Three-Component Minisci Reaction Involving Trifluoromethyl Radical Promoted by TBHP

Xiaole Zhang, Wengui Wang* and Shoufeng Wang*

School of Chemistry and Chemical Engineering, University of Jinan, China, 250022

E-mail: chm_wangwg@ujn.edu.cn;

E-mail: chm_wangsf@ujn.edu.cn;

1.	General information	S1
2.	Optimization of the reaction conditions	S2
3.	General procedure of three-component Minisci reaction	S4
4.	Mechanistic investigation	S5
5.	X-ray diffraction for 5j	S6
6.	Characterization data of products	S9
7.	Scale-up experiment	S28
8.	Transformation of product	S29
	8.1. Suzuki coupling reaction	S29
	8.2. Dehalogenation reaction	S29
	8.3. Oxidation by SeO ₂	S30
	8.4. Reduction	
	8.5. Oxidation by <i>m</i> -CPBA	
9.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S33
10.	. References	S114

1. General information

Analytical grade solvents and commercially available reagents were purchased from Energy chemical company, J&K Scientific Ltd, Alfa Aesa chemical company and used directly without further purification unless otherwise stated. Yields refered to products isolated after purification by column chromatography, unless otherwise stated. Column chromatography was performed using silica gel (mesh 300-400). ¹H NMR spectra were recorded at 400 MHz or 600 MHz. ¹³C NMR spectra were recorded at 151 MHz. ¹⁹F NMR spectra were recorded at 376 MHz. ¹H and ¹³C NMR chemical shifts are reported in parts per million and referenced to residual CHCl₃ signals in CDCl₃ (¹H: δ 7.26; ¹³C: δ 77.00), or CFCl₃ (¹⁹F: δ 0.0) and TMS as internal standard. Coupling constants (*J*) are reported in hertz. High-resolution mass data were recorded on a high-resolution mass spectrometer in the ESI mode on an orbitrap ID-X HRMS. XRD data was collected on a Bruker SMART APEX CCD diffractometer equipped with a graphite-monochromated Mo-K α (λ = 0.71073 Å) radiation source.

2. Optimization of the reaction conditions

			CN 			CN
05	00 N-	\sim		oxic	lant, acid	
CF3	50_2 Na + //	.0, ~ /	+ (¹ N	SC	olvent	N ⁻ O
		0-	0			CF ₃
	1	Za	3a			4a
Entry	Oxidant	Acid	Temp.	Time	Solvent	Yield $(\%)^b$
	(equiv.)	(equiv.)	(°C)	(h)		
1	TBHP (5)	TFA (2)	80	24	DMSO	11
2	DTBP (5)	TFA (2)	80	24	DMSO	n.d.
3	$Na_{2}S_{2}O_{8}(5)$	TFA (2)	80	24	DMSO	n.d.
4	$K_{2}S_{2}O_{8}(5)$	TFA (2)	80	24	DMSO	n.d.
5	$(NH_4)_2S_2O_8(5)$	TFA (2)	80	24	DMSO	n.d.
6	Selectfluor (5)	TFA (2)	80	24	DMSO	n.d.
7	$H_2O_2(5)$	TFA (2)	80	24	DMSO	n.d.
8	TBHP (5)	TFA (2)	30	24	DMSO	37
9	TBHP (5)	TFA (2)	30	24	DCM	n.d.
10	TBHP (5)	TFA (2)	30	24	CH ₃ CN	7
11	TBHP (5)	TFA (2)	30	24	THF	n.d.
12	TBHP (5)	TFA (2)	30	24	DCE	n.d.
13	TBHP (5)	TFA (2)	30	24	DMF	n.d.
14	TBHP (5)	TFA (2)	30	24	EA	n.d.
15	TBHP (5)	TFA (2)	30	24	Et ₂ O	n.d.
16	TBHP (5)	TFA (2)	30	24	MeOH	n.d.
17	TBHP (5)	TFA (2)	30	24	Cyclohexane	n.d.
18	TBHP (5)	TFA (2)	30	24	1,4-Dioxane	n.d.
19	TBHP (5)	TFA (2)	30	24	1-Propanol	n.d.
20	TBHP (5)	TFA (2)	30	24	ⁱ PrOH	n.d.
21	TBHP (5)	TFA (2)	30	24	HFIP	n.d.
22	TBHP (5)	TFA (2)	30	24	NMP	n.d.
23	TBHP (5)	TFA (2)	30	24	PhMe	n.d.
24	TBHP (5)	TFA (2)	30	24	H ₂ O	12
25	TBHP (5)	TFA (2)	30	24	H ₂ O+1 eq TBAF	30
26	TBHP (5)	TFA (2)	30	24	H ₂ O+1 eq TBAB	18
27	TBHP (5)	TFA (2)	30	24	H ₂ O+1 eq TBAI	7

