Ru(II)-catalyzed oxidative C-H spiroannulation of 4-arylquinazolin-2-ones with alkynes.

Chidrawar Ajay,^{a,c} B. Sridhar,^b B. V. Subba Reddy^{a,c*}

^aFluoro-Agrochemicals, ^bLaboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; ^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. E-mail: <u>basireddy@iict.res.in</u>

Table of Content

1.	Experimental procedures	S2-3
2.	Mechanistic Studies	
3.	NMR spectra of products	
4.	X-ray Crystallography	

1. Experimental

All solvents were dried by a standard literature procedure. Crude products were purified by column chromatography on silica gel (60–120 or 100-200 mesh). Thin layer chromatography (**TLC**) plates were visualized by exposure to ultraviolet light at 254 nm, and by exposure to iodine vapours and/or by exposure to methanolic acidic solution of *p*-anisaldehyde followed by heating (<1 min) on a hot plate (~250°C). Organic solvents were concentrated on rotary evaporator at 35–40 °C. Melting points (**m.p**) were measured on Buchi B-540. ¹H and ¹³C **NMR** (proton-decoupled) spectra were recorded in CDCl₃ on 300, 400 or 500 MHz NMR spectrometer. Chemical shifts (δ) were reported in parts per million (ppm) with respect to TMS as an internal standard. Coupling constants (*J*) are quoted in hertz (Hz). Mass spectra and **HRMS** were recorded on mass spectrometer by Electrospray ionization (ESI) or Atmospheric pressure chemical ionization (APCI) technique.

Typical Procedure:

To an oven dried sealed tube equipped with a stir bar were charged with 4-phenylquinazolin-2(1*H*)-one (**1a**, 100 mg, 1.0 equiv), diphenylacetylene (**2a**, 80 mg, 1.0 equiv) in 3 mL of 1,2-DCE, followed by the addition of [(*p*-cymene)RuCl₂]₂ (8.3 mg, 3 mol%) and NaOAc (60 mg, 1.0 equiv) as an additive at room temperature. The resulting mixture was stirred at 90 °C for 4-6h and then diluted with DCM. Then the mixture was diluted water and the aqueous layer was extracted with DCM (2×10 mL). The organic layer was evaporated and the residue was purified by column chromatography (R_f = 0.5) (SiO₂, EtOAc:*n*-Hexane, 4/6) to give the **3a** as a white solid in 94% (169 mg) yield.

Synthetic transformations:

N-Alkylation:

To an oven dried sealed tube was equipped with a stir bar and charged with 3a (1 equiv), NaH (2 equiv) in THF at 0-5 °C and then CH₃I (2 equiv) was added *via* syringe while stirring. Then

the reaction mixture was stirred at room temp for 0.5 h and diluted with ethyl acetate. The mixture was filtered through celite bed and washed with ethyl acetate and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane) to afford the product in 95% yield.

Suzuki Coupling

A sealed tube containing $PdCl_2(PPh_3)_2$ (10 mol%) and **3h** (1 equiv) and *m*-tolylboronic acid (1.1 equiv) K_2CO_3 (2 equiv) was purged with nitrogen three times and then THF (3ml) was added *via* syringe. The reaction mixture was stirred at 80 °C for 1h and then diluted with ethyl acetate and filtered through celite bed and washed with ethyl acetate. The solvent was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane) to afford the product in 93% yield.

3. Mechanistic Studies:(a) H/D exchange experiment:

To an oven dried sealed tube equipped with a stir bar were charged with 4-(*p*-tolyl)quinazolin-2(1H)-one (**1g**, 1.0 equiv) and CD₃OD:DCE (1:9, 3 mL), followed by the addition of [Ru(*p*cym)Cl₂]₂ catalyst (3 mol%) and NaOAc (1 equiv) as an additive at room temperature. The resulting mixture was stirred at 90 °C for 8h and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc/hexane as an eluent to afford the mixture of products **1g** and **1g-d₂**. The deuterium content of the product was 80%, which was determined by ¹H NMR.

4-(p-tolyl)quinazolin-2(1H)-one

(b) D/H exchange experiment:

To an oven dried sealed tube equipped with a stir bar and charged with deuterated 4-(p-tolyl)quinazolin-2(1H)-one (**1g-d**₂, 1.0 equiv) and CH₃OH:DCE (1:9, 3 mL), followed by addition of [Ru(p-cym)Cl₂]₂ catalyst (3 mol%) and NaOAc as an additive (1 equiv) at room temperature. The resulting mixture was stirred at 90 °C for 8h and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc/hexane as an eluent to afford the product **1g**.

(c) H/D scrambling experiment with alkyne partner

To an oven dried sealed tube equipped with a stir bar were charged with $1g-d_2$ (1.0 equiv) and 1,2-di(thiophen-2-yl)ethyne (2e, 1 equiv) under the optimized conditions. The resulting mixture was stirred at 90 °C for 3h and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc/hexane to give the desired product, which was a mixture of 3s and 3s-d₂. The ratio of 3s and 3s-d₂ was determined by ¹H NMR.

