Supporting Information

Lin Zhu, #a Pu Gao, #a Jing Du, #b Yan Shen, a Yan Feng, *c Mingzai Wu, *a Yanjun Ding, *a Manzhou Zhuc

^a School of Materials Science and Engineering, Anhui University, Hefei 230601, China.

^b Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China.

^c Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Anhui University, Hefei 230601, China.

Experimental Procedures

1.1. Materials. All reagents are commercially available and used directly without further purification, including CuCl (98%), 4-methylbenzenethiolate (98%), 4-isopropylbenzenethiol (95%), 4-tert-butylbenzenethiol (98%), tetraoctylammonium bromide (TOAB, 98%), triphenylphosphine (TPP, 98%), sodium borohydride (99.99%), chloroform (HPLC grade, ≥ 99.9%), methanol (HPLC grade, ≥ 99.9%), n-hexane (HPLC grade, ≥ 99.9%). Me₂SAuCl, Au(TPP)Cl and [Cu₂₃(SC₆H₄-R)₁₈(TPP)₆](SbF₆) were prepared according to literature methods. [1-3]

1.2. Synthesis of the $[AuCu_{14}(SC_6H_4-CH_3)_{12}(TPP)_6](SbF_6)$ cluster.

The whole reaction process was carried out at room temperature. 5 mg of the $[Cu_{23}(SC_6H_4-CH_3)_{18}(TPP)_6](SbF_6)$ nanocluster was firstly dissolved in 2 mL of CH_2Cl_2 under stirring. Then, Au(TPP)Cl (0.5 mg) was added to the above solution. After irradiated at 365 nm for 30 seconds, the solution gradually changed from light yellow to red, accompanied by a bright red light. The organic solution was evaporated and washed several times with methanol. Finally, red crystals were obtained by liquid diffusion of n-hexane into a CH_2Cl_2 solution of the nanocluster for three days with a $\sim 60\%$ yield (Cu atom basis). ESI-MS ($[AuCu_{14}(SC_6H_4-CH_3)_{12}(TPP)_5]^+$): m/z = 3876.75 (cald. 3876.75).

1.3. Synthesis of the $[AuCu_{14}(SC_6H_4-CH(CH_3)_2)_{12}(TPP)_6](SbF_6)$ cluster.

The whole reaction process was carried out at room temperature. 5 mg of the $[Cu_{23}(SC_6H_4-CH(CH_3)_2)_{18}(TPP)_6](SbF_6)$ nanocluster was firstly dissolved in 2 mL of CH_2Cl_2 under stirring. Then, Au(TPP)Cl (0.5 mg) was added to the above solution. After irradiated at 365 nm for 30 seconds, the solution gradually changed from light yellow to red, accompanied by a bright red light. The organic solution was evaporated and washed several times with methanol. Finally, red crystals of were obtained by liquid diffusion of *n*-hexane into a CH_2Cl_2 solution of the nanocluster for three days with a ~25% yield (Cu atom basis). ESI-MS ([AuCu₁₄(SC₆H₄-CH(CH₃)₂)₁₂(TPP)₅]⁺): m/z = 4213.15 (cald. 4212.75).

1.4. Synthesis of the $[AuCu_{14}(SC_6H_4-C(CH_3)_3)_{12}(TPP)_6](SbF_6)$ cluster.

The whole reaction process was carried out at room temperature. 5 mg of the $[Cu_{23}(SC_6H_4-C(CH_3)_3)_{18}(TPP)_6](SbF_6)$ nanocluster was firstly dissolved in 2 mL of CH_2Cl_2 under stirring. Then, Au(TPP)Cl (0.5 mg) was added to the above solution. After irradiated at 365 nm for 30 seconds, the solution gradually changed from light yellow to red, accompanied by a bright red light. The organic solution was evaporated and washed several times with methanol. Finally, red crystals of were obtained by liquid diffusion of *n*-hexane into a CH_2Cl_2 solution of the nanocluster for three days with a ~38% yield (Cu atom basis).. ESI-MS ([AuCu₁₄(SC₆H₄-C(CH₃)₃)₁₂(TPP)₄]⁺): m/z = 4119.19 (cald. 4118.46).

