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26 Fig.S1 1H NMR for (a) [Hpyraz]H2PO4 and (b) [2-Mim]DHP.
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35

36 Fig. S2 HAADF STEM image of Cmim and corresponding EDS elemental mappings.
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39 Table S1 Weight contents of C, N, and H in the Cpyr and Cmim obtained by EA results

Sample C (wt. %) H (wt. %) N (wt. %)

Cmim-700 76.74 1.16 1.89

Cmim-800 85.38 0.59 0.95

Cmim-900 89.43 0.36 0.24

Cmim-1000 89.23 0.29 0.24

Cpyr-700 85.07 0.52 0.16

Cpyr-800 91.23 0.30 0.19

Cpyr-900 90.34 0.40 0.17

Cpyr-1000 89.13 0.31 0.10
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43

44

45 Fig. S3 CV curves for (a) Cpyr and (b) Cmim.
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49 Table S2 ORR performance of various catalysts reported in recent years.

Catalyst Precursor/condition
Onset 

Potential/ 
VRHE

Half wave 
potential 

VRHE

Specific 
current 
VRHE

Reference

1 N-doped carbon
Silica-supported 

polyaniline/900 oC, Ar, 2h
~0.94 0.71 4.8 1

2
N-Ketjenblack/Fe/Fe3C-

Functionalized Melamine 

Foam

FeCl2, ketjenblack, melamine 

foam/800oC, Ar, 2h
~0.93 0.78 12 2

3 N-doped carbon
Melamine/phenol 

formaldehyde (M-PF) resin/ 

900 oC, Ar, 3h.

~0.97 0.84 19.02 3

4 N-doped carbon

Ethyl linked bis(N-(2-

cyanoethyl)-imidazole 

bis(pentafluoroethylsulfonyl)-

imide/950 oC, Ar, 2h

~0.95 0.80 18 4

5 N,P co-doped carbon
Polyaniline aerogel and phytic 

acid/1000 oC, Ar, 2h
0.94 0.85 20.9 5

6 Fe-N-C-HNS-750 Fe3+-PDA/SiO2/750oC, Ar, 2h 0.89 0.72 0.58 6

7
Graphene Quantum Dots/ 

Graphene Nanoribbons

Na, Methylbenzene, 

hexabromobenzene/1000oC, 

Ar, 2h

~0.97 0.78 19.6 7

8
N-doped porous 
graphene foam

GO, FeCl2, dicyandiamide, 

silica sphere/900 oC, N2 1h
1.02 0.86 12.4 8
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9
N,P co-doped 

carbon
Melamine, phytic acid, 

graphene oxide/1000oC, Ar, 1h.
~0.95 ~0.81 22.9 9

10
Graphene 

quantum dots
graphitized carbon 

nanofibers/120 oC, reflux, 2h
~0.84 0.67 1.3 10

11 Co3O4
Co(NO3)2, glycerol/700 oC, Ar, 

200 min
0.93 0.84 13.7 11

12 N-doped carbon
polyimide (PI) film/1000 oC, 

Ar, 1h
0.97 0.82 29.4 12

13
N,S co-doped 

carbon

pyrrole, aniline, ammonium 

persulfate/various 

temperatures, N2, 2

0.93 0.81 7.13 13

14 N-doped carbon ZIF-67, 900 oC, N2, 1h. 0.91 0.84 37.8 14

15
Co-N-doped Hollow 

Carbon Spheres

poly(methyl methacrylate), 

cobalt acetate/800 oC, N2, 5h
0.96 0.86 16.7 15

16 N-doped GO
GO/5 oC, ultrasonic treatment, 

5 min
0.84 0.7 0.98 16

17 Co-N-C
Co(NO3)2, HvimNO3/600 oC, 

N2, 1h
0.96 0.8 7.85 17

18 Mn3O4/Ti3C2
Ti3C2 Mxene, Mn(AC)2 /150 

oC, 3h
0.89 0.8 25 18

19 N,P co-doped carbon [Hvim]H2PO4/560oC, N2, 1h 0.93 0.75 7.7 19

20 Fe-N-C

(Fe(NO3)3, nicarbazin, 

methylimidazole, glucoril , 

zinc, carbon nanotube and 

LM150 fumed silica/975 oC, 

N2, 45 min

0.96 0.83 10.7 20

21
N, P dual-doped 

carbon
melamine–diphenylphosphinic 

acid/1100 oC, N2, 1h
0.91 0.79 7.85 21

22
N, S copded 

carbon

Acetylene black, melamine and 

sluphur template/900 oC, 

vacuum, 1h

0.99 0.82 9.44 22

23
N-doped holey 

carbon
GO, zinc gluconate/900 oC, Ar 0.97 0.82 17.6 23

24 Fe-N-C
glycine, citric acid, and FeCl3 

/800 oC, N2, 2h
0.93 0.75 8 24

25
Graphdiyne doped 

with N
few-layer oxidised graphdiyne, 

melamine/900 oC, Ar, 3h
~1.0 0.87 9.32 25

26
Pyridinic-N- 

doped graphene
C3N4-GO/900 oC, N2, 3h 0.98 0.85 27.2 26

27
FeN4 Moiety/ 

MXene
Ti3C2Tx MXene and FePc/ 

stirred 20h
~0.93 0.86 20.8 27

28
Fe-N4-carbon 

fabric
GO, polyacrylonitril, FeCl3/900 

oC, NH3, 1h
0.93 0.73

Not 
Available

28

29 N-doped carbon Citric acid and NH4Cl/1000 oC, 0.95 0.82 19.62 29
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Ar, 3h

30
N-doped porous 

carbon
D-gluconic acid sodium/700oC, 

Ar, 1h
0.94 0.864 19 30

31
N-doped porous 

carbon

Bio-MOF-1 

Zn8(Ad)4(Bpdc)6O·2Me2NH2·8

DMF·11H2O/1000oC, Ar, 

1,2,3,4h.

0.96 0.84 9 31

32
S,N,F triple-doped 

carbon
Superfine PTFE, thiourea/800 

oC,Ar,1h
0.98 0.86 11.77 32

33
Pichlorohydrin-

dimethylamine copolyme 

modified CNT

Pichlorohydrin-dimethylamine 

copolyme modified CNT/700 

oC, 24h

0.87 0.7 0.2 33

34

N-doped CNT in 
Fe-

Nx/Fe2O3/Fe3O4-
encapsulated 
carbon sheet

Fe-Nx/Fe2O3/Fe3O4-
encapsulated carbon

0.95 0.85 34

35 N, P-doped carbon
[H2pyraz]2H2PO4/900

oC, N2, 1h
0.93 0.75 3.0

This 
work
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54 Fig. S4 LSVs for Cpyr prepared at various temperatures.
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58

59

60 Fig. S5 (a) LSV curves at various rotational speeds for Cmim, (b) K-Lplots for Cmim.

61

62

63

64

65 Table S3 Peak power density of ZABs with some reported ORR catalyst

Catalyst PPD (mW·cm-2) Reference

1 Pt/C+RuO2 80 34

2 Fe, N-doped 3D porous carbon 112 35

3 Pt/MoC/ nitrogen‐doped carbon 100 36

4 Pt/C+RuO2 50 37

5 Conjugated aromatic/Co-Fe 88 38

6 N,P co-doped carbon 117 This work
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72

73 Fig. S6 Picture of the Zn foil after discharging for 4 hours, the circled area is the working area.
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