¹H NMR (400 MHz, DMSO-d₆) spectrum of 1g:

¹H NMR (500 MHz, DMSO-d₆) spectrum of 1g and 1g-d₂ mixture:

¹H NMR (400MHz, DMSO-d₆) spectrum of 3s and 3s-d₂ mixture:

(d) Competitive KIE experiment between 1g and 1g-d₂:

To an oven dried sealed tube equipped with a stir bar were charged with 4-(*p*-tolyl)quinazolin-2(1*H*)-one (**1c**, 1.0 equiv), **1cd**₂ (1.0 equiv) and 1,2-di(thiophen-2-yl)ethyne (**2e**, 1.0 equiv) under optimized conditions. The resulting mixture was stirred at 90 °C for 4h and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc/hexane to give the desired product, which is a mixture of **3s** and **3s-d**₂. The ratio of product formation of **3s** and **3s-d**₂ was determined by ¹H NMR. The calculated $K_{\rm H}/K_{\rm D}$ =2.33.

¹H NMR (500MHz, CDCl₃) spectrum of 3s and 3s-d₂ mixture:

Characterization data of products

2,3-Diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3a:

White solid (0.169g, 94%) mp 272-274 °C, ¹H NMR (300 MHz, DMSO) δ 9.28 (s, 1H), 7.49 (s, 1H), 7.41 (s, 1H), 7.39 (s, 1H), 7.36 (s, 2H), 7.34 (s, 1H), 7.32 (d, *J* = 1.4 Hz, 1H), 7.30 (s, 1H), 7.25 (d, *J* = 6.9 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 2H), 7.11 (s, 1H), 7.08 (d, *J* = 4.8 Hz, 1H), 7.03 (d, *J* = 1.9 Hz, 1H), 7.01 (d, *J* = 4.1 Hz, 1H), 6.81 (d, *J* = 7.9 Hz, 1H), 6.73 (s, 1H), 6.72 (s, 1H).¹³C NMR (101 MHz, CDCl₃) δ 154.2, 151.6, 148.3, 141.9, 140.1, 137.1, 134.0, 133.8, 131.6, 129.5, 129.3, 128.9, 128.8, 128.6, 128.1, 128.0, 127.6, 127.5, 125.3, 123.9, 122.7, 121.2, 119.6, 115.0, 72.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₂₁N₂O: 401.1654 found: 401.1647.

5-Methoxy-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3b:

Pale yellow solid (0.165g, 97%) 256-258 °C¹H NMR (500 MHz, DMSO) δ 9.23 (s, 1H), 7.44 (s, 1H), 7.42 – 7.40 (m, 1H), 7.38 (s, 1H), 7.36 – 7.32 (m, 3H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.13 – 7.09 (m, 3H), 7.09 – 7.06 (m, 1H), 7.00 (d, *J* = 1.5 Hz, 1H), 6.99 (d, *J* = 2.2 Hz, 1H), 6.81 – 6.77 (m, 2H), 6.75 – 6.70 (m, 2H), 6.67 (d, *J* = 2.2 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 160.3, 153.4, 150.0, 145.8, 143.6, 139.4, 138.7, 135.0, 134.4, 129.9, 129.5, 129.1, 128.7, 128.3, 128.1, 127.7, 125.2, 124.4, 121.8, 119.8, 114.9, 112.2, 107.0, 71.8, 55.8. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₂₂N₂O₂: 431.1760 found: 431.1754.

5-Methyl-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3c:

White solid (0.165g, 94%) mp 284-286 °C, ¹H NMR (500 MHz, DMSO) δ 9.24 (s, 1H), 7.44 (s, 1H), 7.39 (d, *J* = 7.1 Hz, 2H), 7.34 (t, *J* = 6.6 Hz, 3H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.11 – 7.07 (m, 4H), 7.04 (d, *J* = 7.8 Hz, 1H), 7.01 (d, *J* = 1.4 Hz, 1H), 6.99 (d, *J* = 2.2 Hz, 1H), 6.97 (s, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 6.72 (d, *J* = 6.3 Hz, 2H), 2.30 (s, 3H).¹³C NMR (126 MHz, DMSO) δ 153.5, 150.8, 148.8, 142.2, 139.9, 138.6, 138.2, 135.0, 134.6, 129.9, 129.5, 129.1, 128.8, 128.3, 128.1, 127.6, 125.2, 123.3, 121.8, 121.5, 119.7, 114.9, 72.1, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₂₃N₂O: 415.1810 found: 415.1791.

5-Fluoro-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3d:

White solid (0.153g, 88%) mp 266-268 °C, ¹H NMR (400 MHz, DMSO-D₆) δ 9.29 (s, 1H), 7.52 (s, 1H), 7.41 (d, *J* = 1.5 Hz, 1H), 7.39 (s, 1H), 7.36 (s, 1H), 7.34 – 7.30 (m, 2H), 7.15 – 7.12 (m, 3H), 7.11 – 7.09 (m, 1H), 7.09 – 7.04 (m, 1H), 7.03 – 6.98 (m, 2H), 6.91 (dd, *J* = 9.1, 2.4 Hz, 1H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.77 – 6.71 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 162.2 (d, *J*_{C-F} = 245.2 Hz), 161.9 (d, *J*_{C-F} = 245.0 Hz), 153.2, 152.6, 147.3, 141.6, 139.6, 138.0, 131.8 (d, *J*_{C-F} = 8.3 Hz), 131.7 (d, *J*_{C-F} = 8.3 Hz), 121.2 (d, *J*_{C-F} = 14.7 Hz), 116.2 (d, *J*_{C-F} = 21.4 Hz), 115.5 (d, *J*_{C-F} = 21.3 Hz)., 130.8, 130.3, 129.3, 129.1, 128.0, 125.2, 124.4, 123.7, 121.2 (d, *J* = 14.7 Hz), 116.8, 116.2 (d, *J*_{C-F} = 21.4 Hz), 115.5 (d, *J*_{C-F} = 21.3 Hz). 72.0. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₈H₂₀N₂FO: 419.1560 found: 419.1547.

