Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Small Far-Red Cationic Benzoquinone Diimine Dyes

Tatiana Munteanu,^a Carmelo Naim,^b Gabriel Canard,^a Denis Jacquemin,^{*,b,c} Olivier Siri^{*,a} and Simon Pascal^{*,a,b}

^a Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France

^b Nantes Université, CEISAM UMR 6230, CNRS, Nantes F-44000, France ^c Institut Universitaire de France (IUF), Paris F-75005, France

CONTENT

1. ADDITIONAL SYNTHETIC PROTOCOLS AND CHARACTERIZATIONS	2
2. NMR SPECTRA	5
3. HRMS SPECTRA	26
4. ADDITIONAL ELECTRONIC ABSORPTION SPECTRA	30
5. THEORETICAL DATA	32

1. ADDITIONAL SYNTHETIC PROTOCOLS AND CHARACTERIZATIONS

Scheme S 1. Attempted reactions to isolate other analogues of 1.H⁺.

5-Fluoro-*N*-(4-methoxyphenyl)-2,4-dinitroaniline (compound 5)

1,5-Difluoro-2,4-dinitrobenzene (205 mg, 1 mmol, 1 equiv.) was dissolved in 10 mL of acetonitrile and to the solution were added *p*-anisidine (123 mg, 1 mmol, 1 equiv.) and *N*,*N*-diisopropylethylamine (182 μ L, 1.05 mmol, 1.05 equiv.). The reaction was stirred at room temperature and monitored by TLC, until there were no more traces of starting material (after 2 h). Then, the mixture was evaporated, taken in 100 mL of dichloromethane, washed by 200 mL of water and extracted

with another 20 mL of dichloromethane. The combined organic layers were collected, dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated, to afford **5** as an orange powder (96% yield, 294 mg, 0.96 mmol).

¹H NMR (CDCl₃, 400 MHz): δ = 9.84 (br s, 1H, NH), 9.17 (d, ⁴*J*_{H-F} = 7.7 Hz, 1H, CH), 7.22 (d, ³*J* = 8.5 Hz, 2H, CH), 7.03 (d, ³*J* = 8.5 Hz, 2H, CH), 6.70 (d, ³*J*_{H-F} = 13.7 Hz, 1H, CH), 3.87 (s, 3H, CH₃). ¹³C NMR (CDCl₃, 101 MHz): δ = 161.1 (d, ¹*J*_{C-F} = 270.0 Hz, C), 159.5 (C), 149.3 (C), 149.2 (C), 128.7 (C), 127.9 (CH), 127.5 (CH), 115.6 (CH), 103.2 (d, ²*J*_{C-F} = 27.7 Hz, CH), 55.7 (CH₃). One signal corresponding to one of the aromatic quaternary carbon is overlapped. ¹⁹F (CDCl₃, 376 MHz): δ = -104.8. HRMS (ESI+) calculated for [M+H]⁺: 308.0677 (C₁₃H₁₁FN₃O₅⁺), found: 308.0679.

N^{1} -(5-Fluoro-2,4-dinitrophenyl)benzene-1,2-diamine (compound 6)

1,5-Difluoro-2,4-dinitrobenzene (205 mg, 1 mmol, 1 equiv.) was dissolved in 10 mL of acetonitrile and to the solution were added *o*-phenylenediamine (108 mg, 1 mmol, 1 equiv.) and *N*,*N*-diisopropylethylamine (182 μ L, 1.05 mmol, 1.05 equiv.). The reaction was stirred at room temperature and monitored by TLC, until there were no more traces of starting material (after 2 h). Then, the mixture

was evaporated, taken in 100 mL of dichloromethane, washed by 200 mL of water and extracted with another 20 mL of dichloromethane. The combined organic layers were collected, dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated, to afford **6** as a red powder (89% yield, 260 mg, 0.89 mmol).

¹H NMR (CDCI₃, 400 MHz): δ = 9.53 (br s, 1H, NH), 9.18 (d, ⁴*J*_{H-F} = 7.6 Hz, 1H, CH), 7.24 (d, ³*J* = 7.8 Hz, 1H, CH), 7.12 (d, ³*J* = 7.8 Hz, 1H, CH), 6.91 (m, 2H, CH), 6.53 (d, ³*J*_{H-F} = 13.3 Hz, 1H, CH), 3.83 (br s, 2 H, NH₂). ¹³C NMR (CDCI₃, 101 MHz): δ = 161.3 (d, ¹*J*_{C-F} = 270.3 Hz, C), 149.0 (d, ²*J*_{C-F} = 13.4 Hz, C), 142.9 (C), 130.2 (CH), 128.0 (d, ²*J*_{C-F} = 28.6 Hz, CH), 127.9 (C), 127.4 (C), 121.3 (C), 119.6 (CH), 117.0 (CH), 104.0 (CH), 103.7 (CH). ¹⁹F (CDCI₃, 376 MHz): δ = -104.62. HRMS (ESI+) calculated for [M+H]⁺: 293.0681 (C₁₂H₁₀FN₄O₄⁺), found: 293.0678.

