Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Selective C(sp²) –H Bond Radical Thiocyanation of Cyclic α , β -

Unsaturated Ketones

Mengyi Li, Yu Zhang, Yu Zhao, Jingfu Zhu, Yu Cheng, Wei Li*, Di Wu*

College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China

Email: wudihbu@163.com

1. General Experimental Information	
2. General Procedure for Synthesis of 2	S2
3. Failed Substrates	
4. Analytical Data of the Target Compounds	
5. References	
6. Copies of ¹ H and ¹³ C{ ¹ H} NMR Spectra	

1. General Experimental Information

All reactions were carried out under air atmosphere, unless otherwise stated. All chemicals were purchased from commercial companies or synthesized according to the literature method. ¹H NMR spectra were recorded on 400 MHz or 600 MHz in CDCl₃ or DMSO- d_6 . ¹³C{¹H} NMR spectra were recorded on 100 MHz or 150 MHz in CDCl₃ or DMSO- d_6 . The data is reported as (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, m = multiplet or unresolved, coupling constant(s) in Hz, integration, assignment).

2. General procedure for synthesis of 2

To a glass tube with substrate (0.1 mmol, 1.0 equiv), NTS (0.15 mmol, 1.5 equiv) and AIBN (0.05 mmol, 0.5 equiv) was added dry DMSO (1.0 mL) under air atmosphere, and it was stirred 5 h at 80 °C. The reaction mixture was purified by column chromatography on silica gel with eluent to afford the pure desired product.

3. Failed substrates

4. Analytical data of the target compounds

1,3-dimethyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2a)¹: white solid, (18 mg, 91% yield), mp: 98 – 100 °C, eluent EtOAc. ¹H NMR (600 MHz, DMSO- d_6) δ : 8.55 (s, 1H), 3.36 (s, 3H), 3.22 (s, 3H). ¹³C{₁H} NMR (150 MHz, DMSO- d_6) δ : 160.2, 151.5, 150.9, 111.1, 93.5, 37.0, 28.4.

1,3-dimethyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2b)¹: yellow solid, (16 mg, 71% yield), mp: 123 – 125 °C. eluent PE/EtOAc (2:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (s, 1H), 4.08 – 4.03 (m, 2H), 3.92 – 3.87(m, 2H), 1.38 (t, J = 8.0 Hz, 3H), 1.25 (t, J = 8.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 159.7, 150.1, 146.2, 109.7, 97.5, 46.1, 37.9, 14.6, 12.7.

1,3-diisopropyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2c)1: yellow oil, (20 mg, 79% yield), eluent

PE/EtOAc (1:1, v/v). 1H NMR (400 MHz, CDCl₃) δ : 7.66 (s, 1H), 5.24 – 5.17 (m, 1H), 4.92 – 4.86 (m, 1H), 1.47 (d, *J* = 4.0 Hz, 6H), 1.38 (d, *J* = 4.0 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 159.8, 150.2, 142.4, 110.0, 97.8, 49.5, 47.8, 21.7, 19.2.

1,3-dipropyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2d): yellow oil, (14 mg, 55% yield), eluent PE/EtOAc (2:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (s, 1H), 3.94 (t, *J* = 8.0 Hz, 3H), 3.78 (t, *J* = 8.0 Hz, 3H), 1.81 – 1.71 (m, 2H), 1.71 – 1.61 (m, 2H), 1.00 – 0.92 (m, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ : 159.8, 150.5, 146.1, 109.7, 97.6, 52.4, 44.2, 22.5, 20.8, 11.3, 11.0. HRMS (ESI) m/z: calcd. for C₁₁H₁₆N₃O₂S [M + H]⁺ 254.0958, found 254.0940.

1,3,6-trimethyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2e): white solid, (21 mg, 99% yield), mp: 131 – 133 °C, eluent EtOAc. ¹H NMR (400 MHz, CDCl₃) δ : 3.54 (s, 3H), 3.41 (s, 3H), 2.71 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ : 159.8, 159.1, 151.1, 110.0, 95.6, 33.8, 29.4, 20.0. HRMS (ESI) m/z: calcd. for C₈H₈N₃O₂S [M - H]⁻ 210.0343, found 210.0335.

6-amino-1,3-dimethyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2f)¹: white solid, (14 mg, 66% yield), mp: > 280 °C, eluent EtOAc. ¹H NMR (400 MHz, DMSO- d_6) δ : 7.87 (s, 2H), 3.34 (s, 3H), 3.15 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ : 160.2, 157.3, 150.3, 112.4, 66. 2, 31.0, 28.3.