5-Chloro-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3e:

White solid (0.154g, 91%) mp 252-254°C,¹H NMR (300 MHz, DMSO) δ 9.45 (s, 1H), 7.64 (s, 1H), 7.44 – 7.40 (m, 1H), 7.39 (s, 1H), 7.37 (s, 2H), 7.35 (d, *J* = 3.5 Hz, 3H), 7.29 (d, *J* = 6.7 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.18 – 7.12 (m, 4H), 7.06 – 7.00 (m, 2H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.61 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 153.1, 152.9, 148.2, 141.8, 140.2, 138.0, 134.6, 134.2, 129.8, 129.5, 129.2, 129.0, 128.4, 128.3, 127.9, 127.8, 125.1, 124.4, 123.6, 121.6, 121.2, 116.8, 72.1. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₂₀N₂OCI: 435.1031found: 431.1020.

5-Fluoro-2,3-diphenyl-1'H-spiro[indene-1,4'-quinazolin]-2'(3'H)-one 3f:

Pale yellow solid (0.155g. 89%) 268-270 °C, ¹H NMR (300 MHz, DMSO) δ 9.27 (s, 1H), 7.50 (s, 1H), 7.42 – 7.38 (m, 1H), 7.36 (s, 1H), 7.35 – 7.32 (m, 2H), 7.31 (d, *J* = 1.2 Hz, 1H), 7.29 (d, *J* = 5.1 Hz, 1H), 7.14 – 7.11 (m, 2H), 7.11 – 7.07 (m, 2H), 7.06 – 7.02 (m, 1H), 6.88 (dd, *J* = 9.1, 2.4 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.73 – 6.68 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 163.1 (d, *J*_{C-F} = 242.9 Hz), 153.3, 150.0, 149.0, 143.8 (d, *J*_{C-F} = 8.7 Hz), 138.8, 138.3, 133.3 (d, *J*_{C-F} = 6.1 Hz), 133.0, 132.4, 131.5, 131.3, 129.5, 129.2, 128.6, 125.2 (d, *J*_{C-F} = 8.8 Hz), 125.1, 122.0, 118.4, 115.1, 114.1 (d, *J*_{C-F} = 23.1 Hz), 108.3 (d, *J*_{C-F} = 24.1 Hz),71.9. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₈H₂₀N₂FO: 419.1560 found: 419.1547

8'-Bromo-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3g:

Grey solid, (0.134g,84%) mp 248-250 °C, ¹H NMR (500 MHz, DMSO) δ 8.12 (s, 1H), 7.94 (d, J = 1.5 Hz, 1H), 7.49 – 7.46 (m, 2H), 7.46 (d, J = 6.2 Hz, 1H), 7.42 (s, 2H), 7.41 (s, 2H), 7.40 – 7.38 (m, 1H), 7.32 (td, J = 7.4, 0.9 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 2.0 Hz, 2H), 7.19 (d, J = 1.8 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 7.08 – 7.07 (m, 1H), 6.85 (dd, J = 7.7, 0.8 Hz, 1H), 6.79 (t, J = 7.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 152.9, 152.9, 147.8, 141.8, 140.6, 136.2, 134.5, 134.3, 132.6, 129.9, 129.5, 129.1, 128.4, 128.3, 127.9, 127.8, 124.9, 123.5, 122.2, 121.2, 108.2, 72.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₂₀N₂OBr: 479.0759 found: 479.0755.

5-Bromo-8'-methyl-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3h:

White solid (0.140g, 89%) mp 285-287 °C, ¹H NMR (500 MHz, DMSO) δ 9.40 (s, 1H), 7.57 (d, *J* = 1.3 Hz, 1H), 7.38 (d, *J* = 7.3 Hz, 2H), 7.35 – 7.31 (m, 4H), 7.26 – 7.24 (m, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.14 – 7.11 (m, 3H), 7.07 (d, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 2.5 Hz, 1H), 6.98 (d, *J* = 3.8 Hz, 2H), 6.74 (d, *J* = 8.6 Hz, 1H), 6.70 (d, *J* = 2.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 153.1, 150.2, 148.5, 142.1, 140.2, 138.6, 138.3, 134.6, 134.3, 131.7, 129.7, 129.5, 129.2, 128.4, 128.3, 127.9, 127.2, 123.4, 122.3, 121.8, 117.1, 112.7, 71.7, 21.6. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₂₂N₂OBr: 493.0916 found: 493.0897.