1.5. Titration experiments.

1.7 mg of AgNO₃ was dissolved in 5 mL of methanol under stirring to obtain a homogeneous AgNO₃ solution with a concentration of 0.34 mg/mL (\sim 2.0 mM). Then, 3 mL of **AuCu₁₄-CH(CH₃)₂** (0.2 mg/mL) solution in CH₂Cl₂ was placed in a cuvette to record its initial fluorescence spectrum. After the addition of AgNO₃ solution (15 μ L, \sim 10 μ M) to the above CH₂Cl₂ solution, the cuvette was gently shaked to ensure thorough mixing and record its fluorescence spectrum. This process was repeated sevaral times to obtain fluorescence titration spectra covering the Ag⁺ concentration range of 0-100 μ M. The titration experiments of other metal ions were similar to Ag⁺ ion.

Characterization

- **2.1. Photoluminescence spectra.** Photoluminescence spectra were measured using an FL-7000 spectrofluorometer with the same optical density (OD) of ~0.2. Absolute quantum yield (QY) and emission lifetime were measured on the HORIBA FluoroMax-4P.
- 2.2. UV-vis absorption spectra. UV-visible absorption spectra were recorded on M4 spectrophotometer. Crystals are dissolved in solution.
- 2.3. Single Crystal X-ray Diffraction. Single crystal X-ray diffraction data were recorded on a Rigaku XtaLAB Synergy-R Diffraction equipped with a digital camera diffractometer comprising a microfocus rotating anode X-ray source (Cu K α , λ = 1.54178 Å) and an HPC detector [HyPix-6000C] radiation for the crystal structures. The diffraction data were processed during data collection using CrysAlis^{Pro}. The structures were solved and refined during data collection with AutoChem. Final structure refinements were performed using SHELXL implemented in Olex2. [4-6] Data collection, structure refinement parameters and crystallographic data for the crystals are given in Table S1.
- **2.4. Electrospray ionization (ESI) mass spectrum**. Electrospray ionization mass spectra (ESI-MS) were acquired on a Waters Q-TOF mass spectrometer equipped with a Z-spray source. The samples are dissolved in a mixture solution of CH_2Cl_2/CH_3OH (v:v = 1:1), which is directly infused into the chamber at 20 μ L/min with positive mode.
- 2.5. X-ray photoelectron spectroscopy (XPS). X-ray photoelectron spectroscopy measurements were performed on Thermo ESCALAB 250 equipped with a monochromated Al K α (1486.8 eV) 150 W X-ray source, 0.5 mm circular spot size, a flood

gun to counter charging effects, and the S3 analysis chamber base pressure lower than 1×10^{-9} mbar; data were collected with FAT = 20 eV. The the sample holder was aluminum plate used during the X-ray Photoelectron Spectroscopy (XPS) analysis.

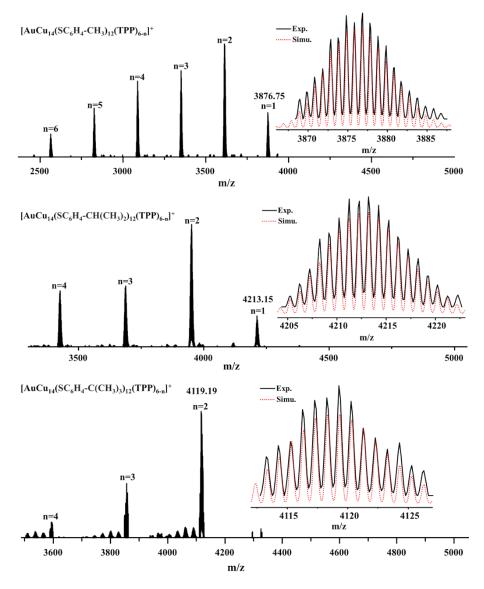


Figure S1. Positive-mode ESI mass spectra of AuCu₁₄-CH₃, AuCu₁₄-CH(CH₃)₂ and AuCu₁₄-C(CH₃)₃.

