Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

SUPPORTING INFORMATION

Base-controlled Regioselectivity via Distinct Mechanisms During C–H Thionation of Azinium Salts with Elemental Sulfur

Olga A. Kositova,^a Dmitry I. Bugaenko,^{a,*} Victoria E. Goncharenko,^a Mikhail S. Nechaev,^{a,b}

and Alexander V. Karchava^{a,*}

^a Department of Chemistry, M. V. Lomonosov Moscow State University Moscow 119992, Russia

^b Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia

bugaenko@org.chem.msu.ru, karchava@org.chem.msu.ru

Contents

N⁰	Title	Page
S-I	General Information	S3
S-II	General Procedure for the Synthesis of Azinium Salts 1 (General Procedure A)	S4
S-III	Optimization of the Reaction Conditions for the Preparation of Pyridine and Quinoline Thiones	S13
S-IV-I	General Procedure for the Synthesis of Pyridine and Quinoline Thiones 2 using Cs_2CO_3 as the Base (<i>General Procedure B</i>)	S14
S-IV-II	General Procedure for the Synthesis of Pyridine and Quinoline Thiones 3 using LiHMDS as the Base (<i>General Procedure C</i>)	S15
S-V	Scale-Up Procedure for Obtaining 2a and 3c	S16
S-VI-I	Characterization Data for the Synthesis of Pyridine and Quinoline Thiones 2	S17
S-VI-II	Characterization Data for the Synthesis of Pyridine and Quinoline Thiones 3	S24
S-VII	X-Ray Crystallographic Data	S31
S-VIII	Unproductive Substrates	S34
S- IX	UV-vis Experiments	S35
S- X	TEMPO Inhibition	S36
S-XI	Computational Data	S37
S-XII	References	S39
S-XIII	Copies of NMR Spectra	S41

S-I. General Information

<u>Materials</u>. All commercially available chemicals and solvents of high purity were used without purification unless otherwise stated. DMSO and THF were dried with 3A MS.

<u>Chromatography</u>. Flash-column chromatography was performed using silica gel (0.040–0.063 mm). Analytical thin-layer chromatography (TLC) was carried out on silica gel 60 F254 plates that were visualized by exposure to UV light.

Instrumentation. ¹H, ¹³C{¹H} and ¹⁹F NMR were recorded at 400, 100 and 376 MHz respectively, for solutions in CDCl₃ or DMSO-*d*₆. Chemical shifts are referenced relative to the signal of CDCl₃ or DMSO-*d*₆ and quoted in δ (ppm). Coupling constants (*J*) are reported in Hz. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet – doublet (dd), doublet – triplet (ddt), multiplet (m), and broad signal (brs). High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) on an Orbitrap spectrometer. Single crystal X-ray analysis for **2c**, **2p**, **3h**, **3s**, **3t** was carried out at 100(2) K on the Bruker D8 Quest diffractometer (MoK α , λ = 0.71073 Å, ω - and ϕ -scan mode). Using Olex2 software package (*J. Appl. Crystallogr.*, **2009**, 42, 339-341), the structures were solved with the SHELXT (*Acta Crystallogr. A.*, **2015**, *71*, 3-8) structure solution program and refined with the least-squares method against F² in anisotropic approximation for non-hydrogen atoms (*Acta Crystallogr. C Struct. Chem.*, **2015**, *71*, 3-8). All hydrogen atoms were placed in calculated positions and refined within riding model.

<u>Melting points</u> were determined in open capillaries and are uncorrected.

Yields refer to isolated and analytically pure compounds.

S-II. General Procedure for the Synthesis of Azinium Salts (General Procedure A)^a

N-Heterocycle (3 mmol, 1.0 equiv) and acetonitrile (5 mL, 1 M) were added to an 8 mL vial with a screw cap equipped with a magnetic stir bar. Alkylating reagent (15 mmol, 5.0 equiv) was slowly added at room temperature. Then the reaction mixture was stirred at 80 °C in an oil bath for 2 – 8 h. Upon completion (monitored by TLC), the reaction mixture was cooled to room temperature. The precipitate was filtered (see Note), washed with diethyl ether (3 x 20 mL) and dried under vacuum. The products were used in the next step without additional purification.

Note: If the product did not precipitate, the solvent was removed under reduced pressure. The resulting mixture was triturated with acetone (10 mL) and diethyl ether (3 mL). The crystallized solid was filtered, washed with diethyl ether (3 x 20 mL) and dried under vacuum. The amorphous solid was washed with diethyl ether (2 × 10 mL), the solvent was decanted and the amorphous product was dried under reduced pressure. The resulting products were used in the next step without additional purification.

^aSalts **1m** [1], **1ee** [2] and **1jj** [3] were synthesized according to the literature methods.

Salt **1u** was synthesized according to the procedure below:

Step 1. Ethyl nicotinate (8.31 g, 55 mmol, 1.0 equiv) and 2,4-dinitrophenyl *p*-toluenesulfonate (20.43 g, 60 mmol, 1.1 equiv) were added to toluene (183 mL, 0.3 M) and stirred at reflux for 12 h. The mixture was cooled to rt, the product was filtered, washed thoroughly with toluene (3 x 30 mL) and dried under vacuum. **1**-(2,4-Dinitrophenyl)-3-(ethoxycarbonyl)pyridin-1-ium *p*-toluenesulfonate: yield 21.53 g (80%). The product was used in the next step without additional purification.

Step 2. 1-(2,4-Dinitrophenyl)-3-(ethoxycarbonyl)pyridin-1-ium *p*-toluenesulfonate (1,91 g, 3.9 mmol, 1.0 equiv) and ethanol (20 mL, 0.2 M) were taken in a 50 mL round bottom flask equipped with a magnetic stir bar. The racemic 1-(adamantan-1-yl)ethanamine (0.70 g, 3.9 mmol, 1.0 equiv) was added, and the reaction mixture was stirred at reflux for about 10 h. Upon complete consumption of salt (monitored by TLC), the reaction mixture was concentrated under reduced pressure. EtOAc (80 mL) and H₂O (40 mL) were added to the crude mass, and organic layer was separated. The aqueous layer was washed with EtOAc (3 x 40 mL) to eliminate 2,4-dinitroaniline. Then aqueous layer was extracted with CH₂Cl₂ (3 x 40 mL). The combined organic layers were dried with Na₂SO₄, and the solvent was removed under reduced pressure. **1-(1-(Adamantan-1-yl)ethyl)-3-(ethoxycarbonyl)pyridin-1-ium** *p*-toluenesulfonate (1u): yield 1.12 g (59 %).

Characterization data obtained for these compounds matched those previously reported in the literature:

3-benzoyl-1-methylpyridin-1-ium iodide (1a) [4], **1-methylpyridin-1-ium iodide (1b)** [5], **3-acetyl-1-methylpyridin-1-ium iodide (1j)** [6], **1-decylpyridin-1-ium chloride (1k)** [7], **4-(dimethylamino)-1-**

methylpyridin-1-ium iodide (11) [8], 1-methyl-2-(piperidin-1-yl)pyridin-1-ium tetrafluoroborate (1m) [1], 3-(ethoxycarbonyl)-1-methylpyridin-1-ium iodide (1o) [9], 3-(*tert*-butoxycarbonyl)-1-methylpyridin-1-ium iodide (1p) [10], 1-methylquinolin-1-ium iodide (1w) [6], 1-isopropylquinolin-1-ium iodide (1x) [11], 1methyl-1,10-phenanthrolin-1-ium iodide (1bb) [12], 2-methylisoquinolin-2-ium iodide (1cc) [6], 2isopropylisoquinolin-2-ium iodide (1dd) [11], 2-(*tert*-butyl)isoquinolin-2-ium chloride (1ee) [2], 1methylquinoxalin-1-ium iodide (1gg) [13], 1,6-dimethyl-1*H*-pyrrolo[2,3-c]pyridin-6-ium iodide (1hh) [14], 1phenylpyridin-1-ium trifluoromesylate (1jj) [3].

COPh COPh COPh COPh COPh ⊕____ Ņ ⊖ I Θ cı[⊝] ⊖ Br Θ Me Me Me Me P٢ 1a 1b 1c 1d 1e 1f Ph 0 NMe₂ COPh .COPh COPh Me ⊕_ N Į æ ⊖ Br ⊕_ ⊖ I Ð, Θ I Θ ⊖ Br cr^{Θ} Br И́е Ме *h*-С₁₀Н₂₁ ⊝ Br Ð óн 1h 1i 1k 11 1g 1j F COPh CI Br Br .CO₂Et .CO₂Bu^t CO₂Me ⊕_ Ņ ⊕____ Ņ____ ı⊖ Ð ⊕_/ ⊖ I ⊖ I Θ I ⊕_ ⊖ BF₄ Ме Ме Ме М́е М́е 1m 1n 10 1p 1q Me Me Мe ö C Me Ме Į ı⊖ I Đ, Ð Ð ı® ıΘ Ņ Me Me И́е М́е Ŵе 1t 1r 1s CI CO₂Et CI TsO[⊖] æ ⊕ N lΘ Θ Θ Ме Ńе ÓMe Me Me Me `Ме 1x 1u 1v 1w 1у 0^ Ò `Me Me Ph Br Br Θ `|⊕ N ⊕____ N Ð Æ Đ, Θ Me ı⊖ Ме N ⊖ Me ⊖ I М́е Ń Ме М́е 1bb 1dd 1z 1aa 1cc .CO₂Me ⊕ N Me ⊖ I ⊖ I æ Θ Bu^t ⊖ I Me cı⊖ Θ OTf Ňе Мe Ме Ме Ρh 1ff 1jj 1gg 1hh 1ii 1ee

N-alkyl heterocyclic salts used in this work

3-Benzoyl-1-propylpyridin-1-ium iodide (1c) was obtained to the **General Procedure A** from **3-benzoyl pyridine (**0.55 g, 3 mmol).

Yield: 0.88 g (83%).

Physical state: yellow solid.

Melting point (Et₂O): 130 – 132 °C.

¹**H NMR (400 MHz, DMSO-***d6***)**: δ 9.46 (s, 1H), 9.30 (d, *J* = 6.1 Hz, 1H), 8.83 – 8.86 (m, 1H), 8.32 (dd, *J* = 8.0, 6.1 Hz, 1H), 7.89 – 7.92 (m, 2H), 7.81 (t, *J* = 7.5 Hz, 1H), 7.63 – 7.67 (m, 2H), 4.67 (t, *J* = 7.4 Hz, 2H), 1.91 – 2.04 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, D₂O): 192.4, 146.4, 145.5, 145.1, 136.7, 134.5, 134.1, 129.9, 128.7, 127.9, 63.4, 23.8, 9.2.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₅H₁₆NO⁺ 226.1226; Found 226.1227 (0.4 ppm).

3-Benzoyl-1-isopropylpyridin-1-ium iodide (1d) was obtained to the **General Procedure A** from **3-benzoyl pyridine** (0.55 g, 3 mmol).

Yield: 0.86 g (81%).

Physical state: yellow solid.

Me

Melting point (Et₂O): 178 – 180 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.42 – 9.49 (m, 2H), 8.82 (d, J = 8.1 Hz, 1H), 8.24 – 8.44 (m, 1H), 7.86 – 8.01 (m, 2H), 7.81 (t, J = 7.4 Hz, 1H), 7.56 – 7.72 (m, 2H), 5.17 (hept, J = 7.3, 6.5 Hz, 1H), 1.66 (d, J = 6.8 Hz, 6H).

¹³C{¹H} NMR (100 MHz, DMSO-d6): δ 190.8, 145.3, 144.8, 144.1, 137.0, 134.9, 134.5, 130.4, 129.1, 128.3, 64.9, 22.3.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₅H₁₆NO⁺ 226.1226; Found 226.1230 (1.7 ppm).

3-Benzoyl-1-benzylpyridin-1-ium chloride (1e) was obtained to the **General Procedure A** from **3-benzoyl pyridine** (0.55 g, 3 mmol).

Yield: 0.68 g (73%).

Physical state: yellow amorphous solid.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.68 (s, 1H), 9.53 (d, *J* = 6.1 Hz, 1H), 8.86 (d, *J* = 8.0 Hz, 1H), 8.34 (dd, *J* = 8.0, 6.1 Hz, 1H), 7.85 – 7.92 (m, 2H), 7.80 (t, *J* = 7.4 Hz, 1H), 7.58 – 7.70 (m, 4H), 7.40 – 7.50 (m, 3H), 6.06 (s, 2H). ¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 193.9, 148.4, 147.9, 147.0, 138.7, 136.6, 136.0, 133.9, 131.9, 131.8, 131.3, 130.9, 130.8, 130.2, 66.6.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₉H₁₆NO⁺ 274.1226; Found 274.1223 (1 ppm).

•___

⊖ Br

ÓН

3-Benzoyl-1-(3-phenylpropyl)pyridin-1-ium bromide (**1f**) was obtained to the **General Procedure A** from **3-benzoyl pyridine** (0.55 g, 3 mmol). **Yield:** 0.71 g (62%).