Table S1 Optimization of the three-component Minisci reaction conditions a, b

28	TBHP (5)	TFA (2)	30	24	H ₂ O+1 eq SDS	6
29	TBHP (5)	-	30	24	DMSO	n.d.
30	-	TFA (2)	30	24	DMSO	n.d.
31	TBHP (5)	TFA (3)	30	24	DMSO	30
32	TBHP (5)	TFA (1)	30	24	DMSO	38
33	TBHP (5)	MsOH (1)	30	24	DMSO	14
34	TBHP (5)	TfOH (1)	30	24	DMSO	13
35	TBHP (5)	$Ph-SO_3H(1)$	30	24	DMSO	7
36	TBHP (5)	TsOH (1)	30	24	DMSO	8
37	TBHP (5)	$H_2SO_4(1)$	30	24	DMSO	25
38	TBHP (5)	HCl (1)	30	24	DMSO	28
39	TBHP (5)	TFA (1)	30	2	DMSO	37
40	TBHP (3)	TFA (1)	30	2	DMSO	38
41	TBHP (2)	TFA (1)	30	2	DMSO	30
42	TBHP (3)	TFA (1)	30	2	DMSO-H ₂ O (4:1)	42
43	TBHP (3)	TFA (1)	30	2	DMSO-H ₂ O (3:2)	57
44	TBHP (3)	TFA (1)	30	2	DMSO-H ₂ O (2:3)	15
45	TBHP (3)	TFA (1)	30	2	DMSO-H ₂ O (1:4)	12
46	TBHP (3)	TFA (1)	0	2	DMSO-H ₂ O (3:2)	86
47	TBHP (3)	TFA (1)	-10	2	DMSO-H ₂ O (3:2)	18
48	TBHP (3)	TFA (1)	0	0.5	DMSO-H ₂ O (3:2)	36
49	TBHP (3)	TFA (1)	0	1	DMSO-H ₂ O (3:2)	66
50	TBHP (3)	TFA (1)	0	4	DMSO-H ₂ O (3:2)	84
51	TBHP (3)	TFA (1)	0	6	DMSO-H ₂ O (3:2)	88
52	TBHP (3)	TFA (1)	0	12	DMSO-H ₂ O (3:2)	85

^{*a*}Reaction conditions: **3a** (0.20 mmol), CF₃SO₂Na (0.60 mmol), **2a** (1.0 mmol), oxidant (0.60 mmol), acid (0.20 mmol), solvent (2.0 mL), 0 °C, 2 h, under air atmosphere. n.d. = not detected. ^{*b*}Yields were determined by ¹H NMR.

3. General procedure of three-component Minisci reaction

Procedure A: To a solution of the pyridine substrate (20.8 mg, 0.2 mmol, 1.0 equiv.) in 2 mL DMSO-H₂O (3:2), was added TFA (15 μ L, 0.2 mmol, 1.0 equiv.) and the mixture was stirred at room temperature for 5 minutes. Then CF₃SO₂Na (94.8 mg, 0.6 mmol, 3.0 equiv.), *n*-butyl vinyl ether (129 μ L, 1.0 mmol, 5.0 equiv.), TBHP (70% in H₂O, 82 μ L, 0.6 mmol, 3.0 equiv.) were added. The reaction tuber was sealed and the system was stirred at room temperature for 1 minute. The tube was then immediately put into an ice bath and stirring was kept for 2 hours at 0 °C. The mixture was cooled to room temperature, diluted with 10 mL H₂O, neutralized with NaHCO₃. After extraction with EtOAc, the combined organic layers were dried over Na₂SO₄ and solvents were evaporated under reduced pressure. Purification by column chromatography on silica gel with hexane/ethyl acetate (8:1) as the eluent afforded the product 2-(1-butoxy-3,3,3-trifluoropropyl)isonicotinonitrile (**4a**).

Procedure B: To a solution of the pyridine substrate (20.8 mg, 0.2 mmol, 1.0 equiv.) in 2 mL DMSO, was added TFA (15 μ L, 0.2 mmol, 1.0 equiv.) and the mixture was stirred at room temperature for 5 minutes. Then CF₃SO₂Na (94.8 mg, 0.6 mmol, 3.0 equiv.), *n*-butyl vinyl ether (129 μ L, 1.0 mmol, 5.0 equiv.), TBHP (70% in H₂O, 82 μ L, 0.6 mmol, 3.0 equiv.) were added. The reaction tuber was sealed and the system was stirred at room temperature for 1 minute. The tube was then immediately put into an ice bath and stirring was kept for 2 hours at room temperature. The mixture was diluted with 10 mL H₂O, neutralized with NaHCO₃. After extraction with EtOAc, the combined organic layers were dried over Na₂SO₄ and solvents were evaporated under reduced pressure. Purification by column chromatography on silica gel with hexane/ethyl acetate (10:1) as the eluent afforded the product 2-(1-butoxy-3,3,3-trifluoropropyl)pyridin-4-yl)(phenyl)methanone (**4c**).

4. Mechanistic investigation

To a solution of the pyridine substrate (20.8 mg, 0.2 mmol, 1.0 equiv.) in 2 mL DMSO-H₂O (3:2), was added TFA (15 μ L, 0.2 mmol, 1.0 equiv.) and stirring was kept at room temperature for 5 minutes. Then CF₃SO₂Na (94.8 mg, 0.6 mmol, 3.0 equiv.), *n*-butyl vinyl ether (129 μ L, 1.0 mmol, 5.0 equiv.), TBHP (70% in H₂O, 82 μ L, 0.6 mmol, 3.0 equiv.) and TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv.) were added. The tube was sealed with and the reaction was stirred at room temperature for 1 minute. Then the tube was put in to an ice bath immediately and the system was stirred at 0°C for 2 hours. The mixture was detected by HRMS.