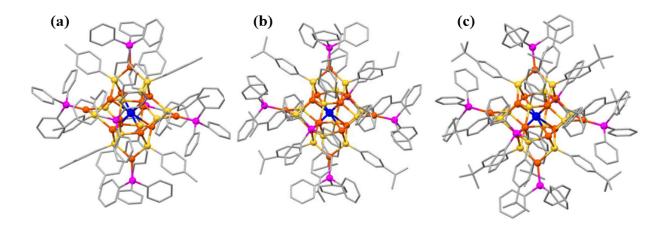


Figure S2. The overall structure of the $AuCu_{14}$ cluster shown in ball-and-stick mode: (a) $AuCu_{14}$ - CH_3 , (b) $AuCu_{14}$ - $CH(CH_3)_2$ and (c) $AuCu_{14}$ - $C(CH_3)_3$. Cu orange, Au blue, S yellow, P pink, C gray. H atoms are omitted for clarity.

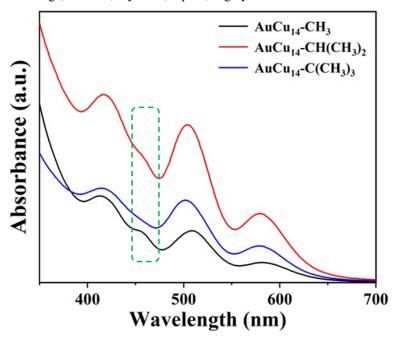


Figure S3. UV-vis absorption spectra of AuCu₁₄-CH₃, AuCu₁₄-CH(CH₃)₂ and AuCu₁₄-C(CH₃)₃ in CH₂Cl₂ solution at room temperature.

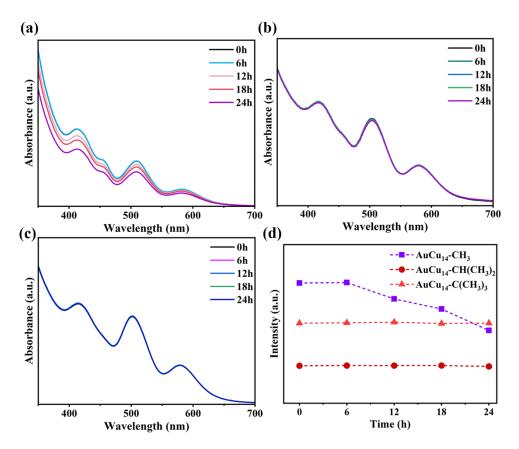


Figure S4. The time-dependent UV-vis absorption spectra of (a) $AuCu_{14}$ - CH_3 , (b) $AuCu_{14}$ - $CH(CH_3)_2$ and (c) $AuCu_{14}$ - $C(CH_3)_3$ in CH_2Cl_2 solution at room temperature. (d) The change of absorption intensity located at 415 nm along with time.

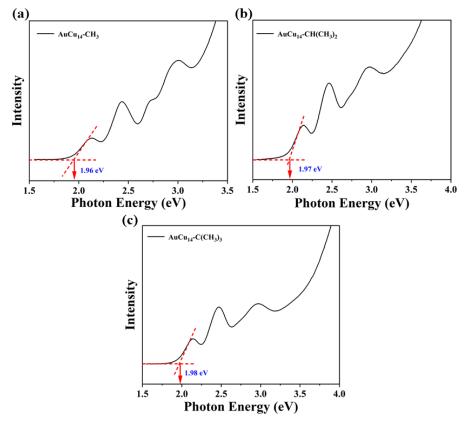


Figure S5. Optical gap determination of AuCu₁₄-CH₃, AuCu₁₄-C(CH₃)₂ and AuCu₁₄- C(CH₃)₃ in CH₂Cl₂ solution

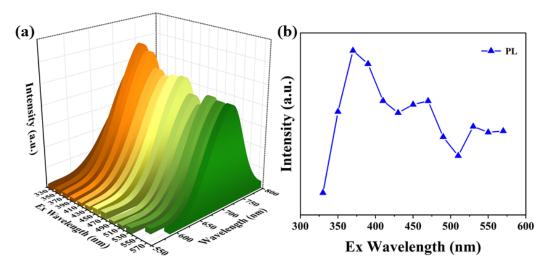


Figure S6. The change trends of PL centered at 720 nm of AuCu₁₄-C(CH₃)₃ under different excitations in CH₂Cl₂.