Physical state: white solid.

Melting point (Et₂O): 122 – 124 °C.

¹**H NMR (400 MHz, DMSO-***d6***)**: δ 9.47 (s, 1H), 9.35 (d, *J* = 6.1 Hz, 1H), 8.83 (d, *J* = 8.0 Hz, 1H), 8.30 (dd, *J* = 8.0, 6.1 Hz, 1H), 7.89 – 7.91 (m, 2H), 7.81 (t, *J* = 7.4 Hz, 1H), 7.61 – 7.70 (m, 2H), 7.17 – 7.30 (m, 5H), 4.78 (t, *J* = 7.4 Hz, 2H), 2.67 – 2.71 (m, 2H), 2.24 – 2.37 (m, 2H).

¹³C{¹H} NMR (100 MHz, DMSO-d6): δ 190.7, 147.0, 145.7, 145.3, 140.4, 136.7, 134.9, 134.4, 130.4, 129.1, 128.4, 128.3, 128.1, 126.2, 61.1, 32.1, 31.6.

HRMS (ESI) m/z: [M]⁺ Calcd for C₂₁H₂₀NO⁺ 302.1539; Found 302.1548 (2.9 ppm).

COPh3-Benzoyl-1-(2-hydroxyethyl)pyridin-1-ium bromide (1g) was obtained to the GeneralProcedure A from 3-benzoyl pyridine (0.55 g, 3 mmol).

Yield: 0.48 g (52%).

Physical state: light brown solid.

Melting point (Et₂O): 135 – 137 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.39 (s, 1H), 9.24 (dd, *J* = 6.1, 1.3 Hz, 1H), 8.88 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.33 (dd, *J* = 8.1, 6.1 Hz, 1H), 7.88 – 7.94 (m, 2H), 7.77 – 7.84 (m, 1H), 7.61 – 7.68 (m, 2H), 4.78 (t, *J* = 4.9 Hz, 2H), 3.85 – 3.93 (m, 2H), 3.55 (brs, 1H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 190.7, 147.6, 145.9, 145.5, 136.3, 134.9, 134.5, 130.4, 129.1, 127.8, 63.5, 60.0.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₄H₁₄NO₂⁺ 228.1019; Found 228.1016 (1.3 ppm).

3-Benzoyl-1-(2-(4-fluorophenoxy)ethyl)pyridin-1-ium bromide (1h) was obtained to the General Procedure A from 3-benzoyl pyridine (0.55 g, 3 mmol).
Yield: 0.85 g (70%).
Physical state: white solid.

Melting point (Et₂O): 140 – 142 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.51 (s, 1H), 9.35 (d, *J* = 6.1 Hz, 1H), 8.90 (d, *J* = 8.2 Hz, 1H), 8.35 (dd, *J* = 8.0, 6.1 Hz, 1H), 7.86 – 7.96 (m, 2H), 7.81 (t, *J* = 7.5 Hz, 1H), 7.60 – 7.69 (m, 2H), 7.10 – 7.19 (m, 2H), 6.91 – 6.99 (m, 2H), 5.14 (t, *J* = 4.9 Hz, 2H), 4.52 (t, *J* = 4.9 Hz, 2H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 190.6, 157.0 (d, *J* = 236.6 Hz), 153.8 (d, *J* = 1.8 Hz), 147.8, 146.3, 145.9, 136.4, 134.8, 134.5, 130.4, 129.1, 127.9, 116.1 (d, *J* = 2.9 Hz), 116.0 (d, *J* = 12.1 Hz), 66.6, 60.3.

¹⁹F NMR (376 MHz, DMSO-*d6*): δ -122.86 – -122.78 (m).

HRMS (ESI) m/z: [M]⁺ Calcd for C₂₀H₁₇FNO₂⁺ 322.1238; Found 322.1233 (1.5 ppm).

1,1'-(Butane-1,4-diyl)bis(3-benzoylpyridin-1-ium) bromide (1i) was obtained to the General Procedure A from 3-benzoyl pyridine (0.55 g, 3 mmol).
Yield: 0.58 g (66%).
Physical state: white solid.
Melting point (Et₂O): more than 230 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.47 (s, 2H), 9.33 (d, *J* = 6.1 Hz, 2H), 8.86 (d, *J* = 8.0 Hz, 2H), 8.29 – 8.40 (m, 2H), 7.86 – 7.96 (m, 4H), 7.81 (t, *J* = 7.4 Hz, 2H), 7.58 – 7.70 (m, 4H), 4.70 – 4.84 (m, 4H), 1.97 – 2.07 (m, 4H).
¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 190.7, 147.0, 145.7, 145.5, 136.8, 134.8, 134.5, 130.4, 129.1, 128.2, 60.3, 27.2.

HRMS (ESI) m/z: [M]⁺ Calcd for C₂₈H₂₆N₂O₂²⁺ 211.0992; Found 211.1000 (3.7 ppm).

3,5-Dibromo-1-methylpyridin-1-ium iodide (1n) was obtained to the **General Procedure A** from **3,5-dibromopyridine (**0.70 g, 3 mmol).

Yield: 0.90 g (80%).

Physical state: light yellow solid.

Melting point (Et₂O): more than 230 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.45 (d, *J* = 1.7 Hz, 2H), 9.28 (t, *J* = 1.8 Hz, 1H), 4.28 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 149.1, 145.9, 121.8, 48.2.

HRMS (ESI) m/z: [M]⁺ Calcd for C₆H₆Br₂N⁺ 249.8862; Found 249.8863 (0.4 ppm).

3-(4-Chlorophenyl)-5-(methoxycarbonyl)-1-methylpyridin-1-ium iodide (1q) was obtained to the **General Procedure A** from **methyl 5-(4-chlorophenyl)nicotinate** (0.74 g, 3 mmol). **Yield:** 0.94 g (81%).

Physical state: yellow solid.

Melting point (Et₂O): 146 – 148 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.65 (s, 1H), 9.55 (s, 1H), 9.17 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.1 Hz, 2H), 4.48 (s, 3H), 4.02 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-d6): δ 162.4, 147.2, 145.1, 141.8, 138.3, 135.8, 131.5, 129.77, 129.73, 129.7, 53.8, 48.7.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₄H₁₃ClNO₂⁺ 262.0629; Found 262.0626 (1.1 ppm).

3-(((3,7-Dimethyloct-6-en-1-yl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (**1r**) was obtained to the **General Procedure A** from **3,7-dimethyloct-6-en-1-yl nicotinate** (0.78 g, 3 mmol).

Yield: 0.88 g (73%).

Physical state: brown viscous oil.

¹H NMR (400 MHz, CDCl₃): δ 9.72 − 9.80 (m, 1H), 9.34 (s, 1H), 8.84 − 8.93 (m, 1H), 8.35 (dd, *J* = 8.1, 6.1 Hz, 1H), 4.99 − 5.14 (m, 1H), 4.79 (s, 3H), 4.40 − 4.50 (m, 2H), 1.90 − 2.04 (m, 2H), 1.78 − 1.88 (m, 1H), 1.53 − 1.73 (m, 8H), 1.32 − 1.44 (m, 1H), 1.16 − 1.26 (m, 1H), 0.95 (d, *J* = 6.1 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.9, 148.9, 146.0, 144.7, 131.2, 130.1, 128.6, 124.1, 65.8, 50.3, 36.6, 34.9, 29.2, 25.5, 25.1, 19.1, 17.5.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₇H₂₆NO₂⁺ 276.1958; Found 276.1965 (2.5 ppm).

3-((2-Butoxyethoxy)carbonyl)-1-methylpyridin-1-ium iodide (**1s**) was obtained to the **General Procedure A** from **2-butoxyethyl nicotinate** (0.67 g, 3 mmol). **Yield:** 0.82 g (75%).

Physical state: brown viscous oil.

¹**H NMR (400 MHz, CDCl₃):** δ 9.77 (d, *J* = 6.0 Hz, 1H), 9.41 (s, 1H), 8.93 (d, *J* = 8.2 Hz, 1H), 8.34 (dd, *J* = 8.2, 6.1 Hz, 1H), 4.79 (s, 3H), 4.52 – 4.62 (m, 2H), 3.75 – 3.84 (m, 2H), 3.50 (t, *J* = 6.7 Hz, 2H), 1.51 – 1.60 (m, 2H), 1.28 – 1.41 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.1, 149.4, 146.3, 145.3, 130.4, 128.8, 71.4, 68.1, 66.4, 50.6, 31.7, 19.3, 14.0.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₃H₂₀NO₃⁺ 238.1438; Found 238.1434 (1.6 ppm).

3-((((1*R***,2***S***,5***R***)-2-Isopropyl-5-methylcyclohexyl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (1t) was obtained to the General Procedure A** from (1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl nicotinate (0.78 g, 3 mmol). Yield: 0.84 g (70%).

Physical state: yellow solid.

Melting point (Et₂O): 181 – 183 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 9.92 (d, *J* = 6.1 Hz, 1H), 9.23 (s, 1H), 8.91 (d, *J* = 8.1 Hz, 1H), 8.34 (dd, *J* = 8.1, 6.1 Hz, 1H), 5.05 (td, *J* = 10.9, 4.5 Hz, 1H), 4.82 (s, 3H), 2.05 – 2.14 (m, 1H), 1.83 – 1.91 (m, 1H), 1.71 – 1.79 (m, 2H), 1.49 – 1.69 (m, 3H), 1.05 – 1.28 (m, 2H), 0.90 – 0.97 (m, 6H), 0.78 (d, *J* = 6.9 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5, 149.4, 145.8, 145.0, 130.8, 128.8, 78.2, 50.7, 46.8, 40.6, 33.9, 31.5, 26.3, 23.2, 22.0, 20.9, 16.2.

1-(1-(Adamantan-1-yl)ethyl)-3-(ethoxycarbonyl)pyridin-1-ium *p*-toluenesulfonate (1u) was obtained to the General Procedure A from 1-(2,4-dinitrophenyl)-3-(ethoxycarbonyl)pyridin-1-ium *p*-toluenesulfonate (1.91 g, 3.9 mmol).

Yield: 1.12 g (59%).

Physical state: light yellow solid.

Melting point (Et₂O): 152 – 154 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.53 (brs, 0.5H), 9.21 (d, *J* = 6.2 Hz, 1H), 9.02 (d, *J* = 8.0 Hz, 1H), 8.29 (dd, *J* = 8.1, 6.2 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.29 (brs, 0.5H), 7.11 (d, *J* = 7.8 Hz, 2H), 4.70 – 4.97 (m, 1H), 4.38 – 4.52 (m, 2H), 2.28 (s, 3H), 1.92 – 2.00 (m, 3H), 1.59 – 1.69 (m, 6H), 1.48 – 1.57 (m, 7H), 1.32 – 1.41 (m, 5H).

¹³C{¹H} NMR (100 MHz, DMSO-d6): 161.8, 149.0, 146.7, 146.5, 145.6, 145.6, 137.8, 129.5, 128.2, 125.6, 76.3, 62.7, 55.7, 37.0, 36.2, 35.9, 34.1, 27.6, 27.5, 20.8, 14.0, 13.2, 12.8.

HRMS (ESI) m/z: [M]⁺ Calcd for C₂₀H₂₈NO₂⁺ 314.2115; Found 314.2113 (0.6 ppm).

8-Chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-1-methyl-6,11-dihydro-5Hbenzo[5,6]cyclohepta[1,2-b]pyridin-1-ium iodide (1v) was obtained to the General Procedure A from ethyl 4-(8-chloro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11(6H)ylidene)piperidine-1-carboxylate (1.15 g, 3 mmol). Yield: 1.15 g (73%).

Physical state: yellow solid.

Melting point (Et₂O): 150 – 152 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.54 (d, J = 5.9 Hz, 1H), 8.45 (d, J = 7.8 Hz, 1H), 8.03 (dd, J = 7.9, 6.2 Hz, 1H), 7.10
7.25 (m, 3H), 4.47 (s, 3H), 4.12 (q, J = 7.1 Hz, 2H), 3.89 – 4.03 (m, 2H), 3.38 – 3.56 (m, 2H), 2.88 – 3.21 (m, 4H), 2.48 – 2.62 (m, 2H), 2.36 – 2.46 (m, 1H), 1.98 – 2.04 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 154.5, 153.8, 144.8, 144.3, 143.9, 139.9, 139.1, 133.2, 132.4, 131.2, 130.7, 126.4, 126.2, 123.2, 60.9, 45.7, 43.4, 43.2, 31.0, 30.6, 29.8, 28.9, 14.6.

HRMS (ESI) m/z: $[M]^+$ Calcd for $C_{23}H_{26}CIN_2O_2^+$ 397.1677; Found 397.1675 (0.5 ppm).

5-Chloro-8-methoxy-1-methylquinolin-1-ium iodide (1y) was obtained to the **General Procedure A** from **5-chloro-8-methoxyquinoline** (0.58 g, 3 mmol).

