Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Toranosuke Takagi^a, Yoshinori Kimoto^b, Nithin Pathoor^a, Shun Omagari^a, Tadashi Kawamoto^a, Takuya Kato^b, Hiroaki Nakamura^b, Issei Takenaka^b, Martin Vacha^{a*}

^aDepartment of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, 152-8552 Tokyo, Japan ^bAdvanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, Chiba 299-0293, Japan

Contents

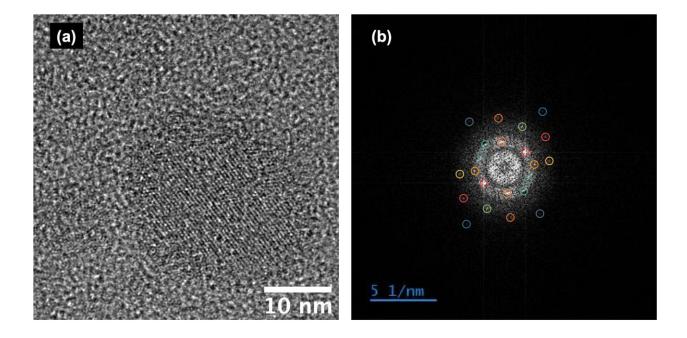

Figure S1: HRTEM image and its corresponding fast Fourier transform (FFT) pattern

Figure S2: XPS spectra

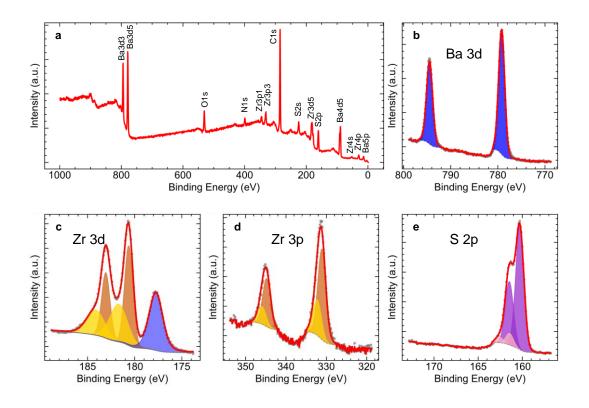

Figure S3: Additional PL intensity time traces at each excitation power

Figure S4: Distributions of the short and long PL lifetime components from single QDs

Figure S5: Ligand engineering using DDAS ligand

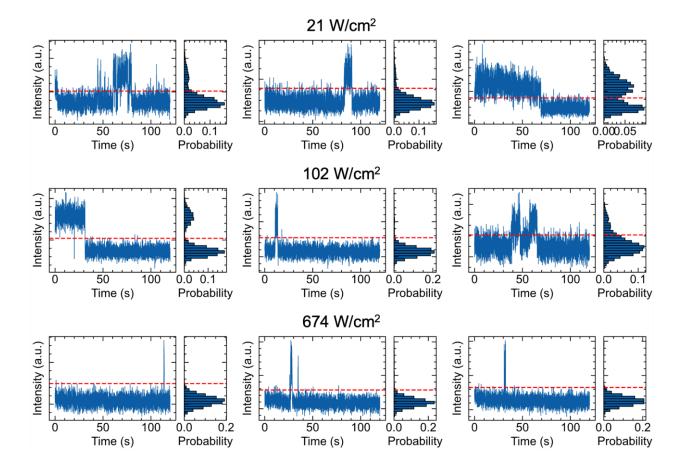


Fig. S1. (a) HRTEM image of a QD and (b) its corresponding fast Fourier transform (FFT) pattern calculated from the 15 nm \times 15 nm area. In (b), the diffraction spots are grouped by color-coded rings according to their crystallographic orientation, indicating the polycrystalline nature of the QD.

Fig. S2. High-resolution XPS spectra. **a)** Wide survey scan; Spectra of **b)** Ba 3d; **c)** Zr 3d; **d)** Zr 3p; **e)** S 2p core levels

X-ray photoelectron spectroscopy (XPS) measurements were performed using a monochromatic Al K α radiation source. Survey spectra were acquired with a pass energy of 187.85 eV and a step size of 0.5 eV, while high-resolution spectra were collected with a pass energy of 23.50 eV and a step size of 0.1 eV. The binding energy scale was calibrated by referencing the aliphatic C 1s peak to 284.8 eV. The samples were prepared by spin-coating the colloidal solution onto glass substrates.

Fig. S3. Representative PL intensity time traces and corresponding intensity histograms of single BaZrS₃ QDs showing blinking behavior. The excitation powers are 21 W/cm² (top row), 102 W/cm² (middle row), and 674 W/cm² (bottom row).

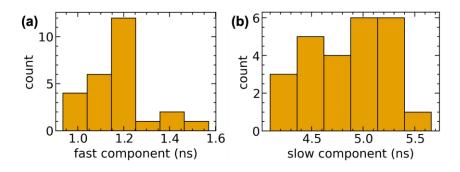
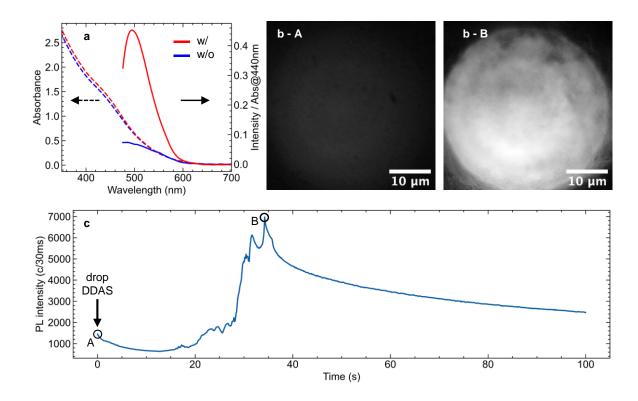



Fig. S4. Distribution of fast (a) and slow (b) PL lifetime components measured for 26 individual $BaZrS_3\ QDs$.

Fig. S5. Ligand engineering using DDAS. **a)** Absorption (dashed) and PL (full line) spectra of the BaZrS₃ QD solution before (blue) and after (red) adding a toluene solution of DDAB; **b)** Microscopic PL images of BaZrS₃ QD dispersion on glass before (A) and ~ 35 s after (B) dropping a DCM solution of DDAB; **c)** Time evolution of PL intensity integrated from the whole microscopic view-field after dropping the DCM solution of DDAB; the points A and B correspond to the images in **b)**; the PL intensity decline at longer time is caused by photobleaching.