A novel method to rapidly functionalize perovskite oxide

Weiwei Fan*,1, Zhu Sun*,2, Rui Xiao1

¹Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 2 Dong Nan Da Xue Road, Nanjing, 211189, China

²School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

^{*}Corresponding author email: fanww@seu.edu.cn

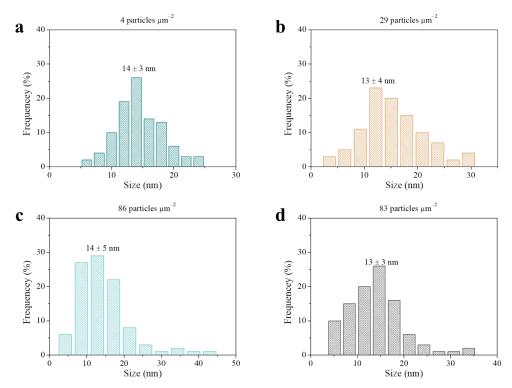


Figure S1 Particle size distribution of (a) PN3, (b) PN6, (c) PN9 and (d) PN12 after P-V shock.

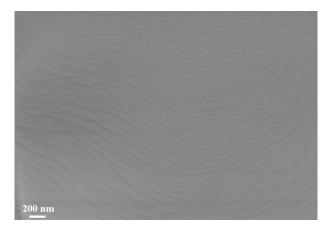


Figure S2 SEM image of the LCTN treated by voltage shock.

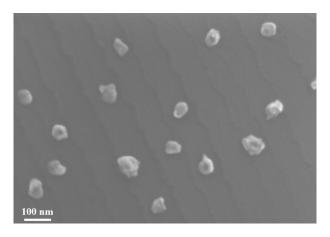
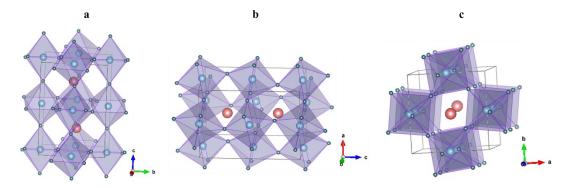



Figure S3 SEM image of LCTN treated in H_2 at 900°C for 20h.

Figure S4 a-c, Views of orthorhombic structure of LCFN perovskite. Pink spheres denote La/Ca, blue spheres denote Ti/Ni, and green spheres denote O, respectively.

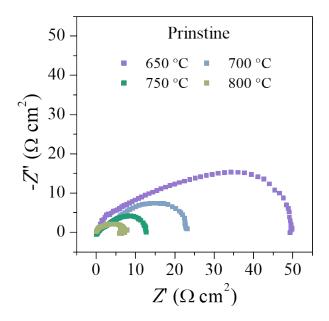
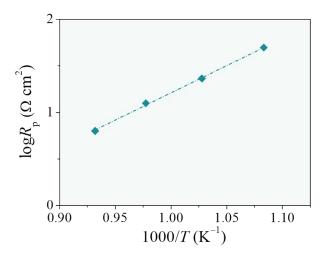



Figure S5 Nyquist plots of the pristine LCTN under OCV.

Figure S6 Arrhenius plot of R_p of the pristine LCTN.

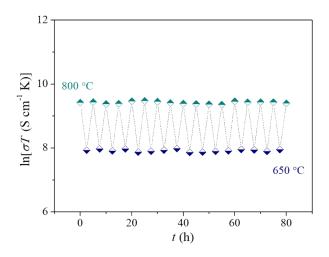


Figure S7 Thermal cycling stability of LCTN-PN9 in hydrogen.

Schottky defect

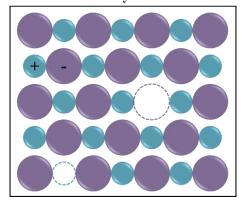


Figure S8 Illustration of Schottky defect in perovskite solid.

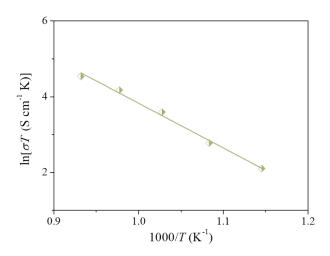


Figure S9 Electrical conductivity of pristine LCTN at different temperatures in hydrogen.

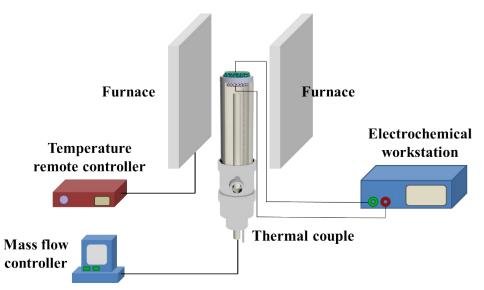
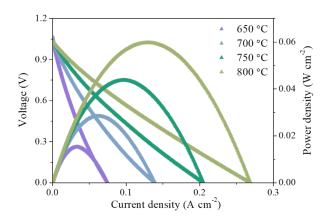



Figure S10 Schematic of the home-made setup used for the cell performance tests.

Figure S11 I-V(P) curves of the pristine LCTN collected at different temperatures.