1,3-diethyl-5-thiocyanato-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (2g): yellow oil, (10 mg, 41% yield), eluent PE/EtOAc (8:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ : 8.08 (s, 1H), 4.14 (q, *J* = 8.0 Hz, 2H), 3.21 (q, *J* = 8.0 Hz, 2H), 1.41 – 1.33 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.6, 158.7, 152.3, 109.3, 109.0, 41.1, 27.1, 14.0, 12.3. HRMS (ESI) m/z: calcd. for C₉H₁₂N₃OS₂ [M + H]⁺ 242.0416, found 242.0396.

3-methyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2h): colorless oil, (17 mg, 93% yield), eluent PE/EtOAc (1:1, v/v). ¹H NMR (400 MHz, DMSO- d_6) δ : 9.44 (s, 1H), 8.23 (s, 1H), 3.17 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ : 160.9, 151.4, 148.7, 111.5, 93.7, 27.7. HRMS (ESI) m/z: calcd. for C₆H₆N₃O₂S [M + H]⁺ 184.0175, found 184.0160.

6-amino-3-methyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2i): white solid, (18 mg, 91% yeild), mp: 270 – 272 °C, eluent DCM/CH₃OH (8:1, v/v). ¹H NMR (600 MHz, DMSO- d_6) δ : 11.00 (s, 1H), 7.23 (s, 2H), 3.09 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ : 162.0, 156.7, 150.2, 112.9, 66.4, 27.6. HRMS (ESI) m/z: calcd. for C₆H₇N₄O₂S [M + H]⁻ 199.0284, found 199.0289.

6-ethyl-1-methyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2j): colorless oil, (16 mg, 76% yeild), eluent PE/EtOAc (1:3, v/v). ¹H NMR (600 MHz, CDCl₃) δ : 10.86 (s, 1H), 3.39 (s, 3H), 2.90 (q, *J* = 6.0 Hz, 2H), 1.39 (t, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ : 162.2, 160.7, 152.4, 109.9, 95.4, 28.5, 26.7, 12,2. HRMS (ESI) m/z: calcd. for C₈H₈N₃O₂S [M - H]⁻ 210.0343, found 210.0333.

6-amino-1-methyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2k): white solid, (16 mg, 81% yield), mp: > 280 °C. eluent DCM/CH₃OH (5:1, v/v). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 11.07 (s, 1H), 7.90 (s, 2H), 3.27 (s, 3H). ¹³C {¹H} NMR (150 MHz, DMSO-*d*₆) δ: 160.6, 158.6, 149.9, 112.5, 66.0, 30.0.

6-methyl-5-thiocyanatopyrimidine-2,4(1H,3H)-dione (2l): white solid, (14 mg, 76% yield), mp: 219 – 221 °C, eluent EtOAc, ¹H NMR (400 MHz, DMSO- d_6) δ : 11.71 (s, 1H), 11.61 (s, 1H), 2.36(s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ : 161.3, 160.7, 150.1, 111.4, 93.3, 18.7. HRMS (ESI) m/z: calcd. for C₆H₆N₃O₂S [M + H]⁺ 184.0175, found 184.0186.

2m

3-amino-2-thiocyanatocyclohex-2-en-1-one (2m)²: white solid, (14 mg, 83% yield), mp: 165 – 167 °C, eluent DCM/CH₃OH (15:1, v/v). ¹H NMR (600 MHz, DMSO- d_6) δ : 8.20 (s, 1H), 7.79 (s, 1H), 2.60 (t, J = 6.0 Hz, 2H), 2.30 (t, J = 6.0 Hz, 2H), 1.82 – 1.78 (m, 2H). ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ : 189.9, 171.2, 112.5, 86.2, 36.7, 29.9, 20.1.

2n

3-amino-5,5-dimethyl-2-thiocyanatocyclohex-2-en-1-one (2n)²: white solid, (14 mg, 71% yield), mp: 149 – 151°C, eluent DCM/CH₃OH (15:1, v/v). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 8.23 (s, 1H), 7.88 (s, 1H), 2.47 (s, 2H), 2.20 (s, 2H), 0.94 (s, 6H). ¹³C {¹H} NMR (100 MHz, DMSO-*d*₆) δ: 189.4, 169.6, 112.6, 85.0, 50.1, 42.9, 31.4, 27.4.