2,4-Dinitro-*N*-phenylaniline (compound 7)

1-Fluoro-2,4-dinitrobenzene (186 mg, 1 mmol, 1 equiv.) was dissolved in 10 mL of acetonitrile and to the solution were added aniline (135 μ L, 1.5 mmol, 1.5 equiv.) and *N*,*N*-diisopropylethylamine (348 μ L, 2 mmol, 2 equiv.). The reaction was stirred at room temperature and monitored by TLC, until there were no more traces of starting material (after 2 h). Then, the mixture was evaporated, taken in 50 mL of

dichloromethane, washed by 100 mL of water and extracted with another 30 mL of dichloromethane. The combined organic layers were collected, dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated. The residue was purified by a silica gel plug using as eluent dichloromethane/petroleum ether (8:2) to afford **7** as an orange solid (88% yield, 150 mg, 0.88 mmol).

R_f: 0.8 (SiO₂, dichloromethane/petroleum ether, 8:2). ¹**H NMR (CDCI₃, 400 MHz)**: δ = 9.98 (br s, 1H, NH), 9.18 (s, 1H, CH), 8.18 (dd, ³*J* = 9.51 Hz, ⁴*J* = 2.14 Hz, 1H, CH), 7.41 (m, 1H, CH), 7.32 (d, ³*J* = 8 Hz, 2H, CH), 7.18 (d, ³*J* = 9.3 Hz, 1H, CH). ¹³**C NMR (CDCI₃, 101 MHz)**: δ = 147.2 (C), 137.5 (C), 136.8 (C), 131.2 (C), 130.3 (CH), 130.0 (CH), 127.8 (CH), 125.6 (CH), 124.2 (CH), 116.1 (CH). **HRMS (ESI+)** calculated for [M+H]⁺: 260.0666 (C₁₂H₁₀N₃O₄⁺), found: 260.0666.

N^{1} -(2,4-Dinitrophenyl)- N^{4} , N^{4} -dimethylbenzene-1,4-diamine (compound 8)

1-Fluoro-2,4-dinitrobenzene (186 mg, 1 mmol, 1 equiv.) was dissolved in a mixture of 10 mL acetonitrile and 3 mL dichloromethane and to the solution were added *N*,*N*-dimethyl-*p*-phenylenediamine dihydrochloride (209 mg, 1 mmol, 1 equiv.) and *N*,*N*-diisopropylethylamine (870 μ L, 5 mmol, 5 equiv.). The reaction was stirred at room temperature and monitored by TLC, until there were no more traces of starting material (after 2 h). Then, the mixture was evaporated, taken in 100 mL of

dichloromethane, washed by 100 mL of water and extracted with another 30 mL of dichloromethane. The combined organic layers were collected, dried over anhydrous Na_2SO_4 , filtered and the solvent was evaporated. The residue was purified by silica gel chromatography using as eluent dichloromethane/petroleum ether (8:2) to afford **8** as a brown solid (97% yield, 295 mg, 0.97 mmol).

R_f: 0.6 (SiO₂, dichloromethane/petroleum ether, 8:2). ¹**H NMR (CDCI₃, 400 MHz)**: δ = 9.86 (br s, 1H, NH), 9.12 (d, ⁴*J* = 2.47 Hz, 1H, CH), 8.10 (dd, ³*J* = 9.56 Hz, ⁴*J* = 2.46 Hz, 1H, CH), 7.13 (d, ³*J* = 8.6 Hz, 2H, CH), 7.04 (d, ³*J* = 9.4 Hz, 1H, CH), 6.77 (d, ³*J* = 8.9 Hz, 2H, CH), 3.01 (s, 6H, CH₃). ¹³**C NMR (CDCI₃, 101 MHz)**: δ = 149.9 (C), 148.4 (C), 136.6 (C), 130.4 (C), 129.7 (CH), 127.0 (CH), 124.8 (C), 124.2 (CH), 116.3 (CH), 113.0 (CH), 40.5 (CH₃). **HRMS (ESI+)** calculated for [M+H]⁺: 303.1088 (C₁₄H₁₅N₄O₄⁺), found: 303.1088.

2. NMR SPECTRA

Figure S 1. ¹H NMR (400 MHz, 298 K, CDCl₃) of compound **3**. Asterisks indicate the residual solvent peaks.

Figure S 2. ¹³C NMR (101 MHz, 298 K, CDCl₃) of compound **3**. Asterisks indicate the residual solvent peaks.

Figure S 3. ¹⁹F NMR (376 MHz, 298 K, CDCl₃) of compound **3**.

