Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Synthesis, Photochromic Properties, and Bioactivity of Spiropyrans with Electron Donating/Withdrawing Substituents on Indoline and [2H]-Chromene rings

Abir Kayal, Navjot Kaur and Mrinmoy De *

Department of Organic Chemistry,

Indian Institute of Science, Bangalore, Karnataka, 560012, India

Email: md@iisc.ac.in

Table of Contents

Entry	Content	Page No
1.	General Information	S2
2.	Synthetic scheme of different Spiropyran	S2-S3
3.	Characterization Data	S4-S9
4.	Kinetics spectra of all the spiropyrans	S10-S11
5.	¹ H NMR spectra of 2a before and after UV (370 nm) irradiation	S11-S13
6.	Antibacterial studies	S13
7.	UV-Vis spectra of all the spiropyran in acetonitrile	S14
8.	Kinetics of dark relaxations of all the spiropyran	S15
9.	Checking of full reversibility of compounds 1 and 4 by UV-Vis experiment	S16
10.	¹ H, ¹³ C and ¹⁹ F NMR copies	S17-S23

1.General Information

All reagents and solvents were purchased from the commercial market (Spectrochem, SRL, Alfa Aesar, TCI, and Sigma Aldrich) and used as such unless otherwise mentioned. Column chromatography was carried out with silica gel (200-300 mesh). Analytical Thin Layer Chromatography (TLC) was performed using silica gel 60 F254 precoated (0.25mm) and products were visualized under a UV chamber (254 nm and 365 nm). ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra were acquired on a Bruker Avance spectrometer operating at 400 MHz and 100 MHz, and 400 MHz respectively, with CDCl₃ as the solvent. Chemical shifts (δ) were referenced to residual solvent peaks (CHCl₃: δ = 7.28 ppm for ¹H-NMR; δ = 77.0 ppm for ¹³C-NMR). Signal multiplicities are denoted as follows: s (singlet), d (doublet), t (triplet), m (multiplet), and br (broad). The top spin 3.6.2 package was used for processing all the NMR. The High-Resolution Mass Spectra (HRMS) were measured on Water Xevo G2-XS Q-TOF equipped with Electrospray Ionization (ESI) using Time of Flight mass spectrometry. UV-vis absorption spectra were obtained on a Shimadzu UV-Vis-NIR spectrophotometer (Japan Analytical Instruments), operating in medium scan mode with 1.0 nm slit widths. Matched quartz cells were used for all measurements. UV and visible photoirradiation studies employed wavelengths of 370 nm and 440 nm respectively. All absorption scans were saved as ACS II files and processed using OriginLab software to generate the presented graphs.

2. Synthetic Scheme of different Spiropyran:

The spiropyran derivatives (1a, 2a, 3a, and 4a) were synthesized through a multi-step process involving condensation and functionalization reactions. Each spiropyran derivative was purified using column chromatography to achieve high purity. Structural confirmation was performed using ¹H-NMR, ¹³C-NMR, ¹⁹F-NMR and mass spectrometry.

Figure S1: Synthesis of different intermediates and the targeted spiropyran (1a and 2a).

Figure S2: Synthesis of different intermediates and the targeted spiropyran (3a and 4a).

3. Characterization Data:

5-fluro-2,3,3-trimethyl-3H-indole (A)

To a solution of 3-methyl-2-butanone (5.90 mL, 55.2 mmol, 2 equiv.) in glacial acetic acid (92 mL), 4-fluorophenyl hydrazine hydrochloride (4.49 g, 27.6 mmol, 1 equiv.) was added. The resulting suspension was heated to 140°C for 10 minutes to dissolve the starting materials completely. The reaction mixture was then stirred at room temperature for 5.5 hours. After completion, the mixture was evaporated to remove the solvent and extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography using a 1:11.5 mixture of ethyl acetate and hexane as the mobile phase, yielding pure product **A** (isolated yield: 93%).