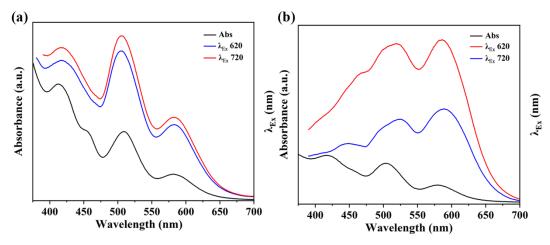


Figure S7. The PL excitation spectra and UV-vis absorption spectra of (a) AuCu₁₄-CH₃ and (b) AuCu₁₄-CH(CH₃)₂ in CH₂Cl₂ solution at room temperature.

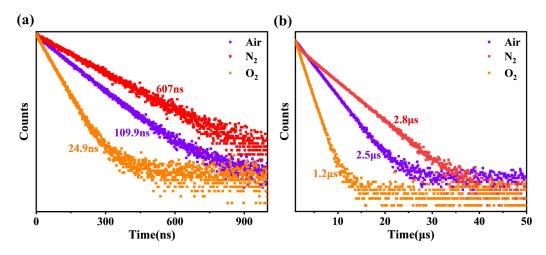


Figure S8. (a) The PL I and (b) PL II emission lifetime of $AuCu_{14}$ - CH_3 in CH_2Cl_2 solution under air, O_2 and N_2 atmospheres, respectively.

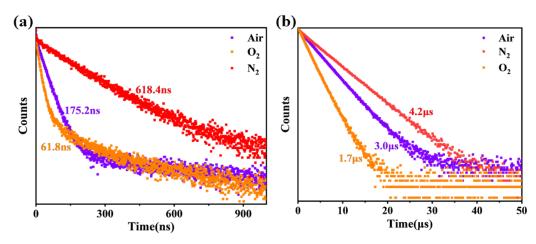
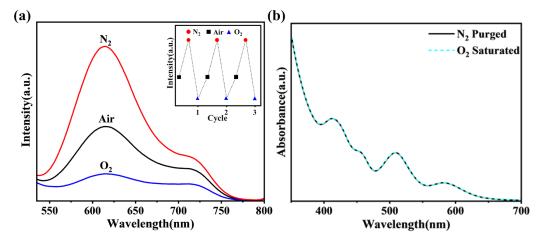



Figure S9. (a) The PL I and (b) PL II emission lifetime of AuCu₁₄-CH(CH₃)₂ in CH₂Cl₂ solution under air, O₂ and N₂ atmospheres, respectively.

Figure S10. (a) Emission spectra of **AuCu₁₄-CH₃** in CH₂Cl₂ solution under air, O₂ and N₂ atmospheres (inset: the intensity at 620 nm with 3 cycles under different atmospheres). (b) UV-vis spectra of **AuCu₁₄-CH₃** in CH₂Cl₂ solution protected by N₂ and O₂.

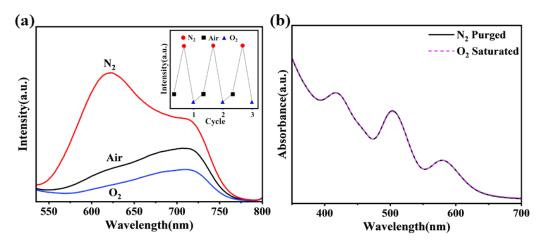
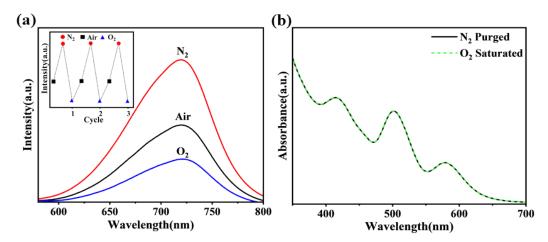



Figure S11. (a) Emission spectra of $AuCu_{14}$ - $CH(CH_3)_2$ in CH_2Cl_2 solution under air, O_2 and N_2 atmospheres (inset: the intensity at 620 nm with 3 cycles under different atmospheres). (b) UV-vis spectra of $AuCu_{14}$ - $CH(CH_3)_2$ in CH_2Cl_2 solution protected by N_2 and O_2 .