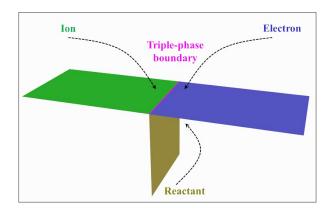


Figure S12 Schematic illustration of the triple-phase boundary.

$$\begin{aligned} H_2(g) + O_0^{\times} &\rightleftharpoons H_2O(g) + V_0^{**} + 2e^- \\ &H_2(g) + [Ni] &\rightleftharpoons H_{2,ads}[Ni] \quad \text{(gas-solid mass transport)} \\ &H_{2,ads}[Ni] &\rightleftharpoons 2H[Ni] \quad \text{(dissociation)} \\ &H[Ni] + [TPB] &\rightleftharpoons H^+[TPB] + e^-[Ni] \quad \text{(charge transfer)} \\ &H^+[TPB] + H^+[TPB] + O^{2-}[TPB] &\rightleftharpoons H_2O[TPB] + [TPB] + [TPB] \\ &O^{2-}[\text{electrolyte}] + [TPB] &\rightleftharpoons O^{2-}[TPB] + [\text{electrolyte}] \quad \text{(charge transfer)} \\ &O_0^{\times}[\text{perovskite}] + [\text{perovskite}] &\rightleftharpoons O^{2-}[\text{perovskite}] + V_0^{**}[\text{perovskite}] \\ &H_2O[TPB] &\rightleftharpoons H_2O(g) + [TPB] \end{aligned}$$

Figure S13 Procedures for the electrochemical oxidation of hydrogen under the assistance of exsolved nickel nanoparticles. Note: in the expressions, H[Ni] represents the atomic hydrogen adsorbed on Ni, [Ni] represents a vacant site on the surface of Ni, e^- repents an electron in Ni and O_0^{\times} represents lattice oxygen, respectively.

Note 1:

Exsolution depth

Assuming the exsolved particle is a sphere, then the volume of a particle can be calculated by

$$V = \frac{4}{3}\pi(\frac{D}{2})^3$$

where D is the diameter of particle. In a particle, the number of metal atoms is evaluated by

$$N = \frac{\rho V}{A_M \times 1.661 \times 10^{-27}}$$

where ρ represents the mass density of metal ($\rho_{\rm Ni}$ = 8900 kg m⁻³), $A_{\rm M}$ represents the atomic mass of metal ($A_{\rm Ni}$ = 58.69). Then, the number of metal atoms (Ni) exsolved from per surface area ($N_{\rm SA}$) can be acquired as follows

$$N_{\rm SA} = N \times P_{\rm D}$$

where $P_{\rm D}$ is the particle density obtained experimentally. Then, the number of exsolvable metal atoms per surface area and per depth in nanometer $(N_{\rm V})$ can be calculated from

$$N_{\rm V} = \frac{0.06}{0.54623 \times 0.77317 \times 0.54623} = 0.26 \,\text{nm}^{-3}$$

where 0.06 is the atomic ratio of Ni in a unit cell, and 0.54723 nm \times 0.77275 nm \times 0.54698 nm is the unit cell parameters obtained from the Rietveld refinement of XRD. Then, the depth $(D_{\rm ep})$ can be evaluated from

$$D_{\rm ep} = \frac{N_{\rm SA}}{N_{\rm W}}$$

 Table S1 Chemical composition of the as-prepared LCTN measured by ICP-AES.

Sample -	La:Ca:Ti:Ni atomic ratio		
	Designed	ICP	
La _{0.32} Ca _{0.48} Ti _{0.94} Ni _{0.06} O ₃	0.32:0.48:0.94:0.06	0.323:0.482:0.938:0.058	

Table S2 Refined structural parameters of LCTN obtained by fitting of the powder XRD data at room temperature.

Atoms, sites	Parameters	LCTFN
	Space group	Pbnm (62)
	a (Å)	5.4723 (3)
	b (Å)	7.7275 (2)
	c (Å)	5.4698 (3)
	$V(Å^3)$	231.3
	\boldsymbol{x}	0.4670
	y	0.2500
La, 4c	Z	0.0072
	Occupancy	0.32
	x	0.4670
	y	0.2500
Ca, 4c	z	0.0072
	Occupancy	0.48
	x	0
Ti, 4a	y	0
	Z Occupancy	0 0.94
	Occupancy	0.94
	x	0
Ni, 4a	<i>y</i> <i>z</i>	0
	Occupancy	0.06
	x	0.5107
	y	0.2500
O1, 4c	\overline{z}	0.5722
	Occupancy	1
	$\stackrel{1}{x}$	0.2158
	y	0.0346
O1, 8d	\overline{z}	0.2826
	Occupancy	1
	$R_{ m wp}$	11.31
	$R_{ m p}$	8.10
	χ^2	6.23

Table S3 Thermodynamic parameters of reducing the corresponding oxide to metal at $800~^{\circ}\mathrm{C}$

Metal oxides	ΔH (kJ mol ⁻¹)	ΔS (J K ⁻¹ mol ⁻¹)	ΔG (kJ mol ⁻¹)	Equilibrium constant K
La ₂ O ₃	1038.132	106.908	923.404	1.123E-45
CaO	387.012	49.378	334.023	5.500E-17
TiO_2	442.309	65.134	372.410	7.443E-19
NiO	-13.012	31.182	-46.474	1.829E+02