Yield: 0.82 g (82%).

Physical state: yellow solid.

Melting point (Et₂O): 197 – 199 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.45 (d, *J* = 5.8 Hz, 1H), 9.33 (d, *J* = 8.7 Hz, 1H), 8.24 (dd, *J* = 8.6, 5.7 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 4.81 (s, 3H), 4.09 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): 152.6, 150.9, 143.0, 131.7, 130.5, 128.6, 123.6, 122.8, 116.2, 57.8, 52.5.
 HRMS (ESI) m/z: [M]⁺ Calcd for C₁₁H₁₁CINO⁺ 208.0524; Found 208.0525 (0.4 ppm).

1,6-Dimethyl-3-phenylquinolin-1-ium iodide (1z) was obtained to the **General Procedure A** from **6-methyl-3-phenylquinoline** (0.66 g, 3 mmol). **Yield:** 0.87 g (80%).

Physical state: yellow solid.

Melting point (Et₂O): more than 230 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.90 (d, *J* = 2.1 Hz, 1H), 9.50 (d, *J* = 2.0 Hz, 1H), 8.43 (d, *J* = 9.0 Hz, 1H), 8.25 (s, 1H), 8.13 (dd, *J* = 9.1, 1.9 Hz, 1H), 8.02 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.63 – 7.71 (m, 2H), 7.55 – 7.62 (m, 1H), 4.69 (s, 3H), 2.64 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): 148.2, 142.0, 140.5, 137.2, 135.8, 133.6, 133.4, 129.8, 129.6, 129.4, 128.9, 127.4, 118.8, 45.5, 21.0.

HRMS (ESI) m/z: [M]⁺ Calcd for C₁₇H₁₆N⁺ 234.1277; Found 234.1277 (0 ppm).

3,6-Dibromo-1-methylquinolin-1-ium iodide (**1aa**) was obtained to the **General Procedure A** from **3,6-dibromoquinoline** (0.86 g, 3 mmol). **Yield:** 1.22 g (95%).

Physical state: orange solid.

Melting point (Et₂O): more than 230 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.93 (s, 1H), 9.52 (s, 1H), 8.68 (s, 1H), 8.40 – 8.50 (m, 2H), 4.61 (s, 3H).
 ¹³C{¹H} NMR (100 MHz, DMSO-*d6*): 152.0, 147.0, 138.0, 136.2, 131.2, 130.7, 124.0, 121.6, 115.8, 45.6.
 HRMS (ESI) m/z: [M]⁺ Calcd for C₁₀H₈Br₂N⁺ 299.9018; Found 299.9020 (0.6 ppm).

3-(Methoxycarbonyl)-1-methylpyrazin-1-ium iodide (**1ff**) was obtained to the **General Procedure A** from **methyl pyrazine-2-carboxylate** (0.41 g, 3 mmol).

Yield: 0.76 g (92%).

Physical state: yellow solid.

Melting point (Et₂O): 142 - 144 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 9.79 (s, 1H), 9.62 (d, *J* = 3.3 Hz, 1H), 9.37 (d, *J* = 3.4 Hz, 1H), 4.48 (s, 3H), 4.03 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): 161.5, 149.8, 147.6, 140.8, 139.7, 53.8, 48.9.

1,7-Dimethyl-1H-pyrrolo[2,3-b]pyridin-7-ium iodide (**1ii**) was obtained to the **General Procedure A** from **1-methyl-1H-pyrrolo[2,3-b]pyridine** (0.40 g, 3 mmol). **Yield:** 0.71 g (85%).

Physical state: yellow solid.

Melting point (Et₂O): more than 230 °C.

¹H NMR (400 MHz, DMSO-*d6*): δ 8.70 (d, *J* = 7.9 Hz, 1H), 8.59 (d, *J* = 6.2 Hz, 1H), 7.83 (d, *J* = 3.6 Hz, 1H), 7.59 (d, *J* = 7.9, 6.2 Hz, 1H), 6.93 (d, *J* = 3.5 Hz, 1H), 4.71 (s, 3H), 4.29 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): 139.6, 138.5, 137.5, 136.2, 127.8, 116.0, 102.3, 44.5, 37.4.

HRMS (ESI) m/z: [M]⁺ Calcd for C₉H₁₁N₂⁺ 147.0917; Found 147.0918 (0.6 ppm).

S-III. Optimization of the Reaction Conditions for the Preparation of Pyridine and Quinoline Thiones

	(⊕) N I Me	COPh S ₈ (2 equ solvent	uiv), base, [0.2 M], rt	COPh + N Me	COPh N S Me	
	1a			2a	3a	
Nº	base (equiv)	solvent	conditions	time, h	ratio, 2a : 3a	total yield, %
1ª	Cs ₂ CO ₃ (1.5)	THF	hv, air	12	1:0	18
2ª	Cs ₂ CO ₃ (1.5)	THF	hv, Ar	12	1:0	35
3	Cs ₂ CO ₃ (1.5)	THF	hv, Ar	12	1:0	39
4	Cs ₂ CO ₃ (1.5)	MeCN	hv, Ar	12	1:0	39
5	Cs ₂ CO ₃ (1.5)	DMF	hv, Ar	12	1:0	30
6	Cs ₂ CO ₃ (1.5)	DMSO	hv, Ar	12	1:0	58
7	Cs ₂ CO ₃ (1.5)	DMSO	100 °C, Ar	12	1:0	65
8	Cs ₂ CO ₃ (1.5)	DMSO	Ar	12	1:0	76
9	K ₂ CO ₃ (1.5)	DMSO	Ar	12	1:0	51
10	K ₃ PO ₄ (1.5)	DMSO	Ar	12	1:0	42
11	(<i>i</i> -Pr)₂EtN (1.5)	DMSO	Ar	12	1:0	40
12	DABCO (1.5)	DMSO	Ar	12	1:0	34
13	Cs ₂ CO ₃ (1.0)	DMSO	Ar	24	1:0	67
14	Cs ₂ CO ₃ (1.5)	DMSO	Ar	24	1:0	86
15 ^b	Cs ₂ CO ₃ (1.5)	DMSO	Ar	24	1:0	80
16	LiHMDS (1.5)	THF	Ar	24	1:1.38	76 ^c
17	LiHMDS (1.5)	THF	Ar	2	1:1.42	87 ^d
18	LiHMDS (1.5)	THF	-100 °C, Ar	2	1:0.14	79 ^e
19	LiHMDS (1.5)	THF	-50 °C, Ar	2	1:0.64	75 ^f
20	KHMDS (1.5)	THF	Ar	2	1:0.70	80 ^g

Table S1. Optimization of the reaction conditions

hv – white LED (6500K, 12 W), the distance to the source is 4 cm; ^aphotocatalyst Eosin Y was added; ^btetrafluoroborate salt **1a** was used; yields of individual compounds: ^c**2a** (32%), **3a** (44%); ^d**2a** (36%), **3a** (51%); ^e**2a** (69%), **3a** (10%); ^f**2a** (46%), **3a** (29%); ^g**2a** (47%), **3a** (33%). Yields were determined with ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

S-IV-I. General Procedure for the Synthesis of Pyridine and Quinoline Thiones 2 using Cs₂CO₃ as the Base (*General Procedure B*)

To the solution of *N*-alkylheterocyclic salt **1** (0.6 mmol, 1.0 equiv) in DMSO (3 mL, 0.2 M) in a screw cap vial with septum cap, S_8 (38.4 mg, 1.2 mmol, 2.0 equiv) and Cs_2CO_3 (293.2 mg, 0.9 mmol, 1.5 equiv) were added. The vial was evacuated and refilled with argon five times. The reaction mixture was stirred for 24 h at rt. Then the mixture was poured into brine (20 mL). The water layer was extracted with EtOAc (3 × 15 mL), and the combined organic layers were washed with brine (3 × 30 mL). The organic phase was dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel using gradient mixtures of *n*-hexane : EtOAc (from 8:1 to 1:1) as an eluent (See Note).

Note: For **2p** and **2q** mixtures of CH_2Cl_2 : MeOH = 30:1 was used as eluent. Some products (**2a**, **2t**, **2u**) were obtained with a high degree of purity without the need for flash chromatography.

S-IV-II. General Procedure for the Synthesis of Pyridine and Quinoline Thiones 3 using LiHMDS as the Base (General Procedure C)

To the solution of *N*-alkylheterocyclic salt **1** (0.6 mmol, 1.0 equiv) in THF (3 mL, 0.2 M) in a screw cap vial with septum cap, S_8 (38.4 mg, 1.2 mmol, 2.0 equiv) was added. The vial was evacuated, refilled with argon five times and cooled to 0 °C. The solution of LiHMDS in 1.0 M *n*-hexane (0.9 mL, 0.9 mmol, 1.5 equiv) was added dropwise to the cooled stirring solution. The vial was evacuated and refilled with argon three times. The resulting reaction mixture was stirred for 2 h at rt. Then the solution of citric acid (10%, 1 mL) was added to the reaction mixture, THF was removed under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed with water (3 × 30 mL). The organic phase was dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel using gradient mixtures of *n*-hexane : EtOAc (from 8:1 to 1:1) as an eluent (See Note).

Note: For **3j** and **3o** mixtures of CH_2Cl_2 : MeOH = 40:1 was used as eluent. Some products (**3c**, **3n**, **3s**) were obtained with a high degree of purity without the need for flash chromatography.

S-V. Scale-Up Procedure for Obtaining 2a and 3c

To the solution of 3-benzoyl-1-methylpyridin-1-ium iodide **1a** (1.02 g, 3.1 mmol, 1.0 equiv) in DMSO (15.5 mL, 0.2 M) in a round bottom flask with septum cap, S_8 (0.20 mg, 6.2 mmol, 2.0 equiv) and $C_{S_2}CO_3$ (1.52 g, 4.7 mmol, 1.5 equiv) were added. The flask with septum cap were evacuated and refilled with argon five times. The reaction mixture was stirred for 24 h at rt. Then the mixture was poured into brine (100 mL). The water layer was extracted with EtOAc (3 × 60 mL), the combined organic layers were washed with brine (3 × 100 mL). The organic phase was dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel using mixture of *n*-hexane : EtOAc = 4:1 as an eluent. **(1-Methyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (2a)** was in obtained in high purity with yield 81% (0.58 g).

To the solution of 1-methylpyridin-1-ium iodide **1b** (1.04 g, 4.7 mmol, 1.0 equiv) in THF (23.5 mL, 0.2 M) in a round bottom flask with septum cap, S_8 (0.30 g, 9.4 mmol, 2.0 equiv) was added. The flask with septum cap was evacuated, refilled with argon five times and cooled to 0 °C. The solution of LiHMDS in 1.0 M *n*-hexane (7.1 mL, 7.1 mmol, 1.5 equiv) was slowly added to the cooled stirring solution. The flask was evacuated and refilled with argon three times. The resulting reaction mixture was stirred for 2 h at rt. Then the solution of citric acid (10%, 8 mL) was added to the reaction mixture, THF was removed under reduced pressure. The residue was dissolved in EtOAc (100 mL) and washed with water (3 × 100 mL). The organic phase was dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel using mixture of *n*-hexane : EtOAc = 1:1 as an eluent. **1-Methylpyridine-2(1***H***)-thione (3c)** was in obtained in high purity with yield 58% (0.34 g).

(1-Methyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (2a) was obtained to the General Procedure B from 3-benzoyl-1-methylpyridin-1-ium iodide (1a) (0.20 g, 0.6 mmol). Yield: 0.12 g (83%).

Physical state: yellow solid.

Melting point (EtOAc): 135 – 137 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 2.1 Hz, 1H), 7.68 – 7.72 (m, 3H), 7.59 – 7.66 (m, 2H), 7.53 (dd, J = 8.3, 7.0 Hz, 2H), 4.01 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5, 183.5, 145.1, 136.6, 135.3, 133.0, 132.6, 129.2, 128.8, 123.2, 46.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂NOS⁺ 230.0634; Found 230.0634 (0 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.16.

Phenyl(1-propyl-6-thioxo-1,6-dihydropyridin-3-yl)methanone (2b) was obtained to the General Procedure B from 3-benzoyl-1-propylpyridin-1-ium iodide (1c) (0.21 g, 0.6 mmol). Yield: 0.15 g (86%).

Physical state: brown solid.

Melting point (*n*-hexane : EtOAc): 95 – 97 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 2.1 Hz, 1H), 7.67 – 7.73 (m, 2H), 7.60 – 7.66 (m, 2H), 7.49 – 7.55 (m, 3H), 4.45 – 4.48 (m, 2H), 1.86 – 1.98 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.6, 183.1, 144.5, 136.7, 136.0, 133.0, 132.2, 129.3, 128.9, 123.3, 59.0, 21.6, 11.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NOS⁺ 258.0947; Found 258.0949 (0.7 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.73.

(1-Benzyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (2c) was obtained to the General Procedure B from 3-benzoyl-1-benzylpyridin-1-ium chloride (1e) (0.19 g, 0.6 mmol). Yield: 0.14 g (74%).

Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 145 – 147 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.10 (d, *J* = 2.1 Hz, 1H), 7.74 (d, *J* = 9.1 Hz, 1H), 7.56 – 7.60 (m, 4H), 7.32 – 7.46 (m, 7H), 5.79 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.3, 184.0, 144.5, 136.6, 135.9, 134.6, 133.0, 132.1, 129.4, 129.3, 128.8, 128.69, 128.67, 123.3, 59.1.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₆NOS⁺ 306.0947; Found 306.0950 (0.9 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.30.

Phenyl(1-(3-phenylpropyl)-6-thioxo-1,6-dihydropyridin-3-yl)methanone (2d) was obtained to the General Procedure B from 3-benzoyl-1-(3-phenylpropyl)pyridin-1-ium bromide (1f) (0.23 g, 0.6 mmol). Yield: 0.15 g (77%).

Physical state: orange solid.

Melting point (*n*-hexane : EtOAc): 75 – 77 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 2.1 Hz, 1H), 7.61 – 7.70 (m, 4H), 7.50 – 7.55 (m, 3H), 7.25 – 7.29 (m, 2H), 7.17 – 7.20 (m, 3H), 4.53 (t, *J* = 7.5 Hz, 2H), 2.74 (t, *J* = 7.6 Hz, 2H), 2.22 – 2.31 (m, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.2, 182.8, 144.4, 140.0, 136.5, 135.7, 132.8, 132.1, 129.1, 128.7, 128.5, 128.1, 126.2, 123.1, 56.8, 32.4, 29.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₀NOS⁺ 334.1260; Found 334.1268 (2.3 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.29.

(1-(2-Hydroxyethyl)-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (2e) was obtained to the General Procedure B from 3-benzoyl-1-(2-hydroxyethyl)pyridin-1-ium bromide (1g) (0.18 g, 0.6 mmol). Yield: 0.11 g (70%).

Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 114 – 116 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 2.1 Hz, 1H), 7.67 – 7.77 (m, 3H), 7.61 – 7.66 (m, 2H), 7.48 – 7.55 (m, 2H), 4.75 (t, *J* = 4.9 Hz, 2H), 4.15 (t, *J* = 4.9 Hz, 2H), 1.68 (brs, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.8, 183.0, 146.5, 136.5, 135.6, 133.1, 132.9, 129.4, 128.9, 122.8, 59.3, 59.1.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NO₂S⁺ 260.0740; Found 260.0750 (3.8 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.40.

(1-(2-(4-Fluorophenoxy)ethyl)-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (2f) was obtained to the General Procedure B from 3-benzoyl-1-(2-(4fluorophenoxy)ethyl)pyridin-1-ium bromide (1h) (0.24 g, 0.6 mmol). Yield: 0.16 g (76%).

Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 135 – 137 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, J = 2.1 Hz, 1H), 7.63 – 7.73 (m, 5H), 7.50 – 7.54 (m, 2H), 6.94 – 6.99 (m, 2H), 6.77 – 6.81 (m, 2H), 4.94 (t, J = 4.6 Hz, 2H), 4.43 (t, J = 4.6 Hz, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5, 183.1, 157.7 (d, *J* = 239.6 Hz), 154.1 (d, *J* = 2.0 Hz), 146.3, 136.7, 135.9, 133.1, 132.8, 129.4, 128.9, 123.0, 116.2 (d, *J* = 23.2 Hz), 115.6 (d, *J* = 8.1 Hz), 65.0, 56.6.

¹⁹F NMR (376 MHz, CDCl₃): δ -122.56 – -122.48 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₁₇FNO₂S⁺ 354.0959; Found 354.0963 (1.1 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.33.

(1,1'-(Butane-1,4-diyl)bis(6-thioxo-1,6-dihydropyridine-3,1-

diyl))bis(phenylmethanone) (2g) was obtained to the General ProcedureB from 1,1'-(butane-1,4-diyl)bis(3-benzoylpyridin-1-ium) bromide (1i)

(0.35 g, 0.6 mmol). Yield: 0.25 g (85%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 209 – 211 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.13 – 8.21 (m, 2H), 7.69 – 7.75 (m, 4H), 7.62 – 7.67 (m, 4H), 7.51 – 7.60 (m, 6H), 4.54 – 4.67 (m, 4H), 1.97 – 2.08 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5, 183.1, 144.5, 136.7, 136.2, 133.2, 132.6, 129.4, 129.0, 123.8, 56.6, 25.1.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₅N₂O₂S₂⁺ 485.1352; Found 485.1354 (0.4 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.54.

(1-Isopropyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (2h) was obtained to the General Procedure B from 3-benzoyl-1-isopropylpyridin-1-ium iodide (1d) (0.21 g, 0.6 mmol). Yield: 0.11 g (75%).

Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 123 – 125 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 2.1 Hz, 1H), 7.69 – 7.74 (m, 3H), 7.61 – 7.66 (m, 1H), 7.49 – 7.55 (m, 3H), 6.31 (hept, *J* = 6.8 Hz, 1H), 1.46 (d, *J* = 6.8 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.7, 183.3, 140.3, 136.8, 135.7, 133.1, 131.8, 129.4, 128.9, 123.9, 54.4, 22.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NOS⁺ 258.0947; Found 258.0956 (3.4 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.30.

1-(1-Methyl-6-thioxo-1,6-dihydropyridin-3-yl)ethanone (2i) was obtained to the General **Procedure B** from **3-acetyl-1-methylpyridin-1-ium iodide** (1j) (0.16 g, 0.6 mmol). Yield: 0.08 g (79%).

¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 2.0 Hz, 1H), 7.60 – 7.67 (m, 2H), 4.02 (s, 3H), 2.50 (s, 3H).

Characterization data obtained for this compound matched those previously reported in the literature [15].

Ethyl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (**2j**) was obtained to the **General Procedure B** from **3-(ethoxycarbonyl)-1-methylpyridin-1-ium iodide** (**1o**) (0.18 g, 0.6 mmol). **Yield:** 0.08 g (69%). **Physical state:** yellow solid.

Melting point (*n*-hexane : EtOAc): 92 – 94 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.39 (dd, J = 1.4 Hz, 1H), 7.60 – 7.69 (m, 2H), 4.36 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 183.8, 163.8, 144.1, 135.6, 132.2, 116.6, 61.7, 46.5, 14.4.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₁₂NO₂S⁺ 198.0583; Found 198.0585 (1 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.50.

3,7-Dimethyloct-6-en-1-yl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (2k) was obtained to the **General Procedure B** from **3-(((3,7-dimethyloct-6-en-1-yl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (1r)** (0.24 g, 0.6 mmol). **Yield:** 0.15 g (81%). **Physical state:** yellow solid.

Melting point (*n*-hexane : EtOAc): 47 – 49 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.38 (dd, J = 1.3 Hz, 1H), 7.61 – 7.67 (m, 2H), 5.06 – 5.11 (m, 1H), 4.28 – 4.38 (m, 2H), 4.00 (s, 3H), 1.96 – 2.04 (m, 2H), 1.74 – 1.83 (m, 1H), 1.68 (s, 3H), 1.60 (s, 3H), 1.34 – 1.42 (m, 2H), 1.16 – 1.24 (m, 1H), 0.96 (d, J = 6.4 Hz, 3H), 0.90 (d, J = 6.5 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 183.8, 163.8, 144.1, 135.6, 132.2, 131.7, 124.5, 116.6, 64.3, 46.5, 37.0, 35.5, 29.6, 25.9, 25.5, 19.6, 17.8.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₆NO₂S⁺ 308.1679; Found 308.1683 (1.2 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.29.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 1-methyl-6-thioxo-1,6-dihydropyridine-3carboxylate (2I) was obtained to the General Procedure B from 3-((((1R,2S,5R)-2isopropyl-5-methylcyclohexyl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (1t) (0.24 g, 0.6 mmol). Yield: 0.14 g (77%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 98 – 100 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, J = 1.6 Hz, 1H), 7.57 – 7.71 (m, 2H), 4.79 – 5.07 (m, 1H), 4.00 (s, 3H), 2.01 – 2.09 (m, 1H), 1.80 – 1.89 (m, 1H), 1.71 – 1.76 (m, 3H), 1.47 – 1.55 (m, 2H), 1.03 – 1.15 (m, 2H), 0.90 – 0.93 (m, 6H), 0.78 (d, J = 7.0 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 183.7, 163.3, 144.1, 135.6, 132.3, 116.9, 75.8, 47.3, 46.5, 41.0, 34.3, 31.5, 26.6, 23.6, 22.1, 20.9, 16.5.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₆NO₂S⁺ 308.1679; Found 308.1686 (2.2 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.40.

Tert-butyl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (2m) was obtained to the General Procedure B from 3-(tert-butoxycarbonyl)-1-methylpyridin-1-ium iodide (1p) (0.13 g, 0.6 mmol). Yield: 0.06 g (80%). Physical state: brown solid.

Melting point (*n*-hexane : EtOAc): 85 – 87 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 1.9 Hz, 1H), 7.58 – 7.65 (m, 2H), 4.00 (s, 3H), 1.57 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 183.3, 162.8, 143.9, 135.3, 132.5, 118.1, 82.6, 46.5, 28.2.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₆NO₂S⁺ 226.0896; Found 226.0895 (0.4 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.42.

Ethyl 1-(1-(adamantan-1-yl)ethyl)-6-thioxo-1,6-dihydropyridine-3-carboxylate (2n) was obtained to the **General Procedure B** from **1-(1-(adamantan-1-yl)ethyl)-3-(ethoxycarbonyl)pyridin-1-ium** *p*-toluenesulfonate (1u) (0.29 g, 0.6 mmol). Yield: 0.14 g (67%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 110 – 112 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.31 (s, 1H), 7.85 (s, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.79 – 3.99 (m, 1H), 2.01 – 2.03 (m, 3H), 1.81 – 1.93 (m, 1H), 1.65 – 1.71 (m, 3H), 1.51 – 1.58 (m, 8H), 1.39 – 1.46 (m, 3H), 1.36 (t, *J* = 7.1 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 178.9, 166.5, 163.3, 154.8, 148.9, 124.7, 90.0, 62.6, 38.5, 36.7, 36.3, 28.0, 14.2. The compound was obtained as a mixture of rotamers. A number of rotamers complicate ¹³C{¹H} NMR registration.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₈NO₂S⁺ 346.1835; Found 346.1836 (0.2 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.52.

3,5-Dibromo-1-methylpyridine-2(1*H***)-thione (20)** was obtained to the **General Procedure B** from **3,5-dibromo-1-methylpyridin-1-ium iodide (1n)** (0.23 g, 0.6 mmol). **Yield:** 0.13 g (78%). **Physical state:** yellow solid.

Melting point (n-hexane : EtOAc): 124 – 126 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.92 (d, J = 2.2 Hz, 1H), 7.86 (d, J = 2.2 Hz, 1H), 4.05 (s, 3H).

¹³C{¹H} NMR (100 MHz, DMSO-*d6*): δ 175.8, 143.1, 139.9, 130.3, 102.9, 48.4.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₆H₆Br₂NS⁺ 281.8582; Found 281.8587 (1.7 ppm).

 R_f (*n*-hexane : EtOAc = 1:1) = 0.63.

S

1-Methylquinoline-4(1H)-thione (2p) was obtained to the General Procedure B from 1methylquinolin-1-ium iodide (1w) (0.16 g, 0.6 mmol). Yield: 0.07 g (69%). Physical state: yellow solid. Ńе

Melting point (CH₂Cl₂: methanol): 123 – 125 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.01 (dd, J = 8.5, 1.6 Hz, 1H), 7.72 (ddd, J = 8.6, 6.9, 1.6 Hz, 1H), 7.41 – 7.53 (m, 3H), 7.28 (d, J = 7.0 Hz, 1H), 3.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.7, 136.8, 136.8, 133.9, 132.9, 130.7, 125.8, 125.4, 116.2, 41.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₀H₁₀NS⁺ 176.0528; Found 176.0532 (2.2 ppm).

 $R_f (CH_2Cl_2 : methanol = 10:1) = 0.36.$

1-Isopropylquinoline-4(1H)-thione (2g) was obtained to the General Procedure B from 1isopropylquinolin-1-ium iodide (1x) (0.18 g, 0.6 mmol). Yield: 0.10 g (78%). Physical state: yellow solid.

Melting point (CH₂Cl₂: methanol): 110 – 112 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.10 (dd, J = 8.3, 1.6 Hz, 1H), 7.65 – 7.74 (m, 2H), 7.57 (d, J = 7.2 Hz, 1H), 7.44 – 7.52 (m, 2H), 5.01 (hept, J = 6.7 Hz, 1H), 1.60 (d, J = 6.6 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.3, 136.3, 134.5, 132.9, 131.6, 130.7, 126.0, 125.5, 115.4, 51.4, 22.3.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₄NS⁺ 204.0841; Found 204.0846 (2.4 ppm).