Figure S12. (a) Emission spectra of **AuCu₁₄-C(CH₃)₃** in CH₂Cl₂ solution under air, O₂ and N₂ atmospheres (inset: the intensity at 720 nm with 3 cycles under different atmospheres); (b) UV-vis spectra of **AuCu₁₄-C(CH₃)₃** in CH₂Cl₂ solution protected by N₂ and O₂.

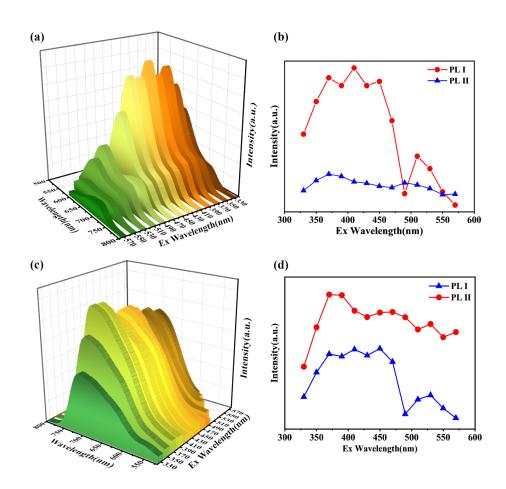


Figure S13. (a-b) The change trends of PL I and PL II of $AuCu_{14}$ - CH_3 under different excitations in CH_2Cl_2 . (c-d) The change trends of PL I and PL II of $AuCu_{14}$ - $CH(CH_3)_2$ under different excitations in CH_2Cl_2 .

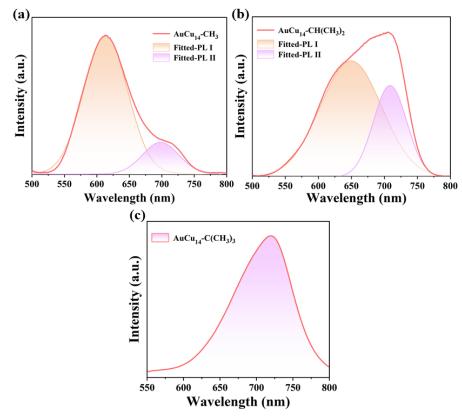


Figure S14. PL spectra of $AuCu_{14}$ - CH_3 , $AuCu_{14}$ - $CH(CH_3)_2$ and $AuCu_{14}$ - $C(CH_3)_3$ in DCM. Orange and purple areas represent the fitted PL I and PL II, respectively.

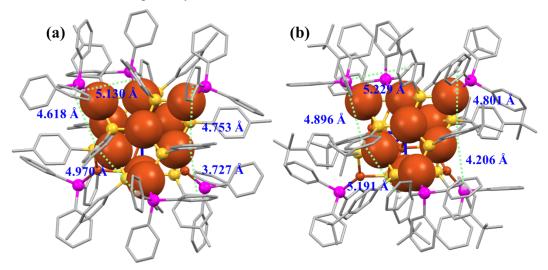


Figure S15. Overlay of (a) $AuCu_{14}$ - CH_3 and (b) $AuCu_{14}$ - $C(CH_3)_3$ SCXRD structures capturing the orientation differences of carbon tails.

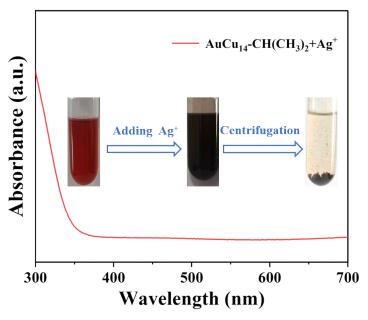


Figure S16. UV-vis absorption spectra of the supernatant after the addition of Ag^+ ion into $AuCu_{14}$ - $CH(CH_3)_2$ solution (inset: photographs of the reaction system).