- TLC (EtOAc: Hexane, 3:7 v/v): R_f = 0.35, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.51- 7.48 (m, 1H), 6.99 6.95 (m, 2H), 2.27 (s, 3H), 1.29 (s, 6H).
- ¹³C NMR (101 MHz, CDCl₃): δ 162.41, 159.98, 149.08, 147.50, 147.41, 120.42, 120.33, 114.20, 113.97, 109.16, 108.92, 54.07, 22.86, 15.11.
- **HRMS (ESI): calcd.** for C₁₁H₁₃NF +[M+H] + 178.1032; found: 178.1039.

1-(3-bromopropyl)-5-fluro-2,3,3-trimethyl-3H-indol-1-ium (B)

A solution of compound A (5.8 g, 32.8 mmol) and 1,3-dibromopropane (9.2 mL, 90 mmol) in acetonitrile (20 mL) was refluxed for 24 hours. After completion of the reaction and cooling to room temperature, the acetonitrile was removed under reduced pressure. A solvent mixture of acetone and diethyl ether (1:1) was added to the resulting oily residue, leading to the precipitation of a solid. The obtained solid was dried under vacuum and used directly in the next step without further purification.

• **HRMS (ESI): calcd.** for C₁₄H₁₈BrFN+[M+]+ 298.0601; found: 298.0602.

1-(3-bromopropyl)-5-fluoro-3,3-dimethyl-2-methyleneindoline (C)

Compound **B** (894 mg, 3 mmol) was dissolved in dichloromethane (DCM) (20 mL), and a 0.2 M aqueous NaOH solution (20 mL) was added. The mixture was stirred at room temperature for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with DCM (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford compound **C**. The crude product was used directly in the next step without further purification.

• **HRMS (ESI): calcd.** for C₁₄H₁₈BrFN+ [M+H] + 298.0606; found: 298.0604.

1'-(3-bromopropyl)-5'-fluoro-6-methoxy-3',3'-dimethylspiro[chromene-2,2'-indoline (1a)

A solution of compound C (0.637 g, 2.14 mmol) and 2-hydroxy-5-methoxybenzaldehyde (350 mg, 2.3 mmol) in tetrahydrofuran (THF) (30 mL) was refluxed for 18 hours under an argon atmosphere. After cooling the reaction mixture to room temperature, the THF was evaporated under reduced pressure. The residue was extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography using a 5:95 mixture of ethyl acetate and hexane as the mobile phase, yielding pure product **1a** (isolated yield: 70%).

- TLC (EtOAc: Hexane, 3:7 v/v): $R_f = 0.85$, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 6.87- 6.82 (m, 3H), 6.72 6.70 (m, 1H), 6.66 6.64 (m, 2H), 6.51- 6.48 (m, 1H), 5.73- 5.70 (d, J = 10.16 Hz, 1H), 3.78 (, 3H), 3.45- 3.38 (m, 3H), 3.25- 3.18 (m, 1H), 2.28- 2.21 (m, 1H), 2.12- 2.05 (m, 1H), 1.29 (s, 3H), 1.18 (s, 3H).
- ¹³C NMR (101 MHz, CDCl₃): δ 158.53, 156.18 (coupling due to F atom), 153.29, 148.07, 143.50, 138.57, 129.70, 120.08, 118.80, 115.58, 115.43 (coupling due to F atom), 113.15, 112.92 (coupling due to F atom), 111.61, 109.93, 109.70 (coupling due to F atom), 106.47, 106.39, 104.65, 55.79, 52.08, 42.29, 31.92, 31.39, 25.68, 20.01.

• **HRMS (ESI): calcd.** for C₂₂H₂₄BrFNO₂+[M+H]+ 432.0974; found: 432.0972.