 R_f (CH₂Cl₂: methanol = 10:1) = 0.48.

2-Methylisoquinoline-1(2H)-thione (2r) was obtained to the General Procedure B from 2methylisoquinolin-2-ium iodide (1cc) (0.16 g, 0.6 mmol). Yield: 0.06 g (55%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 87 – 89 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.10 – 9.16 (m, 1H), 7.65 – 7.69 (m, 1H), 7.54 – 7.61 (m, 2H), 7.45 (d, J = 7.1 Hz, 1H), 6.90 (d, J = 7.1 Hz, 1H), 4.09 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 184.1, 134.1, 133.8, 132.4, 132.1, 128.65, 128.62, 126.8, 112.3, 46.9.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₀NS⁺ 176.0528; Found 176.0530 (1.1 ppm).

S Me

2-Isopropylisoquinoline-1(2*H*)-thione (2s) was obtained to the General Procedure B from 2-isopropylisoquinolin-2-ium iodide (1dd) (0.18 g, 0.6 mmol). Yield: 0.06 g (50%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 51 – 53 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.16 – 9.19 (m, 1H), 7.63 – 7.67 (m, 1H), 7.52 – 7.59 (m, 2H), 7.47 (d, J = 7.3 Hz, 1H), 6.97 (d, J = 7.3 Hz, 1H), 6.68 (hept, J = 6.8 Hz, 1H), 1.47 (d, J = 6.8 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 183.6, 134.1, 133.4, 132.3, 132.1, 128.4, 128.1, 126.6, 113.0, 54.0, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₄NS⁺ 204.0841; Found 204.0850 (4.4 ppm). R_f (*n*-hexane : EtOAc = 4:1) = 0.50.

Methyl 4-methyl-5-thioxo-4,5-dihydropyrazine-2-carboxylate (2t) was obtained to the General Procedure B from 3-(methoxycarbonyl)-1-methylpyrazin-1-ium iodide (1ff) (0.17 g, 0.6 mmol). Yield: 0.10 g (89%). Physical state: brown solid.

Melting point (EtOAc): 182 – 184 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, J = 1.1 Hz, 1H), 8.26 (d, J = 1.0 Hz, 1H), 3.97 (s, 3H), 3.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.9, 164.0, 158.2, 136.0, 129.9, 53.1, 45.6.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₇H₉N₂O₂S⁺ 185.0379; Found 185.0386 (3.7 ppm).

R_f (*n*-hexane : EtOAc = 1:1) = 0.26.

_N ►	
N Me	[∕] s

1-Methylquinoxaline-2(1*H***)-thione (2u)** was obtained to the **General Procedure B** from **1methylquinoxalin-1-ium iodide (1gg) (0.16 g, 0.6 mmol). Yield: 0.10 g (93%). Physical state:** yellow solid.

Melting point (EtOAc): 108 – 110 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.84 (s, 1H), 7.93 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.66 (ddd, *J* = 8.7, 7.2, 1.6 Hz, 1H), 7.54 (dd, *J* = 8.6, 1.2 Hz, 1H), 7.45 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 4.20 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.8, 156.6, 137.0, 133.9, 131.5, 130.8, 125.8, 114.7, 37.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₉N₂S⁺ 177.0481; Found 177.0479 (1.1 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.58.

(1-Methyl-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (3a) was obtained to the General Procedure C from 3-benzoyl-1-methylpyridin-1-ium iodide (1a) (0.20 g, 0.6 mmol). Yield: 0.07 g (47%). Physical state: brown solid.

Melting point (*n*-hexane : EtOAc): 105 – 107 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.86 − 7.94 (m, 2H), 7.81 (dd, *J* = 6.6, 1.7 Hz, 1H), 7.53 − 7.58 (m, 1H), 7.41 − 7.47 (m, 2H), 7.30 (dd, *J* = 7.1, 1.7 Hz, 1H), 6.75 (t, *J* = 6.8 Hz, 1H), 4.00 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.3, 177.5, 145.2, 142.1, 136.1, 133.6, 132.9, 129.6, 128.8, 112.5, 45.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂NOS⁺ 230.0634; Found 230.0634 (0 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.30.

(1-Isopropyl-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (3b) was obtained to the General Procedure C from 3-benzoyl-1-isopropylpyridin-1-ium iodide (1d) (0.21 g, 0.6 mmol). Yield: 0.09 g (60%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 100 – 102 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.85 – 7.94 (m, 2H), 7.81 (dd, *J* = 6.8, 1.6 Hz, 1H), 7.51 – 7.58 (m, 1H), 7.40 – 7.47 (m, 2H), 7.22 (dd, *J* = 6.9, 1.6 Hz, 1H), 6.78 – 6.86 (m, 1H), 6.31 (hept, *J* = 6.7 Hz, 1H), 1.47 (d, *J* = 6.7 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.1, 176.9, 145.3, 136.7, 136.2, 133.4, 131.9, 129.6, 128.8, 113.2, 52.9, 22.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NOS⁺ 258.0947; Found 258.0940 (2.7 ppm). R_f (*n*-hexane : EtOAc = 1:1) = 0.60.

1-Methylpyridine-2(1*H***)-thione (3c)** was obtained to the **General Procedure C** from **1methylpyridin-1-ium iodide (1b)** (0.13 g, 0.6 mmol). **Yield:** 0.04 g (56%).

¹H NMR (400 MHz, CDCl₃): δ 7.68 − 7.74 (m, 1H), 7.62 − 7.68 (m, 1H), 7.19 (ddd, *J* = 8.7, 6.9, 1.7 Hz, 1H), 6.58 − 6.67 (m, 1H), 3.99 (s, 3H).

Characterization data obtained for this compound matched those previously reported in the literature [16].

1-Phenylpyridine-2(1H)-thione (3d) was obtained to the **General Procedure C** from **1phenylpyridin-1-ium trifluoromesylate (1jj) (0.18 g, 0.6 mmol). Yield:** 0.08 g (71%). **Physical state:** yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.75 (ddd, *J* = 8.8, 1.4, 0.8 Hz, 1H), 7.59 (ddd, *J* = 6.7, 1.7, 0.8 Hz, 1H), 7.46 – 7.57 (m, 3H), 7.31 – 7.38 (m, 2H), 7.22 – 7.28 (m, 1H), 6.65 – 6.72 (m, 1H).

Characterization data obtained for this compound matched those previously reported in the literature [17].

Ethyl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (3e) was obtained to the General Procedure C from 3-(ethoxycarbonyl)-1-methylpyridin-1-ium iodide (1o) (0.18 g, 0.6 mmol). Yield: 0.07 g (59%). Physical state: orange solid.

Melting point (*n*-hexane : EtOAc): 58 – 60 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.74 (dd, *J* = 6.6, 1.7 Hz, 1H), 7.41 (dd, *J* = 7.1, 1.7 Hz, 1H), 6.58 − 6.66 (m, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.4, 166.9, 142.4, 139.6, 133.3, 111.6, 62.0, 46.3, 14.1.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₁₂NO₂S⁺ 198.0583; Found 198.0588 (2.5 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.33.

3,7-Dimethyloct-6-en-1-yl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3f**) was obtained to the **General Procedure C** from **3-(((3,7-dimethyloct-6-en-1-yl)oxy)carbonyl)-1-methylpyridin-1-ium iodide** (**1r**) (0.24 g, 0.6 mmol). **Yield:** 0.14 g (75%). **Physical state:** yellow viscous oil.

¹H NMR (400 MHz, CDCl₃): δ 7.73 (dd, J = 6.6, 1.7 Hz, 1H), 7.39 (dd, J = 7.1, 1.7 Hz, 1H), 6.58 – 6.64 (m, 1H), 5.05 – 5.13 (m, 1H), 4.33 – 4.43 (m, 2H), 3.98 (s, 3H), 1.94 – 2.03 (m, 2H), 1.76 – 1.85 (m, 1H), 1.67 (s, 3H), 1.59 (s, 3H), 1.31 – 1.44 (m, 2H), 1.15 – 1.28 (m, 2H), 0.94 (d, J = 6.5 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.5, 167.1, 142.3, 139.8, 133.3, 131.4, 124.8, 111.5, 64.6, 46.4, 37.1, 35.4, 29.6, 25.9, 25.5, 19.5, 17.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{26}NO_2S^+$ 308.1679; Found 308.1690 (3.5 ppm). R_f (*n*-hexane : EtOAc = 1:1) = 0.46.

2-Butoxyethyl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (3g) was obtained to the **General Procedure C** from **3-((2-butoxyethoxy)carbonyl)-1methylpyridin-1-ium iodide (1s)** (0.22 g, 0.6 mmol). **Yield:** 0.11 g (70%). **Physical**

state: red viscous oil.

¹H NMR (400 MHz, CDCl₃): δ 7.74 (dd, J = 6.7, 1.7 Hz, 1H), 7.43 (dd, J = 7.2, 1.7 Hz, 1H), 6.58 – 6.65 (m, 1H), 4.41 – 4.55 (m, 2H), 3.97 (s, 3H), 3.75 (dd, J = 5.7, 4.1 Hz, 2H), 3.49 (t, J = 6.7 Hz, 2H), 1.52 – 1.59 (m, 2H), 1.31 – 1.40 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.5, 166.8, 142.5, 139.2, 133.7, 111.5, 71.2, 68.4, 65.0, 46.4, 31.8, 19.4, 14.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₂₀NO₃S⁺ 270.1158; Found 270.1162 (2.2 ppm).

Methyl 5-(4-chlorophenyl)-1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (3h) was obtained to the General Procedure C from 3-(4-chlorophenyl)-5-(methoxycarbonyl)-1-methylpyridin-1-ium iodide (1q) (0.23 g, 0.6 mmol). Yield: 0.08 g (48%). Physical state: orange solid.

Melting point (*n*-hexane : EtOAc): 124 – 126 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 2.2 Hz, 1H), 7.65 (d, J = 2.2 Hz, 1H), 7.41 – 7.46 (m, 2H), 7.35 – 7.40 (m, 2H), 4.06 (s, 3H), 3.96 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 176.1, 167.3, 139.8, 139.4, 134.8, 133.3, 132.5, 129.7, 127.4, 124.6, 53.1, 46.8.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃ClNO₂S⁺ 294.0350; Found 294.0342 (2.7 ppm).

 R_{f} (*n*-hexane : EtOAc = 2:1) = 0.69.

1-Methyl-6-(piperidin-1-yl)pyridine-2(1*H***)-thione (3i)** was obtained to the **General Procedure C** from **1-methyl-2-(piperidin-1-yl)pyridin-1-ium tetrafluoroborate (1m)** (0.16 g, 0.6 mmol). **Yield:** 0.08 g (65%). **Physical state:** yellow solid.

Melting point (*n*-hexane : EtOAc): 107 – 109 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.10 − 7.17 (m, 1H), 6.24 (dd, *J* = 7.6, 1.4 Hz, 1H), 4.02 (s, 3H), 2.49 − 3.24 (m, 4H), 1.66 − 1.88 (m, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 181.4, 159.4, 134.8, 129.8, 104.0, 52.7, 40.0, 25.7, 23.9.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₇N₂S⁺ 209.1107; Found 209.1102 (2.3 ppm).

 R_{f} (*n*-hexane : EtOAc = 1:1) = 0.59.

4-(Dimethylamino)-1-methylpyridine-2(1*H***)-thione (3j)** was obtained to the **General Procedure C** from **4-(dimethylamino)-1-methylpyridin-1-ium iodide (1l)** (0.16 g, 0.6 mmol). **Yield:** 0.05 g (53%). **Physical state:** brown solid.

Melting point (CH₂Cl₂: methanol): 162 – 164 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 3.0 Hz, 1H), 6.12 (dd, *J* = 7.6, 3.0 Hz, 1H), 3.90 (s, 3H), 3.02 (s, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 185.2, 152.6, 140.5, 111.8, 101.6, 44.1, 39.6.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₁₃N₂S⁺ 169.0794; Found 169.0793 (0.5 ppm).

 R_{f} (CH₂Cl₂: methanol = 20:1) = 0.22.

Ethyl 4-(8-chloro-1-methyl-2-thioxo-5,6-dihydro-1*H*-benzo[5,6]cyclohepta[1,2b]pyridin-11(2*H*)-ylidene)piperidine-1-carboxylate (3k) was obtained to the General Procedure C from 8-chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-1-methyl-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-b]pyridin-1-ium iodide (1v) (0.31 g, 0.6 mmol). Yield: 0.20 g (80%). Physical state: orange viscous oil.

¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.7 Hz, 1H), 7.17 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.09 – 7.14 (m, 2H), 7.00 (d, *J* = 8.0 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.80 – 3.95 (m, 2H), 3.00 – 3.27 (m, 4H), 2.81 – 2.91 (m, 1H), 2.61 – 2.68 (m, 1H), 2.35 – 2.49 (m, 2H), 2.14 – 2.23 (m, 1H), 1.96 – 2.04 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 178.7, 155.4, 150.7, 140.6, 139.1, 134.8, 134.4, 134.3, 132.3, 131.4, 131.1, 128.2, 126.5, 123.8, 61.8, 44.4, 43.8, 41.2, 31.9, 31.2, 30.4, 29.4, 14.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₆ClN₂O₂S⁺ 429.1398; Found 429.1405 (1.6 ppm). R_f (*n*-hexane : EtOAc = 1:1) = 0.37.