To a solution of the pyridine substrate (20.8 mg, 0.2 mmol, 1.0 equiv.) in 2 mL DMSO-H₂O (3:2), was added TFA (15 μ L, 0.2 mmol, 1.0 equiv.) and stirring was kept at room temperature for 5 minutes. Then CF₃SO₂Na (94.8 mg, 0.6 mmol, 3.0 equiv.), *n*-butyl vinyl ether (129 μ L, 1.0 mmol, 5.0 equiv.), TBHP (70% in H₂O, 82 μ L, 0.6 mmol, 3.0 equiv.) and TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv.) were added. The tube was sealed with and the reaction was stirred at room temperature for 1 minute. Then the tube was put in to an ice bath immediately and the system was stirred at 0°C for 0.5 hours, TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv.) were added and stirred for 1.5h. The mixture was detected by HRMS.

5. X-ray diffraction for 5j

The X-ray crystallographic molecular structure of compound **5j** is depicted in Figure S1. The crystal was obtained through a slow evaporation and crystallization process in ethyl acetate at ambient temperature.

Figure S1. X-ray crystal diffraction molecular structure of product 5j (ccdc 2413111) Table S2 Crystallography data and structure refinement for 5j

Compound	5j
Formula	C ₁₇ H ₁₉ CIF ₃ NO
$M(g \cdot mol^{-1})$	345.78
Crystal system	Monoclinic
Space group	<i>P</i> 21/c
<i>a</i> (Å)	a = 8.563(2)
b (Å)	b = 17.298(3)
<i>C</i> (Å)	c = 11.840(2)
V(Å3)	1752.6(6)
Z	4
$D_{calcd} (g \cdot cm^{-3})$	1.310
F(000)	720
μ (mm ⁻¹)	0.249
Τ(К)	293
Θ range	2.355-24.992
Refl.	53127/3015
collected/unique	$[R_{int} = 0.0921]$
Completeness to theta	24.992, 98.1%
$R_1 \left[l > 2\sigma(l) \right]$	0.0587
wR_2 (all data)	0.1943
Goodness of fit	1.095
Max/min $\Delta \rho$ (e Å ⁻³)	0.276 and -0.201

Cl(1)-C(00G)	1.758(3)	C(00F)-C(00G)	1.381(4)
F(003)-C(00I)	1.321(4)	C(00F)-C(008)	1.434(4)
F(004)-C(00I)	1.344(4)	C(00F)-H(00F)	0.9300
F(005)-C(00I)	1.341(4)	C(00G)-C(00H)	1.356(4)
O(002)-C(00J)	1.434(4)	C(00H)-H(00H)	0.9300
O(002)-C(00B)	1.472(3)	C(00J)-C(00K)	1.502(5)
N(006)-C(00E)	1.326(4)	C(00J)-H(00G)	0.9700
N(006)-C(008)	1.380(4)	C(00J)-H(00I)	0.9700
C(00A)-C(009)	1.374(4)	C(00K)-C(00M)	1.554(6)
C(00A)-C(00E)	1.388(4)	C(00K)-H(00J)	0.9700
C(00A)-H(00A)	0.9300	C(00K)-H(00K)	0.9700
C(00B)-C(009)	1.474(3)	C(00L)-H(00L)	0.9600
C(00B)-C(00C)	1.513(4)	C(00L)-H(00M)	0.9600
C(00B)-H(00B)	0.9800	C(00L)-H(00N)	0.9600
C(00C)-C(00I)	1.434(4)	C(00M)-C(00N)	1.370(7)
C(00C)-H(00C)	0.9700	C(00M)-H(00O)	0.9700
C(00C)-H(00D)	0.9700	C(00M)-H(00P)	0.9700
C(00D)-C(00H)	1.389(4)	C(00N)-H(00Q)	0.9600
C(00D)-C(007)	1.436(4)	C(00N)-H(00R)	0.9600
C(00D)-H(00E)	0.9300	C(00N)-H(00S)	0.9600
C(00E)-C(00L)	1.534(4)	C(007)-C(008)	1.377(3)
C(007)-C(009)	1.446(3)	O(002)-C(00J)-C(00K)	112.8(3)

Table S3 Bond lengths for 5j

Table S4 Bond angles for 5j

C(00J)-O(002)-C(00B)	114.5(2)	O(002)-C(00J)-C(00K)	112.8(3)
C(00E)-N(006)-C(008)	121.1(2)	C(00K)-C(00J)-H(00G)	109.0
C(009)-C(00A)-C(00E)	117.6(3)	O(002)-C(00J)-H(00I)	109.0
C(009)-C(00A)-H(00A)	121.2	C(00K)-C(00J)-H(00I)	109.0
C(00E)-C(00A)-H(00A)	121.2	H(00G)-C(00J)-H(00I)	107.8
O(002)-C(00B)-C(009)	112.5(2)	C(00J)-C(00K)-C(00M)	114.0(4)
O(002)-C(00B)-C(00C)	108.7(2)	C(00J)-C(00K)-H(00J)	108.8
C(009)-C(00B)-C(00C)	108.0(2)	C(00M)-C(00K)-H(00J)	108.8
O(002)-C(00B)-H(00B)	109.2	C(00J)-C(00K)-H(00K)	108.8
C(009)-C(00B)-H(00B)	109.2	C(00M)-C(00K)-H(00K)	108.8
C(00C)-C(00B)-H(00B)	109.2	H(00J)-C(00K)-H(00K)	107.6
C(00I)-C(00C)-C(00B)	112.0(2)	C(00E)-C(00L)-H(00L)	109.5