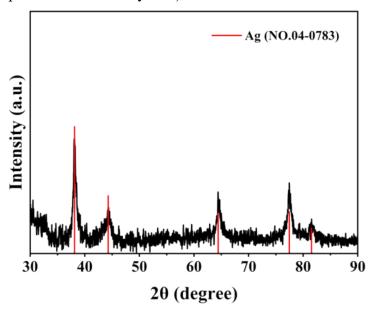


Figure S17. XRD spectrum of the precipitation after the addition of Ag^+ ion into $AuCu_{14}$ - $CH(CH_3)_2$ solution.

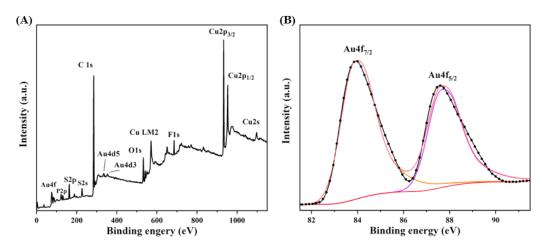


Figure S18. (A) The X-ray photoelectron spectroscopy (XPS) spectrum of crystalline $AuCu_{14}$; (B) the high-resolution of Au 4f part.

Table S1. Experimental single crystal X-ray data.

Identification code	AuCu ₁₄ -CH ₃	AuCu14-CH(CH3)2	AuCu ₁₄ -C(CH ₃) ₃		
Empirical formula	$C_{192}H_{174}Au_{0.6}Cu_{14}F_{5.4}P_6S_{12}Sb_{0.9}^{a}$	$C_{216}H_{216}AuCu_{14}P_6S_{12}$	C ₂₂₈ H ₂₄₆ AuCu ₁₄ F ₆ P ₆ S ₁₂ Sb		
Formula weight	4271.76	4251.23	4879.05		
Temperature /K	120	120.15	120		
Crystal system	Triclinic	monoclinic	Triclinic		
Space group	P-1	$P2_1/n$	P-1		
a /Å	16.5353(2)	19.4553(2)	18.9192(3)		
b/Å	16.7733(2)	27.6070(2)	20.0872(3)		
c /Å	19.1444(3)	21.0119(3)	21.2779(2)		
α /°	110.9310(10)	90	65.5700(10)		
β /°	109.6290(10)	95.8050(10)	76.1360(10)		
γ /°	98.0240(10)	90	62.742(2)		
Volume /Å ³	4463.14(11)	11227.7(3)	6532.17(19)		
Z	1	2	1		
ρ_{calc} g/cm ³	1.589	1.257	1.240		
μ /mm ⁻¹	5.981	4.379	4.632		
F(000)	2156.0	4126.0	2486.0		
Radiation	$CuK\alpha \ (\lambda = 1.54186 \ A)$	$CuK\alpha (\lambda = 1.54184\text{Å})$	$CuK\alpha (\lambda = 1.54184\text{Å})$		
2 θ range for data collection/°	5.438 to 132	5.576 to 129.996	5.264 to 140		
Index ranges	Index ranges $-19 \le h \le 15, -19 \le k \le 19, -22 \le l \le 22, -22 \le h \le 17, -32 \le k \le 28, -24 \le l \le 23, -24 \le k \le 24, -25 \le l \le 25$				
Reflections collected	55053	70984	93303		
Independent reflections	$15529 [R_{int} = 0.0662,$	$18938 [R_{int} = 0.0631,$	$24657 [R_{int} = 0.0748,$		
independent reflections	$R_{sigma} = 0.0475]$	$R_{sigma} = 0.0468$	$R_{\text{sigma}} = 0.0505$		
Data/restraints/parameters	15529/30/874	18938/4655/1099	24657/124/1298		
Goodness-of-fit on F2	1.077	1.025	1.008		
Final R indexes [I>= 2σ (I)] ^b	$R_1 = 0.0748, wR_2 = 0.1997$	$R_1 = 0.0952, wR_2 = 0.2644$	$R_1 = 0.0544, wR_2 = 0.1484$		
Final R indexes [all data]b	$R_1 = 0.0786, wR_2 = 0.2015$	$R_1 = 0.0992, wR_2 = 0.2690$	$R_1 = 0.0573, wR_2 = 0.1507$		
CCDC	2366812	2496270	1940446		

^a Formula is given based on single-crystal X-ray data.

