Antibacterial and cytotoxic angucyclines discovered by heterologous expression of a type II polyketide gene cluster

Xiao Xu^{1,2,#}, Jiayi Li^{1,#}, Lang Wang¹, Xinchen Yue¹, Falei Zhang¹, Donghe Lan¹, Xiaoting Zhang¹, Hengyi Xu¹, Qian Che¹, Tianjiao Zhu¹, Dehai Li¹, Ximing Xu^{3,*} and Guojian Zhang^{1,2,3,*}

¹Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003/Sanya 572025, People's Republic of China; ²Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China

³Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China

List of Supporting Information

Figure S1.¹H NMR (500 MHz, DMSO) spectrum of compound 1

Figure S2.¹³C NMR (125 MHz, DMSO) spectrum of compound 1

Figure S3. HSQC spectrum of compound 1

Figure S4. ¹H-¹H COSY spectrum of compound 1

Figure S5. ¹H-¹³C HMBC spectrum of compound 1

Figure S7. IR spectrum of compound 1

Figure S9. ¹³C NMR (150 MHz, DMSO) spectrum of compound 2 ^{CARBON_01}/_{X^16-18-80-4-8}

Figure S10. HSQC spectrum of compound 2

Figure S11. ¹H-¹H COSY spectrum of compound 2

Figure S12. ¹H-¹³C HMBC spectrum of compound 2

Figure S13. HRESIMS spectrum of compound 2

Figure S14. IR spectrum of compound 2

Figure S15. ¹H NMR (500 MHz, DMSO) spectrum of compound 3

Figure S16. ¹³C NMR (125 MHz, DMSO) spectrum of compound 3

Figure S18. ¹H-¹H COSY spectrum of compound 3

Figure S19. ¹H-¹³C HMBC spectrum of compound 3

Figure S20. HRESIMS spectrum of compound 3

Figure S21. IR spectrum of compound 3

Figure S22. ¹³C NMR calculations of compound **1** with stereoisomers $(8aS^*, 10S^*, 12R^*)$ isomer 1, $(8aS^*, 10S^*, 12S^*)$ - isomer 2, $(8aR^*, 10S^*, 12R^*)$ - isomer 3, and $(8aS^*, 10R^*, 12R^*)$ isomer 4 using the means of gauge-independent atomic orbital (GIAO) at the pcSseg-1/
revtpssrevtpss leve.

Functional		Solvent?		Basis Set		Type of Data	
mP₩1	P₩91	P(СМ	6-311+	G (d, p)	Shielding	g Tensors
			1 0 0 00		1 0 0 00	1 0 0 00	
	-	DP4+	0.00%	100.00%	0.00%	0.00%	-
Nuclei	sp2?	xperimenta	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
С	x	130	51.8	51.6	51.7	51.7	
С	x	114	69.3	69.0	69.5	69.1	
С	x	190.9	-10.2	-10.5	-10.5	-10.4	
С	х	123.6	60.5	58.9	60.0	59.9	
С	х	156.4	26.1	26.5	25.4	26.7	
С	х	180.2	-0.4	-0.4	-0.4	-0.5	
С	х	118.5	61.6	61.7	61.7	61.7	
С	х	160	19.4	19.5	19.6	19.4	
С	Х	124.7	54.5	55.1	54.9	54.8	
С	х	135.3	44.6	44.7	44.6	44.6	
С		17.7	168.6	168.4	168.5	168.3	
С		34.2	160.6	158.1	161.8	160.7	
С		76.8	89.6	88.2	90.7	93.5	
С		47.2	133.2	132.5	137.0	137.2	
С		83	104.8	101.8	107.4	106.1	
С		48.1	129.0	135.5	134.6	134.6	
С		85	95.7	95.7	94.7	94.8	
С	х	176.8	3.2	2.5	4.1	5.9	
С		19.5	159.6	161.1	157.2	155.5	

Figure S23. ¹³C NMR calculations of compound 2 stereoisomers (*6aR**, *8aR**, *12aS**, 12bS*)- isomer 1, (6aR*, 8aR*, 12aR*, 12bS*)- isomer 2, (6aR*, 8aS*, 12aR*, 12bS*)isomer 3, and (6aR*, 8aS*, 12aS*, 12bS*)- isomer 4 using the means of gauge-independent atomic orbital (GIAO) at the pcSseg-1/ revtpssrevtpss leve.