1-Decylpyridine-2(1*H*)-thione (3I) was obtained to the General Procedure C from 1-decylpyridin-1-ium chloride (1k) (0.15 g, 0.6 mmol). Yield: 0.08 g (56%). Physical state: brown viscous oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.66 − 7.73 (m, 1H), 7.59 (dd, *J* = 6.6, 1.7 Hz, 1H), 7.15 (ddd, *J* = 8.7,

6.8, 1.7 Hz, 1H), 6.60 – 6.66 (m, 1H), 4.45 – 4.55 (m, 2H), 1.88 (p, *J* = 7.4 Hz, 2H), 1.17 – 1.44 (m, 14H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 179.9, 140.2, 136.7, 133.7, 113.6, 57.2, 31.9, 29.5, 29.3, 29.3, 29.2, 28.3, 26.6, 22.7, 14.2.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₆NS⁺ 252.1780; Found 252.1780 (0 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.32.

(1-(2-(4-Fluorophenoxy)ethyl)-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone
(3m) was obtained to the General Procedure C from 3-benzoyl-1-(2-(4-fluorophenoxy)ethyl)pyridin-1-ium bromide (1h) (0.24 g, 0.6 mmol). Yield: 0.05 g (26%). Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 129 – 131 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (dd, *J* = 6.6, 1.7 Hz, 1H), 7.81 – 7.91 (m, 2H), 7.53 – 7.59 (m, 1H), 7.40 – 7.46 (m, 2H), 7.29 (dd, *J* = 7.0, 1.6 Hz, 1H), 6.94 – 7.00 (m, 2H), 6.74 – 6.84 (m, 3H), 4.92 – 4.98 (m, 2H), 4.40 – 4.46 (m, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.2, 177.0, 157.7 (d, J = 239.4 Hz), 154.2 (d, J = 2.0 Hz), 145.4, 143.2, 136.0, 133.6, 133.1, 129.7, 128.8, 116.2 (d, J = 23.2 Hz), 115.7 (d, J = 7.9 Hz), 112.1, 65.1, 55.8.
¹⁹F NMR (376 MHz, CDCl₃): δ -122.82 - -122.73 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₁₇FNO₂S⁺ 354.0959; Found 354.0964 (1.4 ppm). R_f (*n*-hexane : EtOAc = 1:1) = 0.77.

1,6-Dimethyl-1*H*-**pyrrolo**[**2,3-***c*]**pyridine-7(6***H*)-**thione** (**3n**) was obtained to the **General Procedure C** from **1,6-dimethyl-1***H*-**pyrrolo**[**2,3-***c*]**pyridin-6-ium iodide** (**1hh**) (0.16 g, 0.6 mmol). **Yield:** 0.09 g (90%). **Physical state:** light yellow solid.

Melting point (EtOAc): 94 – 96 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 (d, *J* = 6.9 Hz, 1H), 7.14 (d, *J* = 2.9 Hz, 1H), 6.83 (d, *J* = 6.9 Hz, 1H), 6.30 (d, *J* = 2.9 Hz, 1H), 4.52 (s, 3H), 4.05 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 168.1, 136.2, 134.6, 132.1, 128.2, 107.6, 100.9, 44.7, 39.2.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₁₁N₂S⁺ 179.0637; Found 179.0638 (0.5 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.58.

1,7-Dimethyl-1*H*-**pyrrolo**[**2,3**-*b*]**pyridine-6(7***H*)-**thione** (**3o**) was obtained to the **General Procedure C** from **1,7-dimethyl-1***H*-**pyrrolo**[**2,3**-*b*]**pyridin-7-ium iodide** (**1ii**) (0.16 g, 0.6 mmol). **Yield:** 0.03 g (33%). **Physical state:** brown solid.

Melting point (CH₂Cl₂: methanol): 123 – 125 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.7 Hz, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 6.69 (d, *J* = 3.4 Hz, 1H), 6.33 (d, *J* = 3.4 Hz, 1H), 4.51 (s, 3H), 4.07 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): 177.5, 139.8, 129.5, 127.6, 127.2, 117.0, 102.9, 39.1, 38.5.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₁₁N₂S⁺ 179.0637; Found 179.0629 (4.4 ppm).

 R_{f} (CH₂Cl₂: methanol = 20:1) = 0.68.

1-Methylquinoline-2(1*H***)-thione (3p)** was obtained to the **General Procedure C** from **1methylquinolin-1-ium iodide (1w)** (0.16 g, 0.6 mmol). **Yield:** 0.06 g (62%).

¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.73 (m, 4H), 7.46 (d, J = 9.1 Hz, 1H), 7.31 – 7.40 (m, 1H),

4.34 (s, 3H).

Characterization data obtained for this compound matched those previously reported in the literature [18].

1,6-Dimethyl-3-phenylquinoline-2(1*H***)-thione (3q)** was obtained to the **General Procedure C** from **1,6-dimethyl-3-phenylquinolin-1-ium iodide (1z)** (0.22 g, 0.6 mmol). **Yield:** 0.09 g (55%). **Physical state:** orange solid.

Melting point (*n*-hexane : EtOAc): 133 – 135 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.57 (s, 1H), 7.35 – 7.55 (m, 8H), 4.40 (s, 3H), 2.46 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 184.1, 142.9, 141.4, 139.2, 134.2, 132.7, 132.0, 129.6, 128.7, 128.0, 127.9, 123.8, 115.8, 39.2, 20.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₆NS⁺ 266.0998; Found 266.1000 (0.7 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.60.

3,6-Dibromo-1-methylquinoline-2(1*H***)-thione (3r**) was obtained to the **General Procedure C** from **3,6-dibromo-1-methylquinolin-1-ium iodide** (1aa) (0.26 g, 0.6 mmol). **Yield:** 0.12 g (58%). **Physical state:** orange solid.

Melting point (*n***-hexane : EtOAc):** 198 – 200 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.12 (s, 1H), 7.70 – 7.78 (m, 2H), 7.42 (d, *J* = 9.0 Hz, 1H), 4.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 181.9, 139.5, 134.5, 133.9, 130.2, 130.2, 124.5, 117.6, 117.6, 41.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₈Br₂NS⁺ 331.8739; Found 331.8732 (2.1 ppm). R_f (*n*-hexane : EtOAc = 4:1) = 0.58.

5-Chloro-8-methoxy-1-methylquinoline-2(1*H***)-thione (3s)** was obtained to the **General Procedure C** from **5-chloro-8-methoxy-1-methylquinolin-1-ium iodide (1y)** (0.20 g, 0.6 mmol). **Yield:** 0.10 g (72%). **Physical state:** yellow solid.

Melting point (EtOAc): 146 – 148 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 9.4 Hz, 1H), 7.69 (d, *J* = 9.4 Hz, 1H), 7.34 (d, *J* = 8.7 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 1H), 4.35 (s, 3H), 3.94 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 186.6, 147.6, 135.1, 134.5, 127.5, 125.4, 124.4, 124.2, 113.4, 56.9, 46.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₁ClNOS⁺ 240.0244; Found 240.0249 (2 ppm). R_f (*n*-hexane : EtOAc = 4:1) = 0.54.

1-Methyl-1,10-phenanthroline-2(1*H***)-thione (3t)** was obtained to the **General Procedure C** from **1-methyl-1,10-phenanthrolin-1-ium iodide (1bb)** (0.19 g, 0.6 mmol). **Yield:** 0.12 g (87%). **Physical state:** yellow solid.

Melting point (*n*-hexane : EtOAc): 126 – 128 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.00 (dd, *J* = 4.2, 1.9 Hz, 1H), 8.22 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.91 (d, *J* = 8.9 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.54 − 7.61 (m, 2H), 4.91 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 186.3, 147.8, 139.93, 139.89, 136.4, 135.7, 131.9, 130.2, 126.3, 125.3, 125.2, 122.6, 48.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₃H₁₁N₂S⁺ 227.0637; Found 227.0633 (1.7 ppm).

R_f (*n*-hexane : EtOAc = 4:1) = 0.28.

2-(*Tert*-butyl)isoquinoline-1(2*H*)-thione (3u) was obtained to the General Procedure C from
2-(*tert*-butyl)isoquinolin-2-ium chloride (1ee) (0.10 g, 0.6 mmol). Yield: 0.04 g (41%).
Physical state: yellow solid.

Melting point (*n*-hexane : EtOAc): 80 – 82 °C.

¹H NMR (400 MHz, CDCl₃): δ 9.23 (d, *J* = 8.5 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.57 − 7.65 (m, 1H), 7.46 − 7.55 (m, 2H), 6.83 (d, *J* = 7.7 Hz, 1H), 2.06 (s, 9H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 185.8, 136.9, 132.9, 132.0, 131.5, 130.1, 128.2, 126.0, 112.0, 68.0, 29.3.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆NS⁺ 218.0998; Found 218.0992 (2.7 ppm).

 R_{f} (*n*-hexane : EtOAc = 4:1) = 0.64.

S-VII. X-Ray Crystallographic Data

CCDC 2419945, 2419946, 2419948, 2419949, 2427527 contain the supplementary crystallographic data for this These obtained free paper. data can be of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

General view of the molecule **3t** (non-hydrogen atoms are presented as thermal ellipsoids with 50% probability).

Crystal data and refinement parameters for **3r**: $C_{13}H_{10}N_2S$, M = 226.29, monoclinic, P2₁/c, a = 10.7446(7) Å, b = 14.6012(9) Å, c = 7.0569(6) Å, β = 108.194(3)°, V = 1051.76(13) Å³, Z = 4, R₁(reflections with I>2 σ)/ ω R₂(all reflections) = 0.0478/0.1341 for 11353/3202 reflections and 146 parameters.

General view of the molecule **3s** (non-hydrogen atoms are presented as thermal ellipsoids with 50% probability).

Crystal data and refinement parameters for **3q**: $C_{11}H_{10}NOSCI$, M = 239.71, monoclinic, P2₁/n, a = 17.8909(5) Å, b = 3.98570(10) Å, c = 29.2748(8) Å, β = 102.3060(10)°, V = 2039.56(10) Å³, Z = 8, R₁(reflections with I>2 σ)/ ω R₂(all reflections) = 0.0435/0.1070 for 21097/6206 reflections and 275 parameters.

General view of the molecule **2p** (non-hydrogen atoms are presented as thermal ellipsoids with 50% probability).

Crystal data and refinement parameters for **2p**: $C_{10}H_9NS$, M = 175.24, orthorhombic, Pca2₁, a = 15.077(3) Å, b = 7.584(2) Å, c = 28.746(7) Å, V = 3287.0(14) Å³, Z = 16, R₁(reflections with I>2 σ)/ ω R₂(all reflections) = 0.0867/0.2392 for 21752/5748 reflections and 438 parameters.

General view of the molecule **2c** (non-hydrogen atoms are presented as thermal ellipsoids with 50% probability).

Crystal data and refinement parameters for **2c**: $C_{19}H_{15}NOS$, M = 305.38, triclinic, P-1, a = 8.8568(3) Å, b = 10.5889(4) Å, c = 8.5261(3) Å, α = 77.1900(10)°, β = 78.4590(10)°, γ = 82.103(2)°, V = 760.31(5) Å³, Z = 2, R₁(reflections with I>2 σ)/ ω R₂(all reflections) = 0.0472/0.1143 for 11184/4037 reflections and 259 parameters.

General view of the molecule **3h** (non-hydrogen atoms are presented as thermal ellipsoids with 50% probability).

Crystal data and refinement parameters for KO32: C14H12ClO2NS, M = 293.76, orthorhombic, Pca21, a = 26.6824(9) Å, b = 7.1838(3) Å, c = 13.9128(4) Å, $\alpha = \beta = \gamma = 900$, V = 2666.82(16) Å3, Z = 8, R1(reflections with I>2 σ)/ ω R2(all reflections) = 0.0485/0.1095 for 25468/5575 reflections and 348 parameters.

with LiHMDS as the base

S-IX. UV-vis Experiments

Fig. S1. Fragment of the UV-vis spectrum of a S₈ [0.02 M] – Cs₂CO₃ [0.015 M] mixture in DMSO

Fig. S2. Fragment of the UV-vis spectrum of a S₈ [0.02 M] – LiHMDS [0.015 M] mixture in THF

S- X. TEMPO Inhibition

Radical trapping experiments to study reaction mechanisms using Cs₂CO₃ and LiHMDS as the bases were carried out according to *General Procedure B* and *General Procedure C*, respectively, with the addition of 4 equivalents of the radical inhibitor (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO).

