Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

# **Supporting Information**

## A Domino Decarboxylative Alkylation/Annulation for the Synthesis of Pyrrolo-benzimidazolones

Chada Raji Reddy,\*,<sup>a,b</sup> Kolli Sai Prakash,<sup>ab</sup> Ejjirotu Srinivasua<sup>a</sup>, Muppidi Subbarao<sup>a</sup> and Shiva Kumar Kota Balaji<sup>a,b</sup>

<sup>a</sup>Department of Organic Synthesis & Process Chemistry

CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India

<sup>b</sup>Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002, India

E-mail: rajireddy@iict.res.in

#### **Table of Contents**

| 1 | Structures of Aliphatic Carboxylic acids                                            | S2     |
|---|-------------------------------------------------------------------------------------|--------|
| 2 | Structures of Pyrrolo[1,2-a]benzimidazol-1-ones                                     | \$3    |
| 3 | X-Ray Crystal DATA                                                                  | S4     |
| 4 | <sup>1</sup> H NMR, <sup>13</sup> C NMR and <sup>19</sup> F spectra of the products | S5-S61 |

### **1. Structures of Aliphatic Carboxylic acids**

Commercially accessible aliphatic acids (2) were utilized in the synthesis of pyrrolo-benzimidazolone.



### 2. Structures of Pyrrolo[1,2-*a*]benzimidazol-1-ones:

Commercially accessible substituted phenyl propiolic acids (6) were utilized in the synthesis of substituted N-Propiolyl Phenyl benzimidazole

(1).



#### Crystal structure determination of 3a

**Crystal Data** for C<sub>20</sub>H<sub>18</sub>N<sub>2</sub>O (M =302.36 g/mol): monoclinic, space group P2<sub>1</sub>/n (no. 14), a = 12.363(3) Å, b = 9.134(2) Å, c = 14.586(3) Å,  $\beta$  = 91.078(10)°, V = 1646.9(7) Å<sup>3</sup>, Z = 4, T = 294.15 K,  $\mu$ (MoK $\alpha$ ) = 0.076 mm<sup>-1</sup>, Dcalc = 1.220 g/cm<sup>3</sup>, 10590 reflections measured (6.592° ≤ 2 $\Theta$  ≤ 49.986°), 2838 unique ( $R_{int}$  = 0.0622,  $R_{sigma}$  = 0.0753) which were used in all calculations. The final  $R_1$  was 0.0576 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1491 (all data). **CCDC 2418004** deposition number contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>



**Figure caption**: ORTEP diagram of **3a** compound with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Atoms C2/C3 were disordered over two positions and their site occupational factors were refined to 0.57(9) and 0.43(9) respectively. The minor disordered atoms were omitted for clarity.

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.





<sup>1</sup>H NMR (300 MHz, CDCI<sub>3</sub>)





































































S3L









Ö 31

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)























-10

0

















-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 f1 (ppm)







f1 (ppm)