C(00I)-C(00C)-H(00C)	109.2	C(00E)-C(00L)-H(00M)	109.5
C(00B)-C(00C)-H(00C)	109.2	H(00L)-C(00L)-H(00M)	109.5
C(00I)-C(00C)-H(00D)	109.2	C(00E)-C(00L)-H(00N)	109.5
C(00B)-C(00C)-H(00D)	109.2	H(00L)-C(00L)-H(00N)	109.5
H(00C)-C(00C)-H(00D)	107.9	H(00M)-C(00L)-H(00N)	109.5
C(00H)-C(00D)-C(007)	124.5(2)	C(00N)-C(00M)-C(00K)	122.2(6)
C(00H)-C(00D)-H(00E)	117.7	C(00N)-C(00M)-H(00O)	106.8
C(007)-C(00D)-H(00E)	117.7	C(00K)-C(00M)-H(00O)	106.8
N(006)-C(00E)-C(00A)	122.3(3)	C(00N)-C(00M)-H(00P)	106.8
N(006)-C(00E)-C(00L)	121.2(3)	C(00K)-C(00M)-H(00P)	106.8
C(00A)-C(00E)-C(00L)	116.5(3)	H(00O)-C(00M)-H(00P)	106.6
C(00G)-C(00F)-C(008)	123.4(3)	C(00M)-C(00N)-H(00Q)	109.5
C(00G)-C(00F)-H(00F)	118.3	C(00M)-C(00N)-H(00R)	109.5
C(008)-C(00F)-H(00F)	118.3	H(00Q)-C(00N)-H(00R)	109.5
C(00H)-C(00G)-C(00F)	118.9(3)	C(00M)-C(00N)-H(00S)	109.5
C(00H)-C(00G)-Cl(1)	118.2(3)	H(00Q)-C(00N)-H(00S)	109.5
C(00F)-C(00G)-Cl(1)	122.9(2)	H(00R)-C(00N)-H(00S)	109.5
C(00G)-C(00H)-C(00D)	118.7(3)	C(008)-C(007)-C(00D)	115.9(3)
C(00G)-C(00H)-H(00H)	120.7	C(008)-C(007)-C(009)	116.5(3)
C(00D)-C(00H)-H(00H)	120.7	C(00D)-C(007)-C(009)	127.6(2)
F(003)-C(00I)-F(005)	107.5(2)	C(007)-C(008)-N(006)	121.0(3)
F(003)-C(00I)-F(004)	104.4(3)	C(007)-C(008)-C(00F)	118.6(3)
F(005)-C(00I)-F(004)	107.2(3)	N(006)-C(008)-C(00F)	120.4(2)
F(003)-C(00I)-C(00C)	111.5(3)	C(00A)-C(009)-C(007)	121.5(2)
F(005)-C(00I)-C(00C)	112.3(3)	C(00A)-C(009)-C(00B)	117.9(2)
F(004)-C(00I)-C(00C)	113.4(3)	C(007)-C(009)-C(00B)	120.6(2)

6. Characterization data of products

2-(1-butoxy-3,3,3-trifluoropropyl)isonicotinonitrile (4a)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4a** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 57.7 mg, 81% yield, yellow oil.

CF₃ ¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, J = 5.0 Hz, 1H), 7.70 (s, 1H), 7.46 (dd, J = 5.0, 0.9 Hz, 1H), 4.73 (dd, J = 8.6, 3.7 Hz, 1H), 3.51 – 3.43 (m, 2H), 2.71 – 2.61 (m, 1H), 2.60 – 2.52 (m, 1H), 1.67 – 1.55 (m, 2H), 1.44 – 1.36 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.3, 150.4, 125.6 (q, J = 277.4 Hz), 124.3, 122.1, 121.4, 116.4,

70.4, 40.0 (q, *J* = 28.2 Hz), 31.7, 19.1, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.2 (t, J = 10.3 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₃H₁₆F₃N₂O⁺ 273.1210, Found 273.1209.

1-(2-(1-butoxy-3,3,3-trifluoropropyl)pyridin-4-yl)ethan-1-one (4b) Following the typical experimental procedure A on 0.2 mmol scale. Compound 4b was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 42 mg, 74% yield, yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 8.76 (d, J = 5.0 Hz, 1H), 7.87 (s, 1H), 7.65 (dd, J = 5.0, 1.6 Hz, 1H), 4.76 (dd, J = 8.3, 4.3 Hz, 1H), 3.49 – 3.39 (m, 2H), 2.63 (s, 3H), 2.71 – 2.51 (m, 2H), 1.66 – 1.51 (m, 2H), 1.47 – 1.31 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 197.1, 161.9, 150.6, 143.9, 125.8 (q, *J* = 277.4 Hz), 120.5, 118.1, 77.1 (q, *J* = 3.0 Hz), 70.0, 40.3 (q, *J* = 28.0 Hz), 31.7, 26.7, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.3 (t, J = 10.5 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₄H₁₉F₃NO₂⁺ 290.1362, Found 290.1362.