1'-(3-bromopropyl)-5'-fluoro-3',3'-dimethyl-6-nitrospiro[chromene-2,2'-indoline (2a)

A solution of compound C (0.777 g, 2.66 mmol) and 2-hydroxy-5-methoxybenzaldehyde (434.2 mg, 2.66 mmol) in tetrahydrofuran (THF) (30 mL) was refluxed for 18 hours under an argon atmosphere. After cooling the reaction mixture to room temperature, the THF was evaporated under reduced pressure. The residue was extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography using a 4:96 mixture of ethyl acetate and hexane as the mobile phase, yielding pure product **2a** (isolated yield: 60%).

- TLC (EtOAc: Hexane, 3:7 v/v): R_f = 0.88, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 8.06- 8.03 (m, 2H), 6.97 6.94 (d, J = 10.26 Hz, 1H), 6.90 6.83 (m, 2H), 6.79- 6.76 (d, J = 8.68 Hz, 1H), 6.56- 6.53 (m, 1H), 5.89- 5.87 (d, J= 10.33Hz, 1H), 3.47- 3.36 (m, 3H), 3.29- 3.22 (m, 1H), 2.29- 2.20 (m, 1H), 2.12- 2.05 (m, 1H), 1.28 (s, 3H), 1.21 (s, 3H).
- ¹³C NMR (101 MHz, CDCl₃): δ 159.27, 158.89, 156.54, 142.92, 141.14 (coupling due to F atom), 137.88, 137.81(coupling due to F atom), 128.64, 126.01, 122.84, 121.39 (coupling due to F atom), 118.44, 115.53, 113.54, 113.31, 110.02, 109.78, 107.06, 106.98, 106.90 (coupling due to F atom), 52.68, 42.22, 31.62, 30.95, 25.71, 19.72.
- **HRMS (ESI): calcd.** for C₂₁H₂₁BrFN₂O₃+ [M+H] + 447.0720; found: 447.0724.

5-methoxy-2,3,3-trimethyl-3H-indole (D)

To a solution of 3-methyl-2-butanone (5.90 mL, 55.2 mmol, 2 equiv.) in glacial acetic acid (92 mL), 4-methoxyphenyl hydrazine hydrochloride (4.82 g, 27.6 mmol, 1 equiv.) was added. The resulting suspension was heated to 140° C for 10 minutes to dissolve the starting materials completely. The reaction mixture was then stirred at room temperature for 5.5 hours. After completion, the mixture was evaporated to remove the solvent and extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography using a 1:11.5 mixture of ethyl acetate and hexane as the mobile phase, yielding pure product **A** (isolated yield: 94%).

- TLC (EtOAc: Hexane, 3:7 v/v): R_f = 0.29, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.38- 7.36 (d, J = 8.35 Hz, 1H), 6.77 6.74 (m, 2H), 3.74 (s, 3H), 2.17 (s, 3H), 1.21 (s,6H).
- ¹³C NMR (101 MHz, CDCl₃): δ 185.74, 173.79, 157.87, 147.18, 119.96, 111.98, 108.04, 55.56, 53.67, 23.14, 15.18.
- **HRMS (ESI): calcd.** for C₁₂H₁₆NO+ [M+H] + 190.1232; found: 190.1235.

1-(3-bromopropyl)-5-methoxy-2,3,3-trimethyl-3H-indol-1-ium (E)

A solution of compound **D** (5.67 g, 30 mmol) and 1,3-dibromopropane (9.2 mL, 90 mmol) in acetonitrile (25 mL) was refluxed for 24 hours. After completion of the reaction and cooling to room temperature, the acetonitrile was removed under reduced pressure. A solvent mixture of acetone and diethyl ether (1:1) was added to the resulting oily residue, leading to the precipitation of a solid. The obtained solid was dried under a vacuum and used directly in the next step without further purification.

• **HRMS (ESI): calcd.** for C₁₅H₂₁BrNO+ [M+] + 310.0807; found: 310.0808.

