

p= arctan\g#(u)



Sk(0) is the intrinsic concentration of kink sites along arbitrary orientations, Sk is
the corrected concentration of kink sites. Sz (X)is the intrinsic concentration of ZZ sites,
Sz is the corrected concentration of ZZ sites. S4 (X)is the intrinsic concentration of AC

sites, SA(X)is the corrected concentration of AC sites. ©Z denotes the growth barrier of

the ZZ edge. Therefore, the growth rate of MoS, edges along arbitrary orientations on

the Au substrate can be expressed as:

Ey

kT kT

R(x) zSZx(e(_ )+SAxe )+SK)#(13)

where R represents the growth rate of edges along arbitrary orientations, Ey denotes the

growth barrier of the AC edge. As shown in Figure S16, the growth rate of the AC edge
is much greater than that of the ZZ edge. In the subsequent exploration of the
morphology of MoS, crystal domain dynamic growth, the ZZ edge determines the final

morphology of the crystal domain. Considering the £, of AC edges is very small or

Ey
kT
S e

negative, we neglect the term in our final calculations of growth rate of ZZ

edges, hence:

Ey

R(x) ~ Syx(e AT + S )#(14)
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Figure S17. Direction-dependent edge growth rates.
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Figure S18. The site-dependent kinetic Wulff construction models of MoS: at yg = -4.5
eV and 4up=0,0.1,0.2 and 0.3 eV. The red line represents the S-I edge, while the blue

line denotes the Mo-III edge.
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Figure S19. The site-dependent kinetic Wulff construction models of MoS: at yg=-4.1
eV and 4up=0,0.1,0.2 and 0.3 eV. The red line represents the S-I edge, while the blue

line denotes the Mo-III edge.

IV. Exploration of moiré superstructure-dependent growth behaviors of MoS,
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Figure S20. The models of Mo-III edge growth for MoS: on Au (111) surface.
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Figure S21. The models of S-I edge growth for MoS: on Au (111) surface.

Position

Figure S22. The models of AC-VII edge growth for MoS: on Au (111) surface.
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Figure S23. Growth barrier profiles of Mo-III edge, S-I edge and AC- VII edge at Aup

=0,0.1,0.2 and 0.3 eV under different .
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Figure S24. Direction-dependent edge growth rates. Different colored lines indicate

the rates at different positions.
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Figure S25. The moiré superstructure-dependent kinetic Wulff construction models of
MoS: at ug=-4.5 eV and 4up =0, 0.1, 0.2 and 0.3 eV. The red line represents the S-I

edge, while the blue line denotes the Mo-III edge.
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Figure S26. The moiré superstructure-dependent kinetic Wulff construction models of
MoS: at ug=-4.4 eV and 4up =0, 0.1, 0.2 and 0.3 eV. The red line represents the S-I

edge, while the blue line denotes the Mo-III edge.
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Figure S27. The moiré superstructure-dependent kinetic Wulff construction models of

MoS: at ug=-4.3 eV and 4up =0, 0.1, 0.2 and 0.3 eV. The red line represents the S-I

edge, while the blue line denotes the Mo-III edge.



g =-4.25 eV Hg =-4.25 eV Hg =-4.25 eV us =-4.25 eV
Aup=0eV Aup=0.1¢eV Aup=0.2eV Aup=0.3 eV

=

5

Buiajons awiy

Increasing Ayp

Figure S28. The moiré superstructure-dependent kinetic Wulff construction models of

MoS: at ug =-4.25 eV and 4up =0, 0.1, 0.2 and 0.3 eV. The red line represents the S-I

edge, while the blue line denotes the Mo-III edge.
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Figure S29.The moiré superstructure-dependent kinetic Wulff construction models of

MoS: at ug=-4.1 eV and 4up =0, 0.1, 0.2 and 0.3 eV. The red line represents the S-I

edge, while the blue line denotes the Mo-III edge.



V. Investigation of orientations of MoS, domains with different morphologies and

edge structures on Au (111) surface
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Figure S30. Structural diagrams of triangular domains enclosed by ZZ-Mo edges,
triangular domains enclosed by ZZ-S edges, and hexagonal domains alternately formed

by ZZ-Mo and ZZ-S edges on the Au (111) surface at different orientations.
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Figure S31. Structural diagrams of hexagonal domains alternately formed by ZZ-Mo
and ZZ-S edges near the step on the Au (111) surface at different orientations. Atoms

in orange and yellow colors represent the Au atoms of step and terrace, respectively.



Figure S32. Structural diagrams of hexagonal domains alternately formed by ZZ-Mo
and ZZ-S edges over the step on the Au (111) surface at different orientations. Atoms

in orange and yellow colors represent the Au atoms of step and terrace, respectively.
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