2,3-Bis(4-methoxyphenyl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3i:

Pale yellow solid (0.199g, 96%) mp 199-201 °C, ¹H NMR (400 MHz, DMSO) δ 10.09 (s, 1H), 7.77 (s, 1H), 7.23 (s, 3H), 7.15 (s, 2H), 6.93 (d, *J* = 33.3 Hz, 4H), 6.82 (s, 2H), 6.64 (s, 3H), 3.76 (s, 3H), 3.62 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 159.1, 158.7, 153.6, 153.5, 147.3, 142.2, 138.8, 138.7, 133.1, 131.1, 130.8, 130.3, 128.7, 127.2, 126.7, 125.1, 123.3, 121.8, 120.7, 119.8, 114.9, 114.6, 113.7, 72.1, 55.5, 55.3. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₀H₂₄N₂O₃: 461.1865 found: 461.1845.

2,3-Di-m-tolyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3j:

Pale yellow solid (0.164g, 85%) mp214-216 °C, ¹H NMR (400 MHz, DMSO) δ 9.28 (s, 1H), 7.46 (s, 1H), 7.31 (d, *J* = 6.3 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.25 (s, *J* = 10.1 Hz, 1H), 7.21 (s, 1H), 7.10 (s, 1H), 7.07 (d, *J* = 6.8 Hz, 1H), 6.98 (d, *J* = 7.7 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.85 (s, 1H), 6.80 (d, *J* = 7.6 Hz, 2H), 6.71 (d, *J* = 7.9 Hz, 2H).¹³C NMR (101 MHz, DMSO) δ 153.5, 148.5, 142.1, 139.7, 138.8, 138.1, 136.7, 134.8, 134.5, 130.3, 129.8, 129.0, 128.9, 128.8, 128.3, 127.9, 127.4, 127.2, 126.7, 125.1, 123.5, 121.8, 120.9, 119.5, 114.9, 72.4, 21.6, 21.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₀H₂₅N₂O: 429.1967 found: 429.1950.

2,3-Bis(3-(trifluoromethyl)phenyl)-1'H-spiro[indene-1,4'-quinazolin]-2'(3'H)-one 3k:

White solid (0.207g, 86%) mp278-280 °C, ¹H NMR (400 MHz, DMSO) δ 9.49 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.72 (s, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.65 (s, 1H), 7.62 (s, 1H), 7.49 (d, *J* = 7.1 Hz, 1H), 7.40 (d, *J* = 7.3 Hz, 1H), 7.37 (s, 1H), 7.35 (s, 3H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 7.1 Hz, 1H), 7.12 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 7.4 Hz,

1H), 6.75 (t, J = 7.2 Hz, 1H).¹³C NMR (101 MHz, DMSO) δ 153.4, 153.2, 147.8, 141.0, 140.2, 138.8, 135.5, 135.0, 133.5, 130.5, 130.2, 129.8, 129.5, 129.2, 129.2, 128.9, 128.3, 126.3 (q, $J_{C-F} = 32.3$ Hz), 126.3 (q, $J_{C-F} = 32.4$ Hz), 125.4, 124.6, 124.4 (q, $J_{C-F} = 272.4$ Hz), 124.4 (q, $J_{C-F} = 272.4$ Hz), 124.4 (q, $J_{C-F} = 272.4$ Hz), 122.1, 121.1, 118.5, 115.1, 72.4. ¹⁹F NMR (376 MHz, DMSO) δ -61.5, -61.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₁₉N₂OF₆: 537.1402 found: 537.1418.

2,3-Bis(4-fluorophenyl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 31:

Pale yellow solid (0.165g, 84%) 295-297 °C, ¹H NMR (400 MHz, DMSO) δ 9.29 (s, 1H), 7.52 (d, J = 1.6 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.37 – 7.31 (m, 4H), 7.14 (d, J = 1.6 Hz, 1H), 7.12 (d, J = 3.4 Hz, 1H), 7.11 – 7.09 (m, 1H), 7.09 – 7.04 (m, 1H), 7.03 – 6.98 (m, 2H), 6.91 (dd, J = 9.1, 2.4 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.77 – 6.71 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 162.1 (d, J = 245.0 Hz), 161.8 (d, J = 245.0 Hz), 153.5, 153.3, 147.7, 141.6, 139.2, 138.8, 131.9 (d, J = 8.0 Hz), 131.6 (d, J = 8.1 Hz), 131.1 (d, J = 2.7 Hz), 130.5 (d, J = 2.4 Hz), 129.0, 128.9, 127.7, 125.1, 123.6, 121.9, 120.9, 119.1, 116.2 (d, J = 21.4 Hz), 115.3 (d, J = 21.2 Hz), 115.0, 72.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₁₉N₂F₂O: 437.1465 found: 437.1453.

2,3-Bis(4-chlorophenyl)-1'H-spiro[indene-1,4'-quinazolin]-2'(3'H)-one 3m:

White solid (0.182g, 86%) mp 214-216 °C, ¹H NMR (400 MHz, DMSO) δ 9.34 (s, 1H), 7.51 (s, 1H), 7.50 (s, 1H), 7.48 (s, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 6.1 Hz, 2H), 7.27 (d, J = 7.7 Hz, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 7.4 Hz, 1H), 7.12 – 7.08 (m, 1H), 7.01 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 7.9 Hz, 1H), 6.71 (t, J = 6.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 153.5, 153.3, 147.7, 141.3, 139.5, 138.8, 133.6, 133.1, 133.0, 132.7, 131.6, 131.4, 129.4, 129.04, 129.0, 128.5, 127.9, 125.1, 123.6, 122.0, 121.0, 118.9, 115.1, 72.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₁₉N₂OCl₂: 469.0874 found: 469.0852.