(2-(1-butoxy-3,3,3-trifluoropropyl)pyridin-4-

yl)(phenyl)methanone (4c)

Following the typical experimental procedure B on 0.2 mmol scale. Compound **4c** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 30 mg, 42% yield, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.9 Hz, 1H), 7.82 (d, J = 1.1 Hz, 1H), 7.80 (d, J = 1.3 Hz, 1H), 7.73 (s, 1H), 7.69 – 7.63 (m, 1H), 7.55 – 7.49 (m, 3H), 4.78 (dd, J = 8.6, 3.9 Hz, 1H), 3.47 (t, J = 6.5 Hz, 2H), 2.78 – 2.53 (m, 2H), 1.62 – 1.51 (m, 2H), 1.43 – 1.31 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 195.0, 161.2, 150.0, 145.6, 135.8, 133.6, 130.1, 128.7, 125.8 (q, J = 277.4 Hz), 122.2, 119.8, 77.1 (q, J = 3.1 Hz), 70.1, 40.3 (q, J = 27.9 Hz), 31.7, 19.2, 13.8.
¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (t, J = 10.5 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₉H₂₀F₃NO₂⁺ 352.1519, Found 352.1518.

(2-(1-butoxy-3,3,3-trifluoropropyl)pyridin-4-yl)(4chlorophenyl)methanone (4d)

Following the typical experimental procedure B on 0.2 mmol scale. Compound **4d** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 28 mg, 37% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.77 (d, J = 4.9 Hz, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.70 (s, 1H), 7.55 – 7.45 (m, 3H), 4.78 (dd, J = 8.5, 3.9 Hz, 1H), 3.54 – 3.39 (m, 2H), 2.79 – 2.49 (m, 2H), 1.66 – 1.48 (m, 2H), 1.46 – 1.29 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 193.8, 161.4, 150.1, 145.1, 140.3, 134.1, 131.4, 129.1, 125.8 (q, J = 277.4 Hz), 121.9, 119.6, 77.1 (q, J = 3.0 Hz), 70.1, 40.3 (q, J = 28.0 Hz), 31.7, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.2 (t, J = 10.5 Hz, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{19}H_{20}ClF_3NO_2^+$ 386.1130, Found 386.1129.

methyl 2-(1-butoxy-3,3,3-trifluoropropyl)isonicotinate (4e)¹

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4e** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 47 mg, 77% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 5.0 Hz, 1H), 8.00 (s, 1H), 7.78 (dd, J = 5.0, 1.4 Hz, 1H), 4.75 (dd, J = 7.6, 5.0 Hz, 1H), 3.97 (s, 3H), 3.43 (t, J = 6.5 Hz, 2H), 2.72 – 2.54 (m, 2H), 1.65 – 1.51 (m, 2H), 1.46 – 1.33 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 161.5, 150.3, 138.5, 125.8 (q, J = 277.3 Hz), 122.2, 119.9, 70.0, 52.8, 40.3 (q, J = 28.0 Hz), 31.7, 19.2, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 10.4 Hz, 3F).

2-(1-butoxy-3,3,3-trifluoropropyl)-4-(trifluoromethyl)pyridine (4f)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4f** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 54 mg, 85% yield, colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.77 (d, J = 5.0 Hz, 1H), 7.70 (s, 1H),

7.46 (d, *J* = 4.9 Hz, 1H), 4.77 (dd, *J* = 8.7, 3.8 Hz, 1H), 3.52 – 3.41 (m, 2H), 2.73 – 2.50 (m, 2H), 1.60 (tt, *J* = 12.8, 6.6 Hz, 2H), 1.46 – 1.35 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 162.3, 150.5, 139.4 (q, *J* = 34.2 Hz), 125.7 (q, *J* = 277.3 Hz), 122.7 (q, *J* = 273.2 Hz), 118.5 (q, *J* = 3.5 Hz), 116.1 (q, *J* = 3.7 Hz), 70.2, 40.3 (qt, *J* = 27.9, 3.5 Hz), 31.7, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 10.5 Hz, 3F), -64.9 (s, 3F) HRMS (ESI): [M+H]⁺ calcd for C₁₃H₁₆F₆NO⁺ 316.1131, Found 316.1133.

2-(1-butoxy-3,3,3-trifluoropropyl)-4-chloropyridine (4g)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4g** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 37 mg, 65% yield, yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 8.47 (d, J = 5.3 Hz, 1H), 7.47 (d, J = 1.8 Hz, 1H), 7.24 (dd, J = 5.3, 2.0 Hz, 1H), 4.67 (dd, J = 8.7, 3.8 Hz, 1H), 3.52 – 3.36 (m, 2H), 2.70 – 2.44 (m, 2H), 1.67 – 1.51 (m, 2H), 1.46 – 1.33 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 162.1, 150.3, 145.2, 125.7 (q, *J* = 277.4 Hz), 123.2, 120.9, 76.9 (q, *J* = 3.0 Hz), 70.1, 40.3 (q, *J* = 28.1 Hz), 31.7, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.4 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₂H₁₆ClF₃NO⁺ 282.0867, Found 282.0866.