1-methyl-2-phenyl-4-thiocyanato-1,2-dihydro-3H-pyrazol-3-one (20): white solid, (19 mg, 77% yield), mp: 120 – 122 °C, eluent EtOAc. ¹H NMR (400 MHz, CDCl₃) δ : 7.49 (t, J = 7.68 Hz, 2H), 7.39 (t, J = 7.36 Hz, 2H), 7.30 (d, J = 7.8 Hz, 1H), 3.29 (s, 3H), 2.47 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 163.1, 157.0, 133.7, 129.7, 128.6, 126.1, 110.9, 86.5, 35.1, 12.1. HRMS (ESI) m/z: calcd. for C₁₂H₁₀N₃OS [M - H]⁻ 244.0550, found 244.0558.

3-thiocyanatoquinolin-4(1H)-one (2p)³: white solid, (20 mg, 99% yield), mp: 219 – 221 °C, eluent PE/Acetone (2:1, v/v). ¹H NMR (400 MHz, DMSO- d_6) δ : 12.64 (s, 1H), 8.59 (s, 1H), 8.16 (d, J = 7.2 Hz, 1H), 7.75 (t, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 6.8 Hz, 1H). ¹³C {¹H} NMR (400 MHz, DMSO- d_6) δ : 173.2, 144.2, 139.6, 132.8, 125.2, 125.0, 124.5, 118.9, 111.8, 101.9.

1-methyl-3-thiocyanatoquinolin-4(1H)-one (2q): white solid, (20 mg, 92% yield), mp: 235 - 237 °C. eluent DCM/CH₃OH (15:1, v/v). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 8.76 (s, 1H), 8.37 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 3.92 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ : 172.8, 149.5, 140.4, 133.1, 125.8, 125.3, 125.3, 117.5, 111.7, 101.2, 40.7. HRMS (ESI) m/z: calcd. for C₁₁H₉N₂OS [M + H]⁺ 217.0430, found 217.0423.

1-allyl-3-thiocyanatoquinolin-4(1H)-one (2r): white solid, (16 mg, 66% yield), mp: 78 – 80 °C. eluent PE/Acetone (2:1, v/v). ¹H NMR (600 MHz, DMSO-*d*₆) δ : 8.76 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 7.81 (t, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 6.08 – 6.02 (m, 1H), 5.25 (d, *J* = 10.8 Hz, 1H), 5.16 (d, *J* = 17.4 Hz, 1H), 5.03 (d, *J* = 4.8 Hz, 2H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ : 172.8, 148.8, 139.5, 133.0, 132.5, 126.0, 125.5, 125.2, 118.2, 117.8, 111.6, 102.1, 54.5. HRMS (ESI) m/z: calcd. for C₁₃H₁₁N₂OS [M + H]⁺ 243.0587, found 243.0583.

2-methyl-3-thiocyanatoquinolin-4(1H)-one (2s)³: yellow solid, (21 mg, 97% yield), mp: 252 - 254 °C, eluent DCM/CH₃OH (15:1, v/v). ¹H NMR (600 MHz, DMSO-*d*₆) δ : 12.42 (s, 1H), 8.11 (d, *J* = 12.0 Hz, 1H), 7.73 (t, *J* = 12.0 Hz, 1H), 7.57 (d, *J* = 12.0 Hz, 1H), 7.42 (t, *J* = 12.0 Hz, 1H), 2.67 (s, 1H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ : 173.6, 155.8, 139.4, 133.3, 125.8, 125.2, 124.1, 118.7, 112.2, 101.4, 20.6.

6-methoxy-3-thiocyanatoquinolin-4(1H)-one (2t): yellow solid, (22 mg, 94% yield), mp: 240 – 242 °C, eluent DCM/CH₃OH (10:1, v/v). ¹H NMR (600 MHz, DMSO- d_6) δ : 12.85 (s, 1H), 8.5 (s, 1H), 7.65 (d, J = 9.0 Hz,1H), 7.53 (d, J = 3.0 Hz, 1H), 7.38 (dd, J = 9.0, 3.0 Hz, 1H), 3.86 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ : 172.6, 156.7, 142.8, 134.2, 125.7, 123.0, 120.8, 111.9, 104.5, 100.7, 55.5. HRMS (ESI) m/z: calcd. for C₁₁H₉N₂O₂S [M + H]⁺ 233.0379, found 233.0370.