$ \begin{array}{ c c } & & & \\ & & & & \\ & & & \\ & & & & $	COP	h	COPh	COPh
$\begin{bmatrix} N & I \\ - & \\ Me \end{bmatrix} = \begin{bmatrix} 0.2 \text{ M} \end{bmatrix}, \text{ rt, Ar} = \begin{bmatrix} S & N & & N & S \\ - & & & Me \end{bmatrix}$ $\begin{bmatrix} 1a & & 2a & 3a \end{bmatrix}$		S₈ (2.0 equiv), base (1.5 equiv),	↓ +	
1a 2a 3a	N [∽] I [⊖] Me	solvent [0.2 M], rt, Ar	S ^{//} N [/] Me	N S Me
	1a		2a	3a

Table S2. Data on inhibition of reactions with and without TEMPO: comparison

entry	base	solvent	additive (equiv)	time, h	yield of 2a+3a, %
1	Cs ₂ CO ₃	DMSO	-	24	83ª
2	Cs_2CO_3	DMSO	TEMPO (4.0)	24	0
3	LiHMDS	THF	-	2	81
4	LiHMDS	THF	TEMPO (4.0)	2	56

^aThe yield of a single reaction product **2a** is given.
S-XI. Computational Data

Geometry optimizations were conducted using the PBE96 functional¹⁹ a scalar-relativistic approximation,²⁰ L1 wavefunction,²¹ and density-fitting²² basis sets implemented in PRIRODA program.^{23,24} Stationary points were characterized as minima (i=0) or first order transition states (i=1) by calculations of normal modes of vibrations at the same level. Single point energy calculations were done using the long-range- and dispersion-corrected L19²⁵-PBE96¹⁹-VV10²⁶ density functional. Solvent effects for reactions in THF and DMSO using SMD²⁷ model were calculated using the PBE96 functional and def2-TZVP²⁸ basis set using Orca 5.0.3 release.²⁹ Optimized geometries are collected in the separate .xyz file.

Table S3.	Calculated energy parameters (E = E _{total} (L19-PBE96-VV10/L1) a.u.; G = G(PBE96/L1) kcal/mol;
	DG _s = DG _{ENP} (a.u.) + DG _{CDs} (kcal/mol) solvation free energy (PBE-D4(SMD)/def2-TZVP)).

Molecule	E	G	GENP	GCDS
½ (A)₂ (THF)	-7662.59029	88.7	-0.02688	-2.0
A (DMSO)	-7662.57708	83.0	-0.03899	0.9
pre-TS-AB-2	-9242.09499	407.2	-0.05080	-4.0
pre-TS-AB-4	-9242.06986	406.5	-0.06756	-3.5
TS-AB-2	-9242.08128	406.1	-0.04819	-4.0
TS-AB-4	-9242.04211	405.9	-0.07136	-3.3
B-2	-440.92267	77.9	-0.02020	-2.8
B-4	-440.89679	77.7	-0.03381	-2.7
C-2 (THF)	-840.67903	78.9	-0.01541	-3.8
C-4 (THF)	-840.66954	78.9	-0.02371	-3.9
D-2	-1640.60572	82.6	-0.01958	-2.6
D-4	-1640.61187	82.8	-0.02092	-2.5
TS-DC-2	-1640.57844	80.5	-0.01775	-2.4
TS-DC-4	-1640.57668	79.6	-0.02343	-2.5
C-2 (DMSO)	-840.67903	78.9	-0.01541	-3.8
C-4 (DMSO)	-840.66954	78.9	-0.02371	-3.9
Li(THF)₃HMDS	-1579.49106	309.7	-0.01783	-2.4
HMDS	-875.34495	117.3	-0.00645	1.1
Li(THF)₃I	-7925.80058	183.0	-0.02401	-2.9
Cs(DMSO)₅S₃	-11882.93156	193.5	-0.04148	3.2
1/4[Cs(DMSO) ₃ I] ₄	-16795.61446	119.1	-0.02547	3.9
DMSO	-554.64027	29.8	-0.01333	0.0
S ₈ (THF)	-3197.45083	-17.7	-0.00062	-7.4

According to quantum chemical calculations in the Orcad program (version 5.0.3), the most electrophilic position of the pyridine ring is the C(6) position.^{*} Charges were calculated using the Hirschfield model using the DLPNO-CSD method with def2-tzvpp def2/C bases. Geometry optimization was carried out using the B3LYP electron density functional method with the def2-tzvpp basis.

Fig. S3. DLPNO-CSD Quantum chemical calculation data for salt 1e.

^{*} We would like to thank Andreychev V.V. for conducting quantum chemical calculations.

S-XII. References

[1] J. T. Bowler, F. M. Wong, S. Gronert, J. R. Keeffe, W. Wu. Reactivity in the nucleophilic aromatic substitution reactions of pyridinium ions. *Organic & biomolecular chemistry.* **2014**, *12*, 6175-6180.

[2] S. Rani, S. R. Dash, A. Bera, M. N. Alam, K. Vanka, P. Maity. Phosphite mediated asymmetric N to C migration for the synthesis of chiral heterocycles from primary amines. *Chemical Science*. **2021**, *12*, 8996-9003.

[3] Q. Ge, Y. Hu, B. Li, B. Wang. Synthesis of conjugated polycyclic quinoliniums by rhodium (III)-catalyzed multiple C–H activation and annulation of arylpyridiniums with alkynes. *Org. Lett.* **2016**, *18*, 2483-2486.

[4] M. M. Baradarani, J. A. Joule. Conversion of pyridines and quinolines into pyridazines and pyrazoles. *J. Chem. Soc., Perkin Trans. 1.* **1980**, 72-77.

[5] C. Payne, S. R. Kass. Structural considerations for charge-enhanced Brønsted acid catalysts. *J. Phys. Org. Chem.* **2020**, *33*, e4069.

[6] M. J. Van Haren, J. S. Toraño, D. Sartini, M. Emanuelli, R. B. Parsons, N. I. Martin. A rapid and efficient assay for the characterization of substrates and inhibitors of nicotinamide N-methyltransferase. *Biochemistry*. **2016**, *55*, 5307-5315.

[7] P. D. Galgano, O. A. El Seoud. Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3methylimidazolium chlorides and comparison with structurally related surfactants. *J. Colloid Interface Sci.* **2011**, *361*, 186-194.

[8] D. Jun, M. Paar, J. Binder, J. Marek, M. Pohanka, P. Stodulka, K. Kuca. Preparation and in vitro evaluation of monoquaternary inhibitors of brain cholinesterases. *Letters in Org. Chem.* **2009**, *6*, 500-503.

[9] M. Shukla. Hydrogen bonding interactions in nicotinamide Ionic Liquids: A comparative spectroscopic and DFT studies. *J. Mol. Struct.* **2017**, *1131*, 275-280.

[10] E. Wenkert, K. G. Dave, F. Haglid. General Methods of Synthesis of Indole Alkaloids. V. Syntheses of d,l-Corynantheidol and d,l-Epialloyohimbane. *J. Am. Chem. Soc.* **1965**, *87*, 5461-5467.

[11] J. Tang, X. Chen, C. Q. Zhao, W. J. Li, S. Li, X. L. Zheng, H. Chen. Iodination/Amidation of the *N*-Alkyl(Iso)quinolinium Salts. *J. Org. Chem.* **2020**, *86*, 716-730.

[12] I. J. Villar-Garcia, A. Abebe, Y. Chebude. 1, 10-Phenanthrolinium ionic liquids exhibiting excellent solubility for metal complexes: Potential solvents for biphasic and supported ionic liquid phase (SILP) catalysis. *Inorg. Chem. Commun.* **2012**, *19*, 1-3.

[13] N. Leblanc, S. Sproules, A. K. Powell. An alternative method to access diverse *N*,*N*'-diquaternised-3,3'-biquinoxalinium "biquinoxen" dications. *New J. Chem.* **2017**, *41*, 2949-2954.

[14] M. A. Nechayev, N. Y. Gorobets, S. M. Kovalenko, A. A. Tolmachev. An efficient synthesis of 1-methyl-4,5,6,7-tetrahydro-*1H*-pyrrolo[2, 3-c]pyridine and its *N*⁶-substituted analogues. *Synthesis*. **2013**, *45*, 919-924.

[15] Y. Wang, S. Fan, X. Tang. Nucleophilic Organocatalyst for Photochemical Carbon Radical Generation via S_N2 Substitution. *Org. Lett.* **2024**, *26*, 4002-4007.

[16] J. G. Sośnicki. Regioselectivity, Scope, and Limitations of the Addition of Organolithium and Allylmagnesium Reagents to *1H*-Pyridine-2-thiones; Access to 3,4-, 3,6-, and 5,6-dihydropyridine-2-thiones. *Tetrahedron*. **2007**, *63*, 11862-11877.

[17] J. Wang, Q. Y. Li, S. S. Wang, X. Y. Wu, X. Li, P. N. Liu. Rhodium-Catalyzed 1, 4-Aryl Rearrangement of Sulfur Ylide for the Synthesis of 2-Pyridyl Thioethers. *Org. Lett.* **2023**, *25*, 703-707.

[18] R. Yazaki, N. Kumagai, M. Shibasaki. Cooperative activation of alkyne and thioamide functionalities; Direct catalytic asymmetric conjugate addition of terminal alkynes to α , β -unsaturated thioamides. *Chemistry–An Asian Journal*. **2011**, *6*, 1778-1790.

[19] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. *Phys Rev Lett*. **1996**, *77*, 3865–3868.

[20] D. N. Laikov. Additive atomic approximation for relativistic effects: A two-component hamiltonian for molecular electronic structure calculations. *J. Chem. Phys.* **2019**, *150*, 061103.

[21] D. N. Laikov. Atomic basis functions for molecular electronic structure calculations. *Theor. Chem. Acc.* **2019**, *138*, 40.

[22] D. N. Laikov. Optimization of atomic density-fitting basis functions for molecular two-electron integral Approximations. *J. Chem. Phys.* **2020**, *153*, 114121.

[23] D. N. Laikov. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. *Chem Phys Lett*. **1997**, *281*, 151–156.

[24] D. N. Laikov, Yu. A. Ustynyuk. PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. *Russ. Chem. Bull.* **2005**, *54*, 820–826.

[25] D. N. Laikov. Simple exchange hole models for long-range-corrected density functionals. *J. Chem. Phys.* **2019**, *151*, 094106.

[26] O. A. Vydrov, T. Van Voorhis. Nonlocal van der Waals density functional: the simpler the better. *J. Chem. Phys.* **2010**, *133*.

[27] A. V. Marenich, C. J. Cramer, D. G. Truhlar. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B.* **2009**, *113*, 6378–6396.

[28] F. Weigend, R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. *PCCP*. **2005**, *7*, 3297–3305.

[29] F. Neese. Software update: The ORCA program system—Version 5.0. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2022**.

S-XIII. Copies of NMR Spectra

¹H NMR (400 MHz, DMSO-*d6*) of 3-benzoyl-1-propylpyridin-1-ium iodide (**1c**)

¹³C{¹H} NMR (100 MHz, D₂O) of 3-benzoyl-1-propylpyridin-1-ium iodide (1c)

¹H NMR (400 MHz, DMSO-*d6*) of 3-benzoyl-1-isopropylpyridin-1-ium iodide (1d)

¹H NMR (400 MHz, DMSO-*d6*) of 3-benzoyl-1-benzylpyridin-1-ium chloride (1e)

110 100 f1 (мд) -: S46

¹H NMR (400 MHz, DMSO-*d6*) of 3-benzoyl-1-(3-phenylpropyl)pyridin-1-ium bromide (**1f**)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 3-benzoyl-1-(3-phenylpropyl)pyridin-1-ium bromide (**1f**)

S48

-1

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 3-benzoyl-1-(2-hydroxyethyl)pyridin-1-ium bromide (**1g**)

-1

¹H NMR (400 MHz, DMSO-*d6*) of 3-benzoyl-1-(2-(4-fluorophenoxy)ethyl)pyridin-1-ium bromide (**1h**)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 3-benzoyl-1-(2-(4-fluorophenoxy)ethyl)pyridin-1-ium bromide (1h)

S52

-:

¹⁹F NMR (376 MHz, DMSO-*d6*) of 3-benzoyl-1-(2-(4-fluorophenoxy)ethyl)pyridin-1-ium bromide (**1h**)

-100 f1 (мд) -90 -170 -190 -10 -20 -30 -40 -50 -60 -70 -80 -110 -120 -130 -140 -150 -160 -180

¹H NMR (400 MHz, DMSO-*d6*) of 1,1'-(butane-1,4-diyl)bis(3-benzoylpyridin-1-ium) bromide (1i)

S54

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 1,1'-(butane-1,4-diyl)bis(3-benzoylpyridin-1-ium) bromide (1i)

-1

¹H NMR (400 MHz, DMSO-*d6*) of 3,5-dibromo-1-methylpyridin-1-ium iodide (1n)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 3,5-dibromo-1-methylpyridin-1-ium iodide (1n)