4-bromo-2-(1-butoxy-3,3,3-trifluoropropyl)pyridine (4h)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4h** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 41 mg, 63% yield, yellow oil liquid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.38 (d, J = 5.2 Hz, 1H), 7.63 (s, 1H), 7.40 (dd, J = 5.1, 1.3 Hz, 1H), 4.66 (dd, J = 8.6, 3.8 Hz, 1H), 3.49 – 3.39 (m, 2H), 2.70 – 2.45 (m, 2H), 1.66 – 1.52 (m, 2H), 1.46 – 1.33 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 161.9, 150.2, 133.9, 126.3, 125.7 (q, *J* = 277.4 Hz), 123.9, 76.8 (q, *J* = 3.0 Hz), 70.1, 40.3 (q, *J* = 28.1 Hz), 31.7, 19.1, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.38 (t, J = 10.4 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₂H₁₆BrF₃NO⁺ 326.0362, Found 326.0361.

2-(1-butoxy-3,3,3-trifluoropropyl)-4-phenylpyridine (4i)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4i** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 40 mg, 62% yield, yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.62 (d, J = 5.1 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.54 – 7.43 (m, 4H), 4.76 (dd, J = 8.6, 3.9 Hz, 1H), 3.57 – 3.41 (m, 2H), 2.79 – 2.52 (m, 2H), 1.70 – 1.52 (m, 2H), 1.49 – 1.35 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.8, 149.9, 149.4, 138.0, 129.2, 129.1, 127.0, 125.9 (q, *J* = 277.4 Hz), 120.8, 118.2, 77.3 (q, *J* = 3.0 Hz), 69.8, 40.6 (q, *J* = 27.8 Hz), 31.8, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -63.4 (t, J = 10.5 Hz, 3F).

HRMS (**ESI**): [M+H]⁺ calcd for C₁₈H₂₁F₃NO⁺ 324.1570, Found 324.1569.

1-(4-(1-butoxy-3,3,3-trifluoropropyl)pyridin-2-yl)ethan-1-one (4j) Following the typical experimental procedure A on 0.2 mmol scale. Compound **4j** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 42 mg, 73% yield, yellow oil.

¹¹ **¹H NMR (400 MHz, CDCl₃)** δ 8.69 (d, J = 4.9 Hz, 1H), 7.99 (s, 1H), 7.46 (d, J = 4.6 Hz, 1H), 4.60 (dd, J = 8.5, 4.1 Hz, 1H), 3.36 – 3.25 (m, 2H), 2.73 (s, 3H), 2.69 – 2.54 (m, 1H), 2.43 – 2.25 (m, 1H), 1.59 – 1.46 (m, 2H), 1.42 – 1.30 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H) ¹³C NMR (151 MHz, CDCl₃) δ 199.8, 154.1, 151.1, 149.6, 125.3 (q, J = 277.4 Hz), 124.5, 119.4, 75.0 (q, J = 3.1 Hz), 69.7, 41.7 (q, J = 28.1 Hz), 31.6, 25.8, 19.1, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.4 (t, J = 10.3 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₃H₁₉F₃NO₂⁺ 290.1363, Found 290.1362.

(4-(1-butoxy-3,3,3-trifluoropropyl)pyridin-2-yl)(phenyl)methanone (4k)

Following the typical experimental procedure B on 0.2 mmol scale. Compound **4k** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 25 mg, 36% yield, yellow

oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.06 (d, J = 7.6 Hz, 2H), 7.95 (d, J = 4.3 Hz, 2H), 7.67 (p, J = 3.8 Hz, 1H), 7.61 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 4.75 (dd, J = 8.2, 4.4 Hz, 1H), 3.46 (t, J = 6.4 Hz, 2H), 2.78 – 2.52 (m, 2H), 1.68 – 1.53 (m, 2H), 1.47 – 1.35 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 193.4, 159.3, 154.8, 138.0, 136.0, 133.0, 131.1, 128.0, 125.8 (q J = 277.4 Hz), 123.7, 122.1, 69.9, 40.0 (q, J = 27.8 Hz), 31.8, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.0 (t, J = 10.5 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₉H₂₁F₃NO₂⁺ 352.1519, Found 352.1519.

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4l** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 49 mg, 80% yield, yellow oil.

 $\overset{\textbf{O}}{\overset{\textbf{IH NMR (400 MHz, CDCl_3)}} \delta 8.75 (d, J = 4.9 Hz, 1H), 8.09 (s, 1H),}$ 7.47 (dd, J = 4.9, 1.4 Hz, 1H), 4.61 (dd, J = 8.4, 4.2 Hz, 1H), 4.02 (s, 3H), 3.41 – 3.24 (m, 2H), 2.71

- 2.54 (m, 1H), 2.43 - 2.27 (m, 1H), 1.61 - 1.49 (m, 2H), 1.43 - 1.30 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 165.4, 151.4, 150.3, 148.5, 125.2 (q, J = 277.4 Hz), 124.4, 122.8, 74.9 (q, J = 3.0 Hz), 69.7, 53.0, 41.7 (q, J = 28.1 Hz), 31.5, 19.0, 13.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.3 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₄H₁₉F₃NO₃⁺ 306.1312, Found 306.1311.