A	В	С	D	E	F	G	Н
Funct	ional	Solvent?		Basis Set		Type of Data	
mPW1	PW91	PC	PCM		6-311+G(d, p)		g Tensors
		DP4+	0.00%	1 0. 13%	all 0.00%	4 99. 87%	_
Nuclei	sp2?	Experimenta	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
С	х	132.4	51.2	48.4	49.5	50.0	
С	х	114.8	69.1	68.8	68.7	68.5	
С	х	194. 5	-19.3	-17.8	-20.0	-19.6	
С		71.6	118.1	115.7	115.6	116.6	
С		64.1	117.8	117.4	122.8	117.2	
С	х	192.1	-15.7	-20. 9	-21.2	-12.8	
С	х	119.2	60.7	61.2	60.3	61.2	
С	х	160.3	17.1	18.4	18.4	17.1	
С	х	125.2	54.4	55.8	54.9	55.1	
С	х	137.2	41.7	41.6	42.1	41.7	
С		17.9	166.5	167.7	166.8	165.4	
С		27.9	157.4	157.0	160.6	158.7	
С		63.5	107.5	106.4	111.5	107.7	
С		75.7	103.7	108.3	105.9	105.3	
С	х	196	-20.7	-18.8	-17.3	-20.6	
С	х	122.2	59. 5	58.6	58.6	57.9	
С		41.9	140.3	143.1	141.8	142.5	
С	х	156.9	6.7	11.4	7.7	13.2	
С		23. 9	160.5	160.6	160.0	161.0	

А	В	С	D	E	F	G	Н	
Funct	ional	Solvent?		Basis	Basis Set		Type of Data	
mPW1	PW91	P	CM	6-311+G(d, p)		Shielding Tensors		
		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6	
sDP4+ (H data)	-	-	-	-	—	—	
sDP4+ (C data)	0.64%	1.94%	0.04%	4 97. 38%	—	—	
sDP4+ (a	ll data)	0. 64%	1.94%	0.04%	4 97. 38%	_	—	
uDP4+ (H data)	-	-	-	-	_	_	
uDP4+ (C data)	. 00%	6.01%	0.03%	4 93. 95%	_	—	
uDP4+ (a	ll data)	0. 00%	6. 01%	0.03%	4 93. 95%	_	_	
DP4+ (I	H data)	-	-	-	_	—	_	
DP4+ (0	C data)	1 0. 00%	0. 13%	0.00%	4 99. 87%	_	_	
DP4+ (a)	ll data)	1 0.00%	0.13%	0.00%	4 99. 87%	_	_	

	1		1				
С	5.05382	1.98345	0.46197	0	-2.92268	1.0231	1.95864
С	5.59504	0.70937	0.36867	0	0.85939	2.42916	0.08243
С	4.75677	-0.40095	0.14619	0	2.93668	-2.521	-0.32223
С	3.36156	-0.21508	0.01887	0	5.33249	-1.61663	0.06224
С	2.83309	1.09483	0.11932	Н	5.70833	2.83297	0.63346
С	3.66959	2.18512	0.33799	Н	6.66351	0.54106	0.4629
С	2.47207	-1.36133	-0.22562	Н	3.24343	3.17954	0.41196
С	1.02812	-1.1479	-0.35847	Н	0.60892	-2.96273	-1.40207
С	0.51075	0.10469	-0.22725	Н	0.01943	-2.94276	0.24486
С	1.36712	1.31517	-0.00097	Н	-1.12861	-1.46621	-2.19399
С	0.13328	-2.32026	-0.65368	Н	-1.94803	-2.65592	-1.18884
С	-1.22769	-1.83511	-1.16733	Н	-2.25941	-2.20744	1.20328
С	-1.76421	-0.70949	-0.28441	Н	-1.16165	-0.97613	1.82315
0	-0.8007	0.39645	-0.28826	Н	-4.89441	0.48996	0.4367
С	-2.03187	-1.13546	1.17791	Н	-4.63668	-1.24571	0.23518
С	-3.27342	-0.36199	1.65292	Н	-2.85125	1.93682	0.58148
С	-4.12731	-0.2885	0.38317	Н	-3.45761	-0.27603	-2.71078
С	-3.15091	-0.10604	-0.80633	Н	-4.86185	-0.38496	3.12159
С	-2.99576	1.37526	-1.25877	Н	-3.30788	-0.99861	3.72652
0	-2.90465	2.32376	-0.34167	Н	-4.29299	-2.00081	2.64371
0	-3.00507	1.64387	-2.45131	Н	-2.17064	1.05261	2.57458
0	-3.65416	-0.81788	-1.91984	Н	4.60028	-2.27083	-0.09983
С	-3.97723	-0.97436	2.8585				