Figure S 4. ¹H NMR (400 MHz, 298 K, CD₃OD) of compound **1**•H⁺. Asterisks indicate the residual solvent peaks.

Figure S 5. ¹³C NMR (101 MHz, 298 K, CD₃OD) of compound **1·H**⁺. Asterisks indicate the residual solvent peaks.

Figure S 6. ¹⁹F NMR (376 MHz, 298 K, CD₃OD) of compound **1·H**⁺.

Figure S 7. ¹H NMR (400 MHz, 298 K, CD₃OD) of compound **2·H**⁺. Asterisks indicate the residual solvent peaks.

Figure S 8. ¹H NMR (400 MHz, 298 K, DMSO-*d*₆) of compound **2**•H⁺. Asterisks indicate the residual solvent peaks.

Figure S 9. ¹³C NMR (101 MHz, 298 K, CD₃OD, DEPT135) of compound **2·H**⁺. Asterisk indicates the residual solvent peaks.

Figure S 10. ¹H NMR (400 MHz, 298 K, CD₃OD) of compound **2**•H⁺ PF₆⁻. Asterisks indicate the residual solvent peaks.

Figure S 11. ¹⁹F NMR (376 MHz, 298 K, CD₃OD) of compound **2**•H⁺ PF₆⁻.

Figure S 12. ¹H NMR (400 MHz, 298 K, CDCl₃) of compound **5**. Asterisks indicate the residual solvent peaks.

Figure S 13. ¹³C NMR (101 MHz, 298 K, CDCl₃) of compound **5**. Asterisks indicate the residual solvent peaks.

Figure S 15. ¹H NMR (400 MHz, 298 K, CDCl₃) of compound **6**. Asterisks indicate the residual solvent peaks.

Figure S 16. ¹³C NMR (101 MHz, 298 K, CDCl₃) of compound **6**. Asterisks indicate the residual solvent peaks.

100 90 f1 (ppm)

Figure S 18. ¹H NMR (400 MHz, 298 K, CDCl₃) of compound **7**. Asterisks indicate the residual solvent peaks.

TM668-c single pulse decoupled gated NOE

Figure S 19. ¹³C NMR (101 MHz, 298 K, CDCl₃) of compound **7**. Asterisks indicate the residual solvent peaks.

Figure S 20. ¹H NMR (400 MHz, 298 K, CDCl₃) of compound 8. Asterisks indicate the residual solvent peaks.

Figure S 21. ¹³C NMR (101 MHz, 298 K, CDCl₃) of compound **8**. Asterisks indicate the residual solvent peaks.

3. HRMS SPECTRA

Figure S 22. HRMS (ES+) of compound 1·H⁺.

Figure S 23. HRMS (ES+) of compound 2·H+.

321.0992

1: TOF MS ES+ 6.66e6

Figure S 25. HRMS (ES+) of compound 5. The peaks at m/z = 325 and m/z = 315 were attributed to the ammonium and respectively sodium adduct of compound 5.

TM603 Mex1 4 (0.123) AM2 (Ar, 18000.0, 0.00, 0.00); Cm (1:20)

1: TOF MS ES+ 1.86e6

Figure S 26. HRMS (ES+) of compound 6. The peak at m/z = 315 was attributed to the sodium adduct of compound 6.

1: TOF MS ES+ 3.45e6 303.1088 100- NO_2 O_2N H^+ NH Chemical Formula: C₁₄H₁₅N₄O₄⁺ Exact Mass: 303,1088 0-|--- 250 m/z 255 260 295 265 270 275 280 285 290 300 305 310 315 320 325 330 335 340 345 350

Figure S 28. HRMS (ES+) of compound 8. The signal annotated by a black circle is an ion present in the mass spectrum of the analytical blank and is therefore not specific to the sample.

4. ADDITIONAL ELECTRONIC ABSORPTION SPECTRA

Figure S 29. Electronic absorption spectra of $1 \cdot H^+$ in dichloromethane and its stepwise protonation with TFA (c = 3.774×10^{-5} M).

Figure S 30. Electronic absorption spectra of 2^{+H^+} in dichloromethane and its stepwise protonation with TFA (c = 1.927×10^{-5} M).

Figure S 31. Electronic absorption solvatochromism of 1·H⁺ and 2·H⁺.

5. THEORETICAL DATA

Conformational Analysis

Table S 1. Summary of the three most significant isomers and tautomers of compound 1 and its corresponding mono- and di-cations, as identified in the study. The table presents the relative Gibbs free energy (Δ G) in kcal/mol with respect to the lowest-energy isomer, along with the percentage contribution of each isomer according to the Boltzmann law. For further details on the computational methods used, refer to the Computational Details section.