4-(1-butoxy-3,3,3-trifluoropropyl)-2-phenylpyridine (4m)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4m** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 41 mg, 63% yield, colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.70 (d, J = 5.0 Hz, 1H), 8.03 – 7.98 (m, 2H), 7.70 (s, 1H), 7.53 – 7.41 (m, 3H), 7.21 (dd, J = 4.9, 1.2 Hz, 1H), 4.61 (dd, J = 8.7, 3.9 Hz, 1H), 3.47 – 3.29 (m, 2H), 2.74 – 2.59 (m, 1H), 2.49 – 2.31 (m, 1H), 1.63 – 1.52 (m, 2H), 1.46 – 1.32 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 158.1, 150.7, 150.1, 138.9, 129.3, 128.8, 127.0, 125.4 (q, *J* = 277.4 Hz), 119.7, 118.0, 75.3 (q, *J* = 3.0 Hz), 69.6, 42.0 (q, *J* = 28.0 Hz), 31.7, 19.2, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.3 Hz, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{18}H_{21}F_3NO^+$ 324.1570, Found 324.1569.

2-(1-butoxy-3,3,3-trifluoropropyl)-6-ethylpyridine (4n)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4n** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 18 mg, 32% yield,

yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.10 (d, J = 7.7 Hz, 1H), 4.70 (dd, J = 9.2, 3.3 Hz, 1H), 3.53 – 3.39 (m, 2H), 2.83 (q, J = 7.6 Hz, 2H), 2.75 – 2.47 (m, 2H), 1.65 – 1.53 (m, 2H), 1.47 – 1.35 (m, 2H), 1.31 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 159.5, 137.2, 126.0 (q, J = 277.5 Hz), 121.0, 117.4, 77.4 (q, J = 1.7 Hz), 69.7, 40.5 (q, J = 27.7 Hz), 31.8, 31.2, 19.2, 13.9, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.6 Hz, 3F).

1-(6-(1-butoxy-3,3,3-trifluoropropyl)pyridin-3-yl)ethan-1-one (40)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **40** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 48 mg, 83% yield,

yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 9.11 (d, J = 1.7 Hz, 1H), 8.27 (dd, J = 8.2, 2.2 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 4.75 (dd, J = 8.5, 3.9 Hz, 1H), 3.49 – 3.39 (m, 2H), 2.64 (s, 3H), 2.72 – 2.47 (m, 2H), 1.65 – 1.50 (m, 2H), 1.44 – 1.33 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 196.3, 164.7, 149.7, 136.6, 131.6, 125.7 (q, J = 277.4 Hz), 120.3,

77.1 (q, *J* = 3.0 Hz), 70.1, 40.1 (q, *J* = 28.1 Hz), 31.7, 26.7, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.3 (t, J = 10.4 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₄H₁₉F₃NO⁺ 290.1363, Found 290.1362.

6-(1-butoxy-3,3,3-trifluoropropyl)-N,N-

diethylnicotinamide (4p)

Following the typical experimental procedure A at room temperature on 0.2 mmol scale. Compound **4p** was obtained by silica gel column chromatography (eluent: petroleum

ether/EtOAc = 3:1, v/v). 33 mg, 48% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.57 (d, J = 1.3 Hz, 1H), 7.74 (dd, J = 8.0, 2.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 4.68 (dd, J = 8.5, 3.9 Hz, 1H), 3.54 (q, J = 6.3 Hz, 2H), 3.40 (t, J = 6.4 Hz, 2H), 3.25 (q, J = 7.8 Hz, 2H), 2.68 – 2.46 (m, 2H), 1.60 – 1.49 (m, 2H), 1.42 – 1.30 (m, 2H), 1.28 – 1.19 (m, 3H), 1.18 – 1.09 (m, 3H), 0.87 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 168.3, 161.0, 146.9, 135.3, 132.1, 125.8 (q, *J* = 277.4 Hz), 120.1, 69.9, 43.4, 40.3 (q, *J* = 27.9 Hz), 39.5, 31.7, 19.1, 14.2, 13.7, 12.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 10.5 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₆F₃N₂O₂⁺ 347.1941, Found 347.1945.