 Table S1. Optimized Z-matrixes of compound 1

С	4.39304	-2.12147	-0.23631	0	-1.06953	-1.97995	-1.21628
С	4.93789	-0.89082	-0.57095	С	-5.73016	-0.71842	-0.71258
С	4.15011	0.27323	-0.50777	0	0.3645	0.7796	1.75256
С	2.79007	0.19276	-0.10613	0	-2.00183	1.20099	-1.46269
С	2.25784	-1.08706	0.22918	0	-2.09611	-0.62765	1.71275
С	3.05373	-2.22531	0.17033	Н	5.00956	-3.01372	-0.29227
С	1.98376	1.4144	-0.03921	Н	5.97201	-0.79776	-0.88777
С	0.54583	1.3367	0.42933	Н	2.62537	-3.18663	0.43134
С	-0.04971	-0.01226	0.60591	Н	-0.27646	2.82988	-0.86523
С	0.84769	-1.23218	0.66919	Н	0.0878	3.38603	0.76556
С	-0.32801	2.55193	0.19006	Н	-2.40673	3.14163	0.29707
С	-1.78684	2.29307	0.60655	Н	-1.8715	2.1979	1.69326
С	-2.31236	1.02489	-0.06301	Н	-4.08001	0.79813	1.18091
С	-1.55401	-0.24726	0.44458	Н	-4.37045	1.59505	-0.36027
С	-3.81653	0.77598	0.11627	Н	-3.67154	-2.42502	-1.29889
С	-4.25858	-0.5477	-0.47615	Н	4.05385	2.15025	-0.76484
С	-3.36	-1.50692	-0.80604	Н	-6.10065	0.04314	-1.41153
С	-1.91373	-1.33568	-0.60031	Н	-5.96938	-1.7084	-1.11061
0	4.73844	1.43591	-0.84091	Н	-6.28192	-0.57431	0.22624
0	0.4194	-2.24355	1.21574	Н	-2.57828	0.63699	-2.00471
0	2.4379	2.5217	-0.37119	Н	-1.58388	-1.39706	2.02428

Table S2. Optimized Z-matrixes of compound 2

С	3.94768	2.57755	-0.26123	0	0.50309	-0.18745	2.01752
С	4.73187	1.4249	-0.32259	0	0.33221	-2.53927	0.73135
С	4.13039	0.16725	-0.29238	0	-1.95876	-0.93768	2.01781
С	2.73971	0.04789	-0.18979	0	-2.38603	-2.39352	-0.04744
С	1.96629	1.20521	-0.11444	Н	4.4194	3.55741	-0.29079
С	2.56082	2.47114	-0.16337	Н	5.81395	1.50522	-0.40068
С	2.08324	-1.27898	-0.20034	Н	1.94941	3.37089	-0.11826
С	0.55295	-1.36574	-0.08038	Н	1.8987	-2.20285	0.96797
С	-0.04165	-0.16251	0.67294	Н	0.67046	-1.4499	1.9656
С	0.50118	1.08696	-0.03046	Н	2.82242	-0.15015	1.41079
С	-0.05315	-1.56983	-1.48087	Н	1.29999	0.71706	1.40924
С	-1.43935	-0.93256	-1.66429	Н	3.84397	1.50278	0.05831
С	-2.28353	-0.99156	-0.38392	Н	3.49572	1.68195	-1.63885
С	-1.60392	-0.21952	0.78644	Н	0.48052	4.00988	-0.68045
С	-3.73028	-0.53465	-0.64871	Н	-2.4717	-4.28566	1.13868
С	-3.89657	0.95549	-0.69749	Н	3.9589	4.24423	-0.31137
С	-3.16984	1.75903	0.08957	Н	2.47702	4.9157	0.3841
С	-2.18974	1.18298	1.03519	Н	3.3816	3.68338	1.27402
0	-0.18658	1.9258	-0.60118	Н	-0.67967	-1.43248	-2.40932
0	2.77734	-2.29105	-0.32837	Н	0.90566	-3.34585	-0.76341
0	4.97188	-0.9084	-0.37817	Н	0.24418	0.38137	-3.24329
0	-1.88876	1.83111	2.04079	Н	2.57618	-0.77411	-2.09456
С	-4.95253	1.48898	-1.61928				