Table S2. Average bond length (Å) in AuCu₁₄-C(CH₃)₃, AuCu₁₄-CH(CH₃)₂ and AuCu₁₄-CH₃.

	Au-Cu	Cu-Cu	Cu-S
AuCu ₁₄ -C(CH ₃) ₃	2.669	3.084	2.270
AuCu ₁₄ -CH(CH ₃) ₂	2.679	3.096	2.272
AuCu ₁₄ -CH ₃	2.706	3.127	2.278

Table S3. The primary bond length of AuCu₁₄-CH₃.

Bond	Length(Å)	Bond	Length(Å)
Au1-Cu2	2.778	Au1-Cu4	2.791
Au1-Cu5	2.594	Au1-Cu6	2.661
Au1-Cu8	2.778	Au1-Cu10	2.791
Au1-Cu12	2.594	Au1-Cu14	2.661
Cu2-Cu4	3.229	Cu2-Cu5	3.008
Cu2-Cu6	3.132	Cu4-Cu12	3.085

^b $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, wR_2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{\frac{1}{2}}$

Cu4-Cu13	3.295	Cu5-Cu11	3.085
Cu5-Cu13	3.017	Cu6-Cu11	3.295
Cu6-Cu12	3.017	Cu9-Cu11	3.229
Cu9-Cu12	3.008	Cu9-Cu13	3.132
Cu2-S1	2.293	Cu2-S5	2.274
Cu2-S6	2.279	Cu4-S2	2.284
Cu4-S4	2.273	Cu4-S6	2.293
Cu5-S2	2.307	Cu5-S3	2.287
Cu5-S5	2.295	Cu6-S1	2.264
Cu6-S3	2.290	Cu6-S4	2.306
Cu9-S7	2.293	Cu9-S11	2.274
Cu9-S12	2.279	Cu11-S8	2.284
Cu11-S10	2.273	Cu11-S12	2.293
Cu12-S8	2.307	Cu12-S9	2.287
Cu12-S11	2.295	Cu13-S7	2.264
Cu13-S9	2.290	Cu13-S10	2.306
S3-Cu1	2.257	S6-Cu1	2.286
S4-Cu3	2.250	S5-Cu3	2.263
S1-Cu7	2.266	S2-Cu7	2.250
S9-Cu8	2.257	S12-Cu8	2.286
S10-Cu10	2.250	S11-Cu10	2.263
S7-Cu14	2.266	S8-Cu14	2.250

Table S4. The primary bond length of AuCu₁₄-CH(CH₃)₂.

Bond	Length(Å)	Bond	Length(Å)
Au1-Cu1	2.729	Au1-Cu3	2.721
Au1-Cu5	2.706	Au1-Cu7	2.561
Au1-Cu8	2.729	Au1-Cu10	2.721
Au1-Cu12	2.706	Au1-Cu14	2.561
Cu1-Cu7	3.012	Cu3-Cu7	2.974
Cu5-Cu7	2.949	Cu5-Cu10	3.217
Cu5-Cu8	3.217	Cu3-Cu12	3.203
Cu3-Cu8	3.225	Cu1-Cu12	3.225
Cu1-Cu10	3.203	Cu12-Cu14	2.949
Cu10-Cu14	2.973	Cu8-Cu14	3.013
Cu1-S2	2.289	Cu1-S4	2.289
Cu1-S5	2.266	Cu3-S1	2.292
Cu3-S3	2.275	Cu3-S4	2.292
Cu5-S1	2.295	Cu5-S2	2.285
Cu5-S6	2.270	Cu7-S3	2.276
Cu7-S5	2.279	Cu7-S6	2.286
Cu8-S8	2.289	Cu8-S10	2.289

Cu8-S11	2.266	Cu10-S7	2.292
Cu10-S9	2.275	Cu10-S10	2.292
Cu12-S7	2.295	Cu12-S8	2.285
Cu12-S12	2.270	Cu14-S9	2.276
Cu14-S11	2.279	Cu14-S12	2.286
S1-Cu2	2.256	S5-Cu2	2.238
S2-Cu4	2.261	S3-Cu4	2.255
S4-Cu6	2.263	S6-Cu6	2.246
S7-Cu9	2.256	S11-Cu9	2.238
S8-Cu11	2.261	S9-Cu11	2.255
S10-Cu13	2.263	S12-Cu13	2.246

Table S5. The primary bond length of AuCu₁₄-C(CH₃)₃.