2,3-Bis(4-bromophenyl)-1'H-spiro[indene-1,4'-quinazolin]-2'(3'H)-one 3n:

White solid (0.207g, 83%) mp 232-234 °C, ¹H NMR (400 MHz, DMSO) δ 9.31 (s, 1H), 7.61 (s, 1H), 7.59 (s, 1H), 7.49 (s, 1H), 7.36 (s, 1H), 7.34 (s, 1H), 7.31 (d, *J* = 3.8 Hz, 1H), 7.30 – 7.29 (m, 2H), 7.27 (s, 1H), 7.25 (d, *J* = 6.9 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.10 – 7.05 (m, 1H), 6.94 (s, 1H), 6.92 (s, 1H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.73 – 6.66 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 153.5, 153.3, 147.8, 141.2, 139.5, 138.8, 134.0, 133.4, 132.3, 131.8, 131.7, 131.4, 129.1, 129.0, 127.9, 125.1, 123.7, 122.0, 121.8, 121.5, 121.0, 118.9, 115.1, 72.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₁₉N₂Br₂O: 556.9864 found: 556.9854.

5-Chloro-2,3-bis(4-fluorophenyl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3o:

Pale yellow solid (0.156g, 85%) mp 273-275 °C, ¹H NMR (400 MHz, DMSO) δ 9.47 (s, 1H), 7.62 (s, 1H), 7.41 (d, *J* = 5.8 Hz, 1H), 7.39 (d, *J* = 5.5 Hz, 1H), 7.37 (s, 1H), 7.35 (s, 1H), 7.30 (d, *J* = 6.9 Hz, 1H), 7.25 (t, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 7.3 Hz, 1H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.05 (s, 2H), 7.04 (s, 2H), 6.83 (d, *J* = 8.6 Hz, 1H), 6.62 (d, *J* = 2.0 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 162.2 (d, $J_{C-F} = 245.2$ Hz), 161.9 (d, $J_{C-F} = 245.0$ Hz), 153.2, 152.6, 147.3, 141.6, 139.6, 138.0, δ 131.8 (d, $J_{C-F} = 8.3$ Hz), 131.7 (d, $J_{C-F} = 8.3$ Hz), 130.8 (d, $J_{C-F} = 2.4$ Hz), 130.3 (d, $J_{C-F} = 2.4$ Hz), 129.3, 129.1, 128.0, 125.2, 124.4, 123.7, 121.3, 121.2, 116.8, 116.2 (d, $J_{C-F} = 21.4$ Hz), 115.5 (d, $J_{C-F} = 21.3$ Hz), 72.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₈H₁₈N₂ClOF₂: 471.1496 found: 471.1509.

2,3-Bis(4-chlorophenyl)-8'-fluoro-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3p:

White solid (0.176, 87%) mp 273-275 °C, ¹H NMR (400 MHz, DMSO) δ 9.32 (s, 1H), 7.51 (s, 1H), 7.48 (s, 1H), 7.46 (s, 1H), 7.35 (s, 1H), 7.33 (s, 1H), 7.32 – 7.30 (m, 1H), 7.24 (s, 1H), 7.22 (s, 1H), 7.11 – 7.03 (m, 2H), 6.98 (s, 1H), 6.96 (s, 1H), 6.94 (dd, J = 9.0, 2.3 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 6.75 – 6.68 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 163.1 (d, $J_{C-F} = 242.9$ Hz), 153.3, 150.0, 149.0, 143.8 (d, $J_{C-F} = 8.7$ Hz), 138.8, 138.3, 133.3 (d, $J_{C-F} = 6.1$ Hz), 133.0, 132.4, 131.5, 131.3, 129.5, 129.2, 128.6, 125.2 (d, $J_{C-F} = 8.8$ Hz), 125.1, 122.0, 118.4, 115.1, 114.1 (d, $J_{C-F} = 23.1$ Hz), 108.3 (d, $J_{C-F} = 24.1$ Hz), 71.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₁₈N₂Cl₂O: 487.0780 found: 487.0763.

Diethyl 2'-oxo-2',3'-dihydro-1'*H*-spiro[indene-1,4'-quinazoline]-2,3-dicarboxylate 3q:

White solid (0.148g, 84%) mp 230-232 °C, ¹H NMR (500 MHz, DMSO) δ 9.43 (s, 1H), 7.37 – 7.36 (m, 1H), 7.36 – 7.34 (m, 2H), 7.26 – 7.24 (m, 1H), 7.03 (t, *J* = 7.7 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.58 (t, *J* = 7.5 Hz, 1H), 6.15 (d, *J* = 7.7 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.01 – 3.94 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 164.5, 162.5, 153.2, 153.1, 143.6, 140.3, 139.3, 136.8, 130.7, 129.7, 129.1, 124.8, 124.5, 123.0, 121.5, 117.3, 115.0, 70.7, 62.0, 61.1, 14.6, 14.1. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₂H₂₁N₂O₅: 393.1450 found: 393.1439.