Table S3. Optimized Z-matrixes of compound 3

Figure S24. The purification procedures of compounds in the strain *S. coelicolor* A3(2)/*spi1*

Gene	AA ^a	Putative function	Homologous gene (Origin,	I/S ^b
			Accession No.)	(%)
Orf1	82	HP		
<i>spi</i> H1	238	Antibiotic biosynthesis	BexI, Amycolatopsis orientalis	46/60
		monooxygenase	subsp. vinearia, ADI71452	
<i>spi</i> L	438	putative	Lct36, S. rishiriensis,	45/62
		glycosyltransferase	ABX71119	
spiM	257	putative MT	BexP, A. orientalis subsp.	57/70
			vinearia, ADI71455	
<i>spi</i> N	377	glycosyl transferase	SaqGT5, Micromonospora sp.	46/63
			Tu 6368, ACP19370	
spiO	518	drug resistance	May1, Streptomyces sp.120454,	48/62
		transporter EmrB/ QacA	AVO00800	
spiP	246	N, N-dimethyltransferase	NbmE, S. venezuelae,	53/67
			AAM88354	
spiQ	385	NDP-hexose	PgaC1, Streptomyces sp.	72/82
		aminotransferase	PGA64, AHW57776	
<i>spi</i> R	196	NDP-hexose 3, 5-	PgaZ1, Streptomyces sp.	67/77
		epimerase	PGA64, AHW57777	
spiS	355	glucose-1-phosphate	PgaG, Streptomyces sp.	71/82
		thymidylyltransferase	PGA64, AHW57786	
<i>spi</i> T	338	dTDP-glucose 4, 6-	PgaH1, Streptomyces sp.	76/86
		dehydratase	PGA64, AHW57787	
<i>spi</i> U	434	NDP-hexose 3, 4-	PgaQ, Streptomyces sp.	84/91
		dehydratase	PGA64, AHW57788	
spiV	460	NDP-hexose 2, 3-	PgaS, Streptomyces sp. PGA64,	69/76
		dehydratase	AHW57789	

Table S4. The predicted gene functions in *spil* BGC in comparison with homologous

spiW	319	dNDP-hexose 3-	SaqT,	M. sp.	Tü6368,	63/73
		ketoreductase	ACP1937	78		
<i>spi</i> I	407	putative	ssfQ, Stre	<i>eptomyces</i> sp.	SF2575,	88/92
		methyltransferase	ADE3449	97		
<i>spi</i> J	327	putative carbohydrate	ssfX2,	Streptomyce	es sp.	63/72
		kinase	SF2575, A	ADE34496		
spiK	289	Methylenetetrahydrofolat	Lct19,	S. ris	hiriensis,	79/86
		e reductase	ABX7110	02		
<i>spi</i> G	298	Thioesterase	May4,	Streptomyce	es sp.	58/69
			120454, <i>A</i>	AVO00803		
spiH2	775	oxygenase-reductase	PgaM,	Streptomyc	es sp.	73/80
			PGA64, A	AAK57530		
<i>spi</i> E	311	aromatase/cyclase	PgaL, Str	<i>eptomyces</i> sp	. PGA64,	77/84
			AAK5752	29		
<i>spi</i> F	260	polyketide ketoreductase	May13,	Streptomyc	es sp.	84/91
			120454, A	AVO00812		
spiA	101	ACP	PgaC,	Streptomyce	es sp.	66/78
			PGA64, A	AAK57527		
spiB	405	ketosynthase β subunit	PgaB,	Streptomyce	es sp.	77/84
			PGA64, A	AAK57526		
spiC	422	ketosynthase α subunit	PgaA,	Streptomyce	es sp.	91/94
			PGA64, A	AAK57525		
<i>spi</i> D	109	polyketide cyclase	PgaY, Str	<i>eptomyces</i> sp	. PGA64,	83/88
			AAK5752	24		
SpiH3	477	FAD-binding protein	PgaE,	Streptomyce	es sp.	82/88
			PGA64, A	AAK57522		
^a Amino	acid. ^b	Identity /similarity.				