1-(3-bromopropyl)-5-methoxy-3,3-dimethyl-2-methyleneindoline (F)

Compound E (927.21 mg, 3 mmol) was dissolved in dichloromethane (DCM) (20 mL), and a 0.2 M aqueous NaOH solution (20 mL) was added. The mixture was stirred at room temperature for 15 minutes. The organic layer was separated, and the aqueous layer was

extracted with DCM (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford compound **F**. The crude product was used directly in the next step without further purification.

• **HRMS (ESI):** calcd. for $C_{15}H_{21}BrNO+ [M+H] + 310.0807$; found: 310.0807.

1'-(3-bromopropyl)-5'-methoxy-3',3'-dimethyl-6-nitrospiro [chromene-2,2'-indoline (3a)

A solution of compound **F** (3.97 g, 12.84 mmol) and 2-hydroxy-5-nitrobenzaldehyde (2.17 gm, 13 mmol) in tetrahydrofuran (THF) (50 mL) was refluxed for 18 hours under an argon atmosphere. After cooling the reaction mixture to room temperature, the THF was evaporated under reduced pressure. The residue was extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography using a 5:95 mixture of ethyl acetate and hexane as the mobile phase, yielding pure product **3a** (isolated yield: 60%).

- TLC (EtOAc: Hexane, 3:7 v/v): R_f = 0.9, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 8.05- 8.02 (m, 2H), 6.95 6.93 (d, J = 10.40 Hz, 1H), 6.78 6.73 (m, 3H), 6.57- 6.55 (d, J = 8.00 Hz, 1H), 5.90- 5.87 (d, J = 10.35 Hz, 1H), 3.81 (s, 3H), 3.47- 3.35 (m, 1H), 3.27- 3.20 (m, 1H), 2.31- 2.22 (m, 1H), 2.11- 2.05 (m, 1H), 1.28 (s, 3H), 1.21 (s, 3H).
- ¹³C NMR (101 MHz, CDCl₃): δ 159.54, 154.18, 141.01, 137.71, 128.43, 125.94, 122.79, 121.75, 118.53, 115.53, 111.35, 109.84, 107.21, 106.93, 55.94, 52.79, 42.27, 31.77, 31.11, 25.86, 19.80.
- **HRMS (ESI): calcd.** for C₂₂H₂₄BrN₂O₄+ [M+H]+ 459.0919; found: 459.0917.

1'-(3-bromopropyl)-5',6-dimethoxy-3',3'-dimethylspiro[chromene-2,2'-indoline (4a)

A solution of compound F (1 gm, 3.23 mmol) and 2-hydroxy-5-nitrobenzaldehyde (0.52 gm, 3.4 mmol) in tetrahydrofuran (THF) (25 mL) was refluxed for 18 hours under an argon atmosphere. After cooling the reaction mixture to room temperature, the THF was evaporated under reduced pressure. The residue was extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography using a 5:95 mixture of ethyl acetate and hexane as the mobile phase, yielding pure product **4a** (isolated yield: 70%).

- TLC (EtOAc: Hexane, 3:7 v/v): $R_f = 0.8$, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 6.84- 6.81 (d, J= 10.21 Hz, 1H), 6.75 6.64 (m, 5H), 6.54 6.52 (d, J = 8.32 Hz, 1H), 5.74- 5.72 (d, J= 10.22Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.46- 3.37 (m, 3H), 3.23- 3.17 (m, 1H), 2.30- 2.23 (m, 1H), 2.13- 2.06 (m, 3H), 1.31 (s, 3H), 1.19 (s, 3H).
- ¹³C NMR (101 MHz, CDCl₃): δ 153.69, 153.20, 148.29, 141.69, 138.42, 129.45, 120.46, 118.90, 115.58, 111.57, 111.11, 109.88, 106.46, 104.67, 55.95, 55.79, 52.17, 42.39, 32.10, 31.51, 29.72, 25.81, 20.11.
- **HRMS (ESI): calcd.** for C₂₃H₂₆BrNO₃+ [M+H] + 444.1174; found: 444.1174.