5-Chloro-2,3-dipropyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3r:

White solid (0.119g, 83%) mp193-195 °C, ¹H NMR (500 MHz, DMSO) δ 9.50 (s, 1H), 7.28 (d, *J* = 9.9 Hz, 1H), 7.27 (s, 1H), 7.20 (s, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.14 – 7.09 (m, 2H), 6.85 (d, *J* = 8.6 Hz, 1H), 6.16 (d, *J* = 2.1 Hz, 1H), 2.47 – 2.42 (m, 2H), 2.25 (m, 1H), 2.04 (m, 1H), 1.59 (m, 2H), 1.35 – 1.28 (m, 1H), 1.26 – 1.15 (m, 1H), 0.96 (t, *J* = 7.3 Hz, 3H), 0.80 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 153.6, 152.3, 149.2, 143.2, 138.1, 137.5, 128.9, 128.6, 126.4, 124.8, 124.3, 123.1, 122.6, 119.6, 116.5, 71.3, 28.1, 27.2, 22.5, 21.9, 15.1, 14.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₂H₂₃N₂CIO: 367.1534 found: 367.1525.

2,3-Di(thiophen-2-yl)-1'H-spiro[indene-1,4'-quinazolin]-2'(3'H)-one 3s:

Pale yellow solid (0.169g, 91%) mp 274-276 °C, ¹H NMR (400 MHz, DMSO) δ 9.52 (s, 1H), 7.78 (d, *J* = 4.9 Hz, 1H), 7.53 (s, 1H), 7.43 (d, *J* = 4.9 Hz, 1H), 7.31 (t, *J* = 6.8 Hz, 2H), 7.27 (t, *J* = 4.2 Hz, 2H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.93 – 6.91 (m, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 3.2 Hz, 1H), 6.68 (t, *J* = 7.4 Hz, 1H), 6.58 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 153.1, 153.0, 144.0, 141.6, 138.5,

135.6, 134.4, 132.4, 129.1, 128.9, 128.5, 128.3, 128.1, 127.8, 127.1, 124.9, 123.3, 122.0, 120.9, 119.5, 115.1, 71.8. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{24}H_{17}N_2OS_2$: 413.0782 found: 413.0775.

5-Methoxy-2,3-di(thiophen-2-yl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3t:

Pale yellow solid (0.165g, 94%) mp 152-154 °C, ¹H NMR (400 MHz, DMSO) δ 9.52 (s, 1H), 7.79 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.58 – 7.53 (m, 1H), 7.50 (s, 1H), 7.44 (d, *J* = 5.8 Hz, 1H), 7.32 (d, *J* = 2.6 Hz, 1H), 7.27 (dd, *J* = 4.9, 3.6 Hz, 1H), 7.18 (d, *J* = 8.2 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.93 – 6.90 (m, 1H), 6.85 (d, *J* = 3.4 Hz, 1H), 6.78 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.69 – 6.65 (m, 1H), 6.58 (d, *J* = 7.6 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 160.5, 153.1, 145.4, 143.2, 138.4, 135.6, 134.3, 131.9, 129.3, 129.2, 129.0, 128.6, 128.4, 128.2, 127.1, 125.0, 124.2, 121.9, 119.9, 115.0, 112.7, 106.7, 71.3, 55.8. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₁₉N₂O₂S₂: 443.0888 found: 443.0869.

5-Methyl-2,3-di(thiophen-2-yl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3u:

Pale yellow solid (0.166g, 92%) mp 132-134 °C, ¹H NMR (400 MHz, DMSO) δ 9.47 (s, 1H), 7.78 – 7.75 (m, 1H), 7.47 (s, 1H), 7.40 (d, *J* = 4.0 Hz, 1H), 7.28 (d, *J* = 2.3 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 7.1 Hz, 1H), 6.95 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 3.1 Hz, 1H), 6.66 (t, *J* = 7.2 Hz, 1H), 6.54 (d, *J* = 7.5 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 153.1, 150.4, 144.4, 141.8, 138.5, 138.4, 135.7, 134.5, 132.4, 129.0, 128.9, 128.5, 128.5, 128.3, 128.2, 128.0, 127.8, 127.1, 124.9, 123.0, 122.0, 121.5, 119.8, 115.1, 71.5, 21.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₅H₁₉N₂OS₂: 427.0939 found: 427.0927.

3-(4-Chlorophenyl)-5-methyl-2-phenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3v:

White solid (0.105g, 55%) mp 263-265 °C, ¹H NMR (300 MHz, DMSO) δ 8.54 (s, 1H), 7.58 (s, 1H), 7.44 (d, J = 6.5 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.36 (d, J = 1.7 Hz, 1H), 7.34 (d, J = 1.5 Hz, 1H), 7.32 (d, J = 4.1 Hz, 1H), 7.31 – 7.29 (m, 1H), 7.25 (d, J = 6.5 Hz, 1H), 7.22 (s, 1H), 7.18 (d, J = 9.2 Hz, 2H), 7.02 (s, 1H), 7.00 (s, 1H), 6.96 (d, J = 6.6 Hz, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.59 (d, J = 7.1 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 153.7, 153.6, 149.0, 141.4, 139.0, 136.9, 134.7, 133.4, 132.9, 131.4, 130.4, 129.9, 129.3, 128.8, 128.3, 127.8, 127.7, 123.5, 123.3, 122.9, 121.6, 120.8, 119.3, 72.4, 17.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₂₂N₂OCl: 449.1421 found: 449.1409

2-(4-Chlorophenyl)-5-methyl-3-phenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3v':