1	n de aler in Aler de aler	ydyd dydyda	n de se d Se de se d Se de se d
ΔG [Kcal/mol] (%)	0.0 (99.7)	3.6 (0.3)	20.1 (0.0)
1•H⁺	and the second sec		
ΔG [Kcal/mol] (%)	0.0 (100.0)	13.0 (0.0)	17.5 (0.0)
1•2H ²⁺			
ΔG [Kcal/mol] (%)	0.0 (100.0)	10.8 (0.0)	10.9 (0.0)

Table S 2. Summary of the three most significant isomers and tautomers of compound 2 and its corresponding
cations, as identified in the study. See caption of Table S 1 for more details.

2			ng ting ting ting ting ting ting ting ti
∆G [Kcal/mol] (%)	0 (100.0)	8.1 (0.0)	8.3 (0.0)
2•H⁺	Andreas - Andrea		
ΔG [Kcal/mol] (%)	0.0 (73.0)	0.6 (26.8)	3.6 (0.2)
2•2H ²⁺	in ghant. ghantar gha ang gha nanga gha nanga gha nanga		i di stanti Salari Sala
ΔG [Kcal/mol] (%)	0.0 (99.8)	3.8 (0.2)	6.5 (0.0)
2•3H ³⁺	Angland Anglan		
ΔG [Kcal/mol] (%)	0.0 (100.0)	6.7 (0.0)	9.5 (0.0)

Excited states calculations

Table S 3. Vertical excitation wavelengths and oscillator strengths of relevant transitions, computed using the protocol outlined in the computational details. The composition of each excited state is also included, where H identifies the HOMO orbital and L identifies the LUMO, and the quantity into parentheses represents the percentage contribution of such transition into the excitation.

Molecule	State	λ ^{cir2} [nm]	λ ^{cir2+cc2} [nm]	f ^{TD-DFT}	Orbital contibution (%)
1	1	468	497	0.5	H→L (90)
1•H⁺	1	597	699	0.8	H→L (90)
1•H ²⁺	1	428	449	0.1	H→L (90)
	1	471	503	0.2	H→L (84)
2	2	400	427	0.3	H-1→L (68), H-2→L (20)
	3	339	356	0.3	H-2→L (66), H-1→L (-16)
	1	615	732	0.7	H→L (82)
2•H ¹⁺ (1)	2	539	641	0.1	H-1→L (76)
	3	409	438	0.1	H-2→L (84)
	1	624	763	0.5	H→L (90)
2•H ¹⁺ (2)	2	530	619	0.1	H-1→L (88)
	3	428	464	0.1	H-2→L (82)
	1	626	777	0.1	H→L (80)
2•H ²⁺	2	448	480	0.1	H-1→L (72)
	3	395	409	0.1	H-2→L (72)
	1	493	520	0.1	H→L (88)
2•H ³⁺	2	410	452	0.1	H-1→L (50), H-2→L (36)
	3	355	379	0.4	H-2→L (-42), H-1→L (40)

Orbitals involved in the relevant excited states

1		A CONTRACT OF CONTRACT.	
	НОМО	LUMO	
1•H ¹⁺			
	НОМО	LUMO	
1•2H ²⁺			
	НОМО	LUMO	

Table S 4. HOMO and LUMO orbital representations for compound 1 and the corresponding cations.All plots were generated using an isosurface value of 0.1.

2	HOMO-2	HOMO-1	HOMO	LUMO
2•H ¹⁺ (1)		South States	Berthe Street	No. of the second secon
2•H ¹⁺ (2)	HOMO-2	HOMO-1	HOMO	LUMO
2•2H ²⁺	HOMO-2	HOMO-1	номо	LUMO
	HOMO-2	HOMO-1	HOMO	LUMO
2•3H³+	HOMO-2	HOMO-1	НОМО	LUMO

 Table S 5. HOMO-2, HOMO-1, HOMO and LUMO orbital representations for compound 2 and the corresponding cations. All plots were generated using an isosurface value of 0.1.

Further electronic density difference plots

Figure S 32. Electronic density differences (EDD (2)) between the ground (S_0) and the second excited state (S_2) for molecule **2**, and its corresponding cationic forms. Zones in red indicate an increase in electronic density between S_0 to S_2 , while blue regions indicate a decrease. The isosurfaces are visualized with an isovalue of 0.003.

Figure S 33. Electronic density differences (EDD (3)) between the ground (S_0) and the third excited state (S_3) for molecule **2**, and its corresponding cationic forms. See caption of Figure S 32 for more details.

Figure S 34. Electronic density differences (EDD) between the ground (S₀), the first (S₁), the second (S₂), and the third (S₃) excited states for molecule **2·H¹⁺ (2)**. See caption of Figure S 32 for more details.

Vibrationally resolved spectra of molecule 2·H⁺

Figure S 35. Theoretical absorption spectra of the two conformers 2-H¹⁺ (1) and (2).