4. Kinetics spectra of all the spiropyran

Fig S3. Time-dependent UV-Vis absorption spectral changes (a) and (b) for compounds 1a and 1b; (c) and (d) for compounds 2a and 2b.

Fig S4. Time-dependent UV-Vis absorption spectral changes (a) and (b) for compounds 3a and 3b; (c) and (d) for compounds 4a and 4b.

5. ¹H NMR spectra of 2a before and after UV (370 nm) irradiation

Procedure: The solution of the photochromic compound is irradiated in a thin quartz cuvette (l=2 mm, V=0.6 ml), and the irradiated solution is then poured into an NMR tube and the ¹H NMR spectra are recorded. DMSO-d₆ is taken as a solvent. The irradiation time is 5 min and 20 min.

After 5 min UV irradiation (370 nm)

J = 10.46 Hz

After 20 min UV irradiation (370 nm)

Fig S5. ¹H NMR spectra of compound 2a (DMSO-d₆ as a solvent) before and after UV irradiation.

6. Antibacterial studies

The antibacterial activity of the compounds was evaluated against *Staphylococcus aureus* (ATCC 25923) bacteria. Initially, the bacteria were revived from freeze-dried stock by plating on agar and incubating at 37°C. The resulting colonies were cultured overnight in Luria broth (LB, HiMedia – 20 g/L) to establish a primary culture. A secondary culture was prepared by inoculating 50 μ L of the primary culture into 5 mL of fresh LB and incubating at 37°C until the culture reached the mid-log phase (OD_{620nm} ~ 0.3). The bacterial suspension was then adjusted to an optical density of OD_{620nm} = 0.01 (approximately 10⁶ to 10⁷ CFU/mL) for subsequent experiments. The compound was first dissolved in 100% DMSO. It was then irradiated with UV light to generate the MC form of spiropyran. Immediately after obtaining the MC form, it was added to the PBS buffer containing the bacterial suspension for further testing. In a 96-well plate, 100 μ L of the bacterial suspension was mixed with 100 μ L of the compound solutions. Bacterial growth was monitored continuously for 12 hours using a microplate reader equipped with a shaker and incubator, maintained at 37°C. The minimum inhibitory concentration (MIC) was defined as the lowest concentration of the compound at which no increase in bacterial growth was observed.

7. UV-Vis spectra of all the spiropyran in acetonitrile

Fig S6. UV-Vis absorption spectra $(1 \times 10^{-6} \text{ M})$ in acetonitrile solvent: (a) 1a; (b) 2a; (c) 3a; (d) 4a.

8. Kinetics of dark relaxation of all the spiropyran

Fig S7. Kinetics of dark relaxation for all the spiropyran.

9. Checking of full reversibility of compounds 1 and 4 by UV-Vis experiment

Fig S8. UV-Vis absorption spectra $(1 \times 10^{-6} \text{ M})$ in DMSO solvent for compound 1b.

Fig S9. UV-Vis absorption spectra (1×10⁻⁶ M) in DMSO solvent for compound 4b. 10. ¹H, ¹³C and ¹⁹F NMR copies

¹H NMR (400 MHz, CDCl₃) spectra of compound **A** ¹³C NMR (101 MHz, CDCl₃) spectra of compound **A**

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) spectra of compound 1a

¹³C NMR (101 MHz, CDCl₃) spectra of compound 1a
¹⁹F NMR (101 MHz, CDCl₃) spectra of compound 1a

¹³C NMR (101 MHz, CDCl₃) spectra of compound 2a

¹⁹F NMR (101 MHz, CDCl₃) spectra of compound 2a

¹H NMR (400 MHz, CDCl₃) spectra of compound **D**

¹³C NMR (101 MHz, CDCl₃) spectra of compound **3a**

¹H NMR (400 MHz, CDCl₃) spectra of compound 4a

¹³C NMR (101 MHz, CDCl₃) spectra of compound 4a