White solid (0.070g, 37%) mp 264-266 ¹H NMR (300 MHz, DMSO) δ 8.52 (s, 1H), 7.58 (s, 1H), 7.48 (s, 1H), 7.45 (s, 1H), 7.37 (s, 1H), 7.34 (s, 1H), 7.31 (s, 1H), 7.29 (s, 1H), 7.24 (d, *J* = 6.9 Hz, 1H), 7.18 (s, 1H), 7.15 – 7.12 (m, 3H), 7.04 (d, *J* = 1.8 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.95 (d, *J* = 6.1 Hz, 1H), 6.66 (d, *J* = 7.7 Hz, 1H), 6.62 (s, 1H), 2.19 (s, 3H). ¹³C NMR (75

MHz, DMSO) δ 153.8, 153.6, 147.0, 141.6, 140.8, 136.9, 134.2, 133.9, 132.5, 131.6, 130.5, 129.5, 129.2, 128.8, 128.5, 128.3, 127.7, 123.5, 123.4, 122.7, 121.7, 121.1, 119.3, 72.3, 17.9. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₉H₂₂N₂OCl: 449.1421 found: 449.1409.

3-Phenyl-2-(phenylethynyl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3w:

Grey solid, (0.160g, 84%) mp ¹H NMR (500 MHz, DMSO) δ 9.59 (s, 1H), 7.78 (d, J = 1.2 Hz, 1H), 7.77 (s, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.48 (d, J = 1.9 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.36 (dd, J = 3.9, 2.5 Hz, 5H), 7.26 (d, J = 2.7 Hz, 1H), 7.26 – 7.25 (m, 1H), 7.14 – 7.10 (m, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.72 – 6.68 (m, 1H), 6.40 (d, J = 7.3 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 154.1, 151.4, 143.9, 141.0, 139.3, 133.4, 133.2, 131.5, 129.5, 129.4, 129.3, 129.2, 129.1, 128.9, 128.6, 124.8, 124.6, 122.7, 121.8, 121.8, 119.8, 114.8, 97.9, 86.0, 71.9. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₃₀H₂₁N₂O: 425.1654 found: 425.1652.

5-Methoxy-3-phenyl-2-(phenylethynyl)-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3x:

Grey solid, (0.180g, 88%) mp ¹H NMR (400 MHz, DMSO) δ 9.59 (s, 1H), 7.78 (d, *J* = 7.1 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.51 (d, *J* = 7.0 Hz, 1H), 7.44 (s, 1H), 7.37 (s, 3H), 7.27 (s, 3H), 7.16 – 7.11 (m, 1H), 6.95 (d, *J* = 8.3 Hz, 2H), 6.92 (s, 1H), 6.72 (t, *J* = 7.0 Hz, 1H), 6.43 (d, *J* = 7.4 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 160.6, 154.2, 143.4, 143.3, 142.7, 139.2, 134.7, 133.1, 131.5, 129.5, 129.4, 129.3, 129.2, 129.0, 128.8, 125.4, 124.9, 122.7, 121.7, 120.2, 114.7, 113.5, 107.6, 98.0, 86.0, 71.3, 55.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₁H₂₃N₂O₂: 455.1750 found: 455.1764.

1'-Methyl-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'*H*)-one 3y:

White solid, (0.164g, 94%) mp 282-284 °C, ¹H NMR (500 MHz, DMSO) δ 7.74 (s, 1H), 7.41 – 7.39 (m, 1H), 7.38 (s, 1H), 7.35 (d, *J* = 7.0 Hz, 3H), 7.33 – 7.31 (m, 1H), 7.30 (d, *J* = 4.6 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.12 – 7.07 (m, 3H), 6.99 (d, *J* = 1.7 Hz, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.86 – 6.82 (m, 1H), 6.79 (dd, *J* = 7.7, 1.5 Hz, 1H), 3.13 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 153.9, 152.6, 148.2, 142.1, 140.1, 140.0, 134.8, 134.4, 129.9, 129.5, 129.2, 129.1, 129.0, 128.3, 128.1, 127.7, 127.6, 124.9, 123.5, 122.2, 122.0, 121.0, 114.3, 111.3, 71.4, 29.3. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₂₃N₂O: 415.1810 found: 415.1791.

1'-Isopropyl-7'-methyl-2,3-diphenyl-1'*H*-spiro[indene-1,4'-quinazolin]-2'(3'H)-one 3z:

Grey solid, (0.136g, 83%) mp ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 6.4 Hz, 1H), 7.37 (s, 2H), 7.35 (s, 2H), 7.27 (s, 2H), 7.23 – 7.18 (m, 2H), 7.08 (s, 1H), 7.05 (d, *J* = 6.5 Hz, 2H), 6.99 (d, *J* = 7.0 Hz, 2H), 6.91 (s, 1H), 6.61 (s, 2H), 5.24 (s, 1H), 4.62 (s, 1H), 2.26 (s, 3H), 1.26 (s, 3H), 1.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 139.0, 138.3, 134.6, 129.7, 129.4, 128.6,128.5,128.2, 127.8, 127.2, 124.1, 124.0, 120.9, 69.0, 32.0, 22.0, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₂H₂₉N₂O:457.2280 found:457.2290.