- 2.50 DMSO $\underset{7.71}{\overset{8.03}{<}}$ 1.48 đ CI~ CO₂Me ⊕ N ı⊖ Me 1.004 1.004 2.00<u>-</u> 2.00-J 3.00-I 3.00H 1.00-1

¹H NMR (400 MHz, DMSO-*d6*) of 3-(4-chlorophenyl)-5-(methoxycarbonyl)-1-methylpyridin-1-ium iodide (**1q**)

4.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (мд)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 3-(4-chlorophenyl)-5-(methoxycarbonyl)-1-methylpyridin-1-ium iodide (**1q**)

S59

-1

¹H NMR (400 MHz, CDCl₃) of 3-(((3,7-dimethyloct-6-en-1-yl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (**1r**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 3-(((3,7-dimethyloct-6-en-1-yl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (**1r**) ∑7.48
 77.16 CDCl3

 76.84

 148.94
145.99
144.74 - 131.25 - 130.12 - 128.58 - 124.09 160.89 65.76 50.34 36.62 34.94 \sim 29.21 \sim 25.51 \sim 25.05 \sim 19.14 \sim 17.49 17 1 0 Me Me `Me ⊕ N Me ı⊖ I فطرونا المكاني توجيدونا وأخالوا أعراقا and a first sector of a first sector of a sector of Г 110 100 f1 (мд) 170 160 130 90 80 70 60 50 40 30 20 10 -: 20 210 200 190 180 150 140 120 0

S61

¹H NMR (400 MHz, CDCl₃) of 3-((2-butoxyethoxy)carbonyl)-1-methylpyridin-1-ium iodide (**1s**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 3-((2-butoxyethoxy)carbonyl)-1-methylpyridin-1-ium iodide (1s)

S63

¹H NMR (400 MHz, CDCl₃) of 3-((((1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (1t)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 3-((((1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl)oxy)carbonyl)-1-methylpyridin-1-ium iodide (1t)

¹H NMR (400 MHz, DMSO-*d6*) of 1-(1-(adamantan-1-yl)ethyl)-3-(ethoxycarbonyl)pyridin-1-ium *p*-toluenesulfonate (1u)

S67

21

¹H NMR (400 MHz, CDCl₃) of 8-chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-1-methyl-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-1-ium iodide (**1v**)

S69

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 8-chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-1-methyl-6,11-dihydro-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-1-ium

¹H NMR (400 MHz, DMSO-*d6*) of 5-chloro-8-methoxy-1-methylquinolin-1-ium iodide (**1y**)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 5-chloro-8-methoxy-1-methylquinolin-1-ium iodide (**1y**)

S73

¹H NMR (400 MHz, DMSO-*d6*) of 3,6-dibromo-1-methylquinolin-1-ium iodide (1aa)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 3,6-dibromo-1-methylquinolin-1-ium iodide (1aa)

¹H NMR (400 MHz, DMSO-*d6*) of 3-(methoxycarbonyl)-1-methylpyrazin-1-ium iodide (**1ff**)

¹³C{¹H} NMR (100 MHz, DMSO-d6) of 3-(methoxycarbonyl)-1-methylpyrazin-1-ium iodide (1ff)

¹³C{¹H} NMR (100 MHz, DMSO-*d6*) of 1,7-dimethyl-1*H*-pyrrolo[2,3-*b*]pyridin-7-ium iodide (1ii)

-:

S80

 $\label{eq:constraint} ^{13}C\{^1H\}\ NMR\ (100\ MHz,\ CDCl_3)\ of\ (1-methyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone\ (\textbf{2a})$

¹H NMR (400 MHz, CDCl₃) of phenyl(1-propyl-6-thioxo-1,6-dihydropyridin-3-yl)methanone (**2b**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of phenyl(1-propyl-6-thioxo-1,6-dihydropyridin-3-yl)methanone (**2b**)

- 77.48 -77.16 CDCl3 - 76.84 144.47 136.59 135.93 134.60 132.96 132.14 129.35 129.35 129.35 128.67 128.67 123.32 - 184.01 COPh S Ph

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1-benzyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (**2c)**

		·	- I I	- I - I	1 1		1 1	· ·	- I - I	· ·		- I - I	· ·	· · ·	· ·	· ·	· ·	· ·	- I - I	- I - I	- I - I	<u>т</u> ,
20	210	200	190	180	170	160	150	140	130	120	110 f1 (м	100 ід)	90	80	70	60	50	40	30	20	10	0

¹H NMR (400 MHz, CDCl₃) of phenyl(1-(3-phenylpropyl)-6-thioxo-1,6-dihydropyridin-3-yl)methanone (**2d**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of phenyl(1-(3-phenylpropyl)-6-thioxo-1,6-dihydropyridin-3-yl)methanone (**2d**)

¹H NMR (400 MHz, CDCl₃) of (1-(2-hydroxyethyl)-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (**2e**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1-(2-hydroxyethyl)-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (**2e**) CDCI3 $\int \frac{136.52}{135.57} \\ \begin{array}{c} & 135.57 \\ & 133.13 \\ & 133.87 \\ & 132.87 \\ & 132.87 \\ & 122.84 \\ & -122.84 \\ \end{array}$ 77.48
77.16 (
76.84 $< \frac{59.30}{59.07}$.COPh s″⁄ ÓН in discursion in a loss in a loss in a loss of the addition of the loss of وسار باعتدا أسرار بالأمر ببالا البديان بالان والتربيدية التنات أنطا أترطه أريما الاطر للأتريها وبالالبعامان չ էլ մի հայիչներությունը հայտներությունը է համանությունը է մի դունենը հայտերում, ու նաև հայտերիներին դունեներունը հանունու , and a second state of the second state of th والمتعادية والمتحدث والمتعالي والمتعادية المتعادية والمتعاولة والمتعادية والمتعادية 110 100 f1 (мд) 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 0

¹⁹F NMR (376 MHz, CDCl₃) of (1-(2-(4-fluorophenoxy)ethyl)-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (**2f**)

49	50	51	52	54	55	56
22.	22.	22.	27.	27.	22.	22.
- 77	Π.	Π.	Π.	Π.	Π.	7
Ļ		_		2	_	_

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1,1'-(butane-1,4-diyl)bis(6-thioxo-1,6-dihydropyridine-3,1-diyl))bis(phenylmethanone) (2g) — 191.54 → 136.17 → 136.17 132.60 132.60 129.42 129.03 → 123.79 - 183.11 - 144.51 — 56.58 77.48 76.84 S PhOC `COPh the sector sectors 110 100 f1 (мд)

S94

¹H NMR (400 MHz, CDCl₃) of (1-isopropyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (**2h**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1-isopropyl-6-thioxo-1,6-dihydropyridin-3-yl)(phenyl)methanone (**2h**)

¹H NMR (400 MHz, CDCl₃) of 1-(1-methyl-6-thioxo-1,6-dihydropyridin-3-yl)ethanone (2i)

¹H NMR (400 MHz, CDCl₃) of ethyl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (2j)

$^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) of ethyl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (2j)

¹H NMR (400 MHz, CDCl₃) of 3,7-dimethyloct-6-en-1-yl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (**2k**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 3,7-dimethyloct-6-en-1-yl 1-methyl-6-thioxo-1,6-dihydropyridine-3-carboxylate (**2k**)

S103

¹H NMR (400 MHz, CDCl₃) of ethyl 1-(1-(adamantan-1-yl)ethyl)-6-thioxo-1,6-dihydropyridine-3-carboxylate (**2n**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of ethyl 1-(1-(adamantan-1-yl)ethyl)-6-thioxo-1,6-dihydropyridine-3-carboxylate (**2n**)

¹H NMR (400 MHz, CDCl₃) of 3,5-dibromo-1-methylpyridine-2(1*H*)-thione (**2o**)

S109

¹H NMR (400 MHz, CDCl₃) of 1-isopropylquinoline-4(1*H*)-thione (**2q**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 2-methylisoquinoline-1(2*H*)-thione (**2r**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 2-isopropylisoquinoline-1(2*H*)-thione (2s)

¹H NMR (400 MHz, CDCl₃) of methyl 4-methyl-5-thioxo-4,5-dihydropyrazine-2-carboxylate (2t)

¹³C{¹H} NMR (100 MHz, CDCl₃) of methyl 4-methyl-5-thioxo-4,5-dihydropyrazine-2-carboxylate (**2t**)

¹H NMR (400 MHz, CDCl₃) of 1-methylquinoxaline-2(1*H*)-thione (**2u**)

S121

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1-methyl-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (3a)

S123

¹H NMR (400 MHz, CDCl₃) of (1-isopropyl-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (**3b**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1-isopropyl-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (**3b**)

¹H NMR (400 MHz, CDCl₃) of 1-methylpyridine-2(1*H*)-thione (**3c**)

¹H NMR (400 MHz, CDCl₃) of 1-phenylpyridine-2(*1H*)-thione (**3d**)

¹H NMR (400 MHz, CDCl₃) of ethyl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3e**)

S128

¹³C{¹H} NMR (100 MHz, CDCl₃) of ethyl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (3e)

¹H NMR (400 MHz, CDCl₃) of 3,7-dimethyloct-6-en-1-yl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3f**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 3,7-dimethyloct-6-en-1-yl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3f**)

¹H NMR (400 MHz, CDCl₃) of 2-butoxyethyl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3g**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 2-butoxyethyl 1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3g**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of methyl 5-(4-chlorophenyl)-1-methyl-2-thioxo-1,2-dihydropyridine-3-carboxylate (**3h**)

¹H NMR (400 MHz, CDCl₃) of 1-methyl-6-(piperidin-1-yl)pyridine-2(1*H*)-thione (**3i**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 1-methyl-6-(piperidin-1-yl)pyridine-2(1*H*)-thione (**3i**)

¹H NMR (400 MHz, CDCl₃) of 4-(dimethylamino)-1-methylpyridine-2(1*H*)-thione (**3**j)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 4-(dimethylamino)-1-methylpyridine-2(1*H*)-thione (**3**j)

¹H NMR (400 MHz, CDCl₃) of ethyl 4-(8-chloro-1-methyl-2-thioxo-5,6-dihydro-1*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11(2*H*)-ylidene)piperidine-1-carboxylate (**3k**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of ethyl 4-(8-chloro-1-methyl-2-thioxo-5,6-dihydro-1*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11(2*H*)-ylidene)piperidine-1-carboxylate

110 100 f1 (мд) S141

¹H NMR (400 MHz, CDCl₃) of 1-decylpyridine-2(1*H*)-thione (**3**I)

S143

¹H NMR (400 MHz, CDCl₃) of (1-(2-(4-fluorophenoxy)ethyl)-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (**3m**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of (1-(2-(4-fluorophenoxy)ethyl)-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (**3m**)

¹⁹F NMR (376 MHz, CDCl₃) of (1-(2-(4-fluorophenoxy)ethyl)-2-thioxo-1,2-dihydropyridin-3-yl)(phenyl)methanone (**3m**)

74	76	17	78	79	80	81
22.	27.	22.	2	22.	2	22.
7	늰	Ę	Ŧ	7	Ξ	Ξ
	_		\checkmark			

¹H NMR (400 MHz, CDCl₃) of 1,6-dimethyl-1*H*-pyrrolo[2,3-*c*]pyridine-7(6*H*)-thione (**3n**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 1,6-dimethyl-1*H*-pyrrolo[2,3-*c*]pyridine-7(6*H*)-thione (**3n**)

¹H NMR (400 MHz, CDCl₃) of 1,7-dimethyl-1*H*-pyrrolo[2,3-*b*]pyridine-6(7*H*)-thione (**3o**)

$^{13}C{^1H} NMR (100 MHz, CDCl_3) of 1,7-dimethyl-1H-pyrrolo[2,3-b]pyridine-6(7H)-thione ($ **3o**)

¹H NMR (400 MHz, CDCl₃) of 1-methylquinoline-2(1*H*)-thione (**3p**)

¹H NMR (400 MHz, CDCl₃) of 1,6-dimethyl-3-phenylquinoline-2(1*H*)-thione (**3q**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 1,6-dimethyl-3-phenylquinoline-2(1*H*)-thione (**3q**)

1.56 water in CDCl3 **CDCI3** Ř 4 Br∘ Br М́е × 7.43 8.12 7.72 L 2.00 1.00 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 f1 (мд) 2.00-<u>∓</u> 1.00-<u>∓</u> 1.98-≖ 3.00-T 4.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (мд)

_

¹³C{¹H} NMR (100 MHz, CDCl₃) of 5-chloro-8-methoxy-1-methylquinoline-2(1*H*)-thione (**3s**)

¹H NMR (400 MHz, CDCl₃) of 1-methyl-1,10-phenanthroline-2(1*H*)-thione (**3t**)

¹³C{¹H} NMR (100 MHz, CDCl₃) of 1-methyl-1,10-phenanthroline-2(1*H*)-thione (**3t**)

¹H NMR (400 MHz, CDCl₃) of 2-(*tert*-butyl)isoquinoline-1(2*H*)-thione (**3u**)