5,7-dimethyl-3-thiocyanatoquinolin-4(1H)-one (2u): yellow solid, (21 mg, 91% yield), mp: > 260 °C. eluent PE/Acetone (1:1, v/v). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 12.28 (s, 1H), 8.25 (s, 1H), 7.18 (s, 1H), 6.97 (s, 1H), 2.77, (s, 3H), 2.35(s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ : 174.9, 142.1, 141.8, 141.5, 139.3, 128,8, 120.7, 116.2, 112.1, 103.6, 23.0, 21.1. HRMS (ESI) m/z: calcd. for C₁₂H₉N₂OS [M - H]⁻ 229.0441, found 229.0435.

7-methyl-3-thiocyanatoquinolin-4(1H)-one (2v): white solid, (18 mg, 83% yield), mp: > 280 °C. eluent DCM/CH₃OH (15:1, v/v). 1H NMR (400 MHz, DMSO- d_6) δ : 11.93 (s, 1H), 8.37 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 4.0 Hz, 1H), 7.36 (t, J = 8.0 HZ, 1H), 3.36 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ : 173.5, 143.4, 138.2, 133.6, 127.3, 124.7, 124.6, 123.1, 111.9, 102.5, 17.3. HRMS (ESI) m/z: calcd. for C₁₁H₇N₂OS [M - H]⁻ 215.0285, found 215.0281.

6-bromo-3-thiocyanatoquinolin-4(1H)-one (2w): white solid, (28 mg, 99% yield), mp: 223 – 225 °C. eluent PE/Acetone (2:1, v/v). ¹H NMR (600 MHz, DMSO-*d*₆) δ : 12.77 (s, 1H), 8.61 (s, 1H), 8.20 (d, *J* = 2.4 Hz, 1H), 7.87 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.59 (d, *J* = 9.0 Hz, 1H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ : 172.0, 144.5, 138.5, 135.5, 127.2, 125.8, 121.5, 117.6, 111.6, 102.6. HRMS (ESI) m/z: calcd. for C₁₀H₄BrN₂OS [M - H]⁻ 278.9233, found 278.9232.

7-chloro-3-thiocyanatoquinolin-4(1H)-one (2x): yellow solid, (20 mg, 85% yield), mp: 242 – 244 °C, eluent PE/Acetone (2:1, v/v). ¹H NMR (400 MHz, DMSO- d_6) δ : 12.66 (s, 1H), 8.63 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ : 173.2, 145.4, 140.9, 137.9, 128.0, 125.9, 123.7, 118.7, 112.2, 103.4. HRMS (ESI) m/z: calcd. for C₁₀H₄ClN₂OS [M - H]⁻ 234.9738, found 234.9731.

5-bromo-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3a)⁴: white solid, (20 mg, 91% yield), mp: 179 – 180 °C, eluent EtOAc. ¹H NMR (400 MHz, CDCl³) δ: 7.53 (s, 1H), 3.42 (s, 3H), 3.40 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ: 159.7, 151.2, 124.5, 95.9, 37.4, 29.3.

5-iodo-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4a)⁴: white solid, (22 mg, 83% yield), mp: 140 – 142 °C, eluent EtOAc,. ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 8.25 (s, 1H), 3.29 (s, 3H), 3.20 (s, 3H). ¹³C {¹H} NMR (100 MHz, DMSO- d_{δ}) δ : 160.4, 151.2, 149.0, 66.3, 36.5, 28.8.

5. References

- 1. M. Noikham and S. Yotphan, Eur. J. Org. Chem., 2019, 2759-2766.
- 2. P. Chauhan, R. Preeti, S. Kumar and N. Jain, Eur. J. Org. Chem., 2019, 4334-4340.
- 3. D. Ail, A. K. Panday and L. H. Choudhury, J. Org. Chem., 2020, 85, 13610-13620.

4. J. Asakura and M. J. Robins, J. Org. Chem., 1990, 55, 4928-4933.

6. Copies of ¹H and ¹³C{¹H} NMR Spectra

____2.36

11.71

____12.42

2.67

1. References

1 M. Noikham and S. Yotphan, Eur. J. Org. Chem., 2019, 2759-2766.

2 D. Ail, A. K. Panday and L. H. Choudhury, J. Org. Chem., 2020, 85, 13610-13620.

3 P. Chauhan, R. Preeti, S. Kumar and N. Jain, Eur. J. Org. Chem., 2019, 4334-4340.

4 J. Asakura and M. J. Robins, J. Org. Chem., 1990, 55, 4928-4933.