4. NMR spectra of products:

¹H NMR (400 MHz, DMSO) spectrum of 3a:

¹³C NMR (101 MHz, DMSO) spectrum of 3a:

¹H NMR (400 MHz, DMSO) spectrum of 3b:

¹³C NMR (101 MHz, DMSO) spectrum of 3b:

¹H NMR (500 MHz, DMSO) spectrum of 3c:

¹³C NMR (101 MHz, DMSO) spectrum of 3c:

¹H NMR (400 MHz, DMSO) spectrum of 3d:

¹³C NMR (101 MHz, DMSO) of compound 3d:

¹H NMR (300 MHz, DMSO) spectrum of 3e:

¹³C NMR (101 MHz, DMSO) spectrum of 3e:

¹H NMR (300 MHz, DMSO) spectrum of 3f:

¹³C NMR (126 MHz, DMSO) spectrum of 3f:

¹H NMR (500 MHz, DMSO) spectrum of 3g:

¹³C NMR (126 MHz, DMSO) of compound 3g:

¹H NMR (500 MHz, DMSO) spectrum of 3h:

¹³C NMR (101 MHz, DMSO) spectrum of 3h:

¹H NMR (400 MHz, DMSO) spectrum of 3i:

¹³C NMR (101 MHz, DMSO) of compound 3i:

¹H NMR (400 MHz, DMSO) spectrum of 3j:

¹³C NMR (101 MHz, DMSO) spectrum of 3j:

¹H NMR (400 MHz, DMSO) spectrum of 3k:

¹³C NMR (126 MHz, DMSO) spectrum of 3k:

¹⁹F NMR (376 MHz, DMSO) spectrum of 3k:

¹H NMR (300 MHz, DMSO) spectrum of 3l:

¹³C NMR (101 MHz, DMSO) spectrum of 31:

¹H NMR (400 MHz, DMSO) spectrum of 3m:

¹³C NMR (101 MHz, DMSO) spectrum of 3m:

¹H NMR (400 MHz, DMSO) spectrum of 3n:

¹³C NMR (101 MHz, DMSO) spectrum of 3n:

¹H NMR (400 MHz, DMSO) spectrum of 3o:

¹³C NMR (101 MHz, DMSO) spectrum of 3o:

¹H NMR (400 MHz, DMSO) spectrum of 3p:

¹³C NMR (126 MHz, DMSO) spectrum of 3p:

¹H NMR (500 MHz, DMSO) spectrum of 3q:

¹³C NMR (101 MHz, DMSO) spectrum of 3q:

¹H NMR (500 MHz, DMSO) spectrum of 3r:

¹³C NMR (101 MHz, DMSO) spectrum of 3r:

¹H NMR (400 MHz, DMSO ₃) spectrum of 3s:

¹³C NMR (101 MHz, DMSO) spectrum of 3s:

¹H NMR (400 MHz, DMSO) spectrum of 3t:

¹³C NMR (101 MHz, DMSO) spectrum of 3t:

¹H NMR (400 MHz, DMSO) spectrum of 3u:

¹³C NMR (101 MHz, DMSO) of compound 3u:

¹H NMR (400 MHz, DMSO) spectrum of 3v:

¹³C NMR (101 MHz, DMSO) of compound 3v:

¹H NMR (400 MHz, DMSO) spectrum of 3v':

¹H NMR (500 MHz, DMSO) spectrum of 3w:

¹³C NMR (101 MHz, DMSO) of compound 3w:

¹H NMR (500 MHz, DMSO) spectrum of 3x:

¹³C NMR (101 MHz, DMSO) of compound 3x:

¹H NMR (300 MHz, DMSO) spectrum of 3y:

¹³C NMR (101 MHz, DMSO) of compound 3y:

¹H NMR (400 MHz, CDCl₃) spectrum of 3z:

¹³C NMR (101MHz, CDCl₃) spectrum of 3z:

¹H NMR (300 MHz, CDCl₃) spectrum of 4a:

¹³C NMR (101 MHz, CDCl₃) of compound 4a:

¹H NMR (400 MHz, CDCl₃) spectrum of 4b:

¹³C NMR (101 MHz, DMSO) of compound 4b:

HRMS spectra of metallocycle

 Mass
 Calc. Mass
 mDa
 PPM
 DBE
 formula

 457.0879
 457.0854
 2.5
 5.5
 14.5
 C₂₄H₂₃N₂ORu

X-ray Crystallography.

X-ray data for the compound was collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ Å) and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. The N-H atoms were located in the difference Fourier map and its positions and isotropic displacement parameters were refined. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms].

Crystal structure determination of 3v

Crystal Data for C₂₉H₂₁N₂OCl (M =448.93 g/mol): triclinic, space group P-1 (no. 2), a = 9.8411(19) Å, b = 10.4582(19) Å, c = 10.930(2) Å, α = 93.183(6)°, β = 93.558(7)°, γ = 90.622(7)°, V = 1120.9(4) Å 3 , Z = 2, T = 294.15 K, μ (MoK α) = 0.196 mm -1 , Dcalc = 1.330 g/cm 3 , 22507 reflections measured (4.148° ≤ 2 Θ ≤ 56.7°), 5553 unique (R int = 0.0485, R sigma = 0.0530) which were used in all calculations. The final R 1 was 0.0491 (I > 2 σ (I)) and wR 2 was 0.1480 (all data). CCDC 2420260 deposition number contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.