Bond	Length(Å)	Bond	Length(Å)
Au1-Cu2	2.555	Au1-Cu3	2.743
Au1-Cu5	2.707	Au1-Cu7	2.670
Au1-Cu9	2.555	Au1-Cu10	2.743
Au1-Cu12	2.707	Au1-Cu14	2.670
Cu2-Cu3	3.005	Cu2-Cu5	2.914
Cu2-Cu7	3.033	Cu3-Cu12	3.337
Cu3-Cu14	3.122	Cu5-Cu10	3.337
Cu5-Cu14	3.092	Cu7-Cu10	3.122
Cu7-Cu12	3.092	Cu9-Cu10	3.005
Cu9-Cu12	2.914	Cu9-Cu14	3.033
Cu2-S2	2.281	Cu2-S3	2.281
Cu2-S5	2.281	Cu3-S1	2.275
Cu3-S2	2.273	Cu3-S6	2.273
Cu5-S4	2.299	Cu5-S5	2.258
Cu5-S6	2.281	Cu7-S1	2.302
Cu7-S3	2.285	Cu7-S4	2.275
Cu9-S8	2.281	Cu9-S9	2.281
Cu9-S11	2.281	Cu10-S7	2.275
Cu10-S8	2.273	Cu10-S12	2.273
Cu12-S10	2.299	Cu12-S11	2.258
Cu12-S12	2.281	Cu14-S7	2.302
Cu14-S9	2.285	Cu14-S10	2.275
S2-Cu1	2.247	S4-Cu1	2.240
S1-Cu4	2.267	S5-Cu4	2.246
S3-Cu6	2.247	S6-Cu6	2.247
S8-Cu8	2.247	S10-Cu8	2.240
S7-Cu11	2.267	S11-Cu11	2.246
S9-Cu13	2.247	S12-Cu13	2.247

Table S6. Photophysical data of three AuCu₁₄ nanoclusters in CH₂Cl₂ under ambient conditions. ∘

Solution phase	AuCu ₁₄ -C(CH ₃) ₃	Solution phase	AuCu ₁₄ -CH(CH ₃) ₂	AuCu ₁₄ -CH ₃
Φ _{PL} (%)	4.13	$\Phi_{\rm PL}(\%)$	5.37	5.76
DI - (2.2	PL I τ ave (ns)	175.2	109.9
PL τ _{ave} (μs)	PL $\tau_{\text{ave}}(\mu s)$ 3.3	PL II τ ave (μs)	3.0	2.5
PL k _r (s ⁻¹)	1.4×10 ⁴	PL I k _r (s ⁻¹)	2.1×10 ⁵	4.2×10 ⁵
		PL I k _{nr} (s ⁻¹)	5.5×10 ⁶	8.7×10 ⁶
PL k _{nr} (s ⁻¹)	2.9×10 ⁵	PL II k _r (s ⁻¹)	5.4×10³	4.4×10 ³
		PL II k _{nr} (s-1)	3.3×10 ⁵	4.0×10 ⁵

Reference

- [1] T. N. Hooper, C. P. Butts, M. Green, M. F. Haddow, J. E. McGrady, C. A. Russell, *Chem. Eur. J.* **2009**, 15, 12196-12200.
- [2] K. J. Kilpin, R. Horvath, G. B. Jameson, S. G. Telfer, K. C. Gordon, J. D. Crowley, *Organometallics* **2010**, 29, 6186-6195.
- [3] P. Gao, J. Du, W. J. Hong, M. Z. Wu, Y. Feng, Y. J. Ding and M. Z. Zhu, Small Struct. 2024, 6, 2400397.
- [4] O.V. Dolomanov, L.J. Bourhis, R.J Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- [5] G.M. Sheldrick, *Acta Cryst.* **2015**, A71, 3-8.
- [6] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.