4-(1-butoxy-3,3,3-trifluoropropyl)-N,N-diethylnicotinamide (4p')

Following the typical experimental procedure A at room temperature on 0.2 mmol scale. Compound **4p'** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc

= 2:1, v/v). 15 mg, 22% yield, yellow oil liquid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.65 (d, J = 5.1 Hz, 1H), 8.47 (s, 1H), 7.50 (d, J = 5.1 Hz, 1H), 4.63 (s, 1H), 3.66 – 3.42 (m, 2H), 3.37 – 3.26 (m, 2H), 3.16 (tq, J = 14.9, 7.5 Hz, 2H), 2.50 (s, 2H), 1.59

- 1.46 (m, 2H), 1.42 - 1.30 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 166.9, 150.6, 147.4, 146.4, 131.4, 125.5 (q, *J* = 277.6 Hz), 121.0, 72.5, 69.8, 43.0, 41.1 (q, *J* = 28.1 Hz), 39.2, 31.7, 19.2, 14.2, 13.8, 12.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (t, J = 10.4 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₆F₃N₂O₂⁺ 347.1941, Found 347.1945.

methyl 4-(1-butoxy-3,3,3-trifluoropropyl)-6-methylpicolinate (4q) Following the typical experimental procedure A on 0.2 mmol scale. Compound 4q was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 50 mg, 78% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.91 (s, 1H), 7.31 (s, 1H), 4.57 (dd, J = 8.5, 4.1 Hz, 1H), 4.01 (s, 3H), 3.31 (t, J = 6.4 Hz, 2H), 2.68 (s, 3H), 2.65 – 2.53 (m, 1H), 2.42 – 2.24 (m, 1H), 1.61 – 1.49 (m, 2H), 1.43 – 1.31 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 165.7, 159.8, 151.5, 148.2, 125.3 (q, *J* = 277.4 Hz), 124.3, 120.2, 74.9 (q, *J* = 3.2 Hz), 69.7, 53.0, 41.7 (q, *J* = 28.1 Hz), 31.6, 24.7, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.3 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₅H₂₁F₃NO₃⁺ 320.1469, Found 320.1467.

4-(1-butoxy-3,3,3-trifluoropropyl)-2,2'-bipyridine (4r)

Following the typical experimental procedure B on 0.2 mmol scale. Compound **4r** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 29 mg, 45% yield, yellow oil liquid.

¹**H NMR (600 MHz, CDCl₃)** δ 8.72 (d, J = 4.7 Hz, 2H), 8.41 (d, J = 7.9 Hz, 1H), 8.34 (s, 1H), 7.89 (t, J = 7.7 Hz, 1H), 7.43 – 7.35 (m, 2H), 4.67 (dd, J = 8.8, 3.8 Hz, 1H), 3.41 – 3.33 (m, 2H), 2.72 – 2.61 (m, 1H), 2.47 – 2.36 (m, 1H), 1.61 – 1.52 (m, 2H), 1.41 – 1.34 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 155.5, 154.5, 151.8, 149.7, 149.1, 137.8, 125.4 (q, J = 277.5 Hz), 124.5, 121.6, 121.5, 119.0, 75.3 (q, J = 3.1 Hz), 69.7, 41.7 (q, J = 28.1 Hz), 31.6, 19.1, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (t, J = 10.4 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₀F₃N₂O⁺ 325.1523, Found 325.1522.

6-(1-butoxy-3,3,3-trifluoropropyl)-4,4'-di-tert-butyl-2,2'-bipyridine (4s)

Following the typical experimental procedure B on 0.2 mmol scale. Compound 4s was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc

= 15:1, v/v). 24 mg, 28% yield, yellow oil liquid.

¹**H NMR (400 MHz, CDCl**₃) δ 8.59 (d, J = 5.3 Hz, 1H), 8.40 (d, J = 1.4 Hz, 1H), 8.31 (d, J = 1.2 Hz, 1H), 7.49 (d, J = 1.6 Hz, 1H), 7.31 (dd, J = 5.2, 1.8 Hz, 1H), 4.82 (dd, J = 9.4, 3.1 Hz, 1H), 3.50 $(t, J = 6.4 \text{ Hz}, 2\text{H}), 2.82 - 2.68 \text{ (m, 1H)}, 2.68 - 2.54 \text{ (m, 1H)}, 1.67 - 1.58 \text{ (m, 2H)}, 1.45 - 1.42 \text{ ($ 2H), 1.39 (s, 18H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 162.1, 159.5, 156.2, 148.9, 126.2 (q, J = 277.4 Hz), 121.4, 120.8, 118.9, 118.4, 117.4, 117.0, 77.5 (q, *J* = 3.0 Hz), 69.7, 40.6 (q, *J* = 27.7 Hz), 35.2, 35.0, 31.9, 30.7, 30.6, 19.3, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.3 (t, J = 10.6 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₂₅H₃₆F₃N₂O⁺ 437.2775, Found 437.2773.

2-(1-butoxy-3,3,3-trifluoropropyl)-4,4'-bipyridine (4t)

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound 4t was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 34 mg, 53% yield, yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 8.75 (d, J = 6.0 Hz, 2H), 8.69 (d, J = 5.1 Hz, 1H), 7.70 (s, 1H), 7.55 (dd, *J* = 4.5, 1.5 Hz, 2H), 7.47 (dd, *J* = 5.1, 1.7 Hz, 1H), 4.77 (dd, *J* = 8.7, 3.8 Hz, 1H), 3.51 - 3.45 (m, 2H), 2.76 - 2.52 (m, 2H), 1.66 - 1.54 (m, 2H), 1.46 - 1.35 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 161.5, 150.6, 150.3, 146.6, 145.4, 125.8 (q, J = 277.4 Hz), 121.4, 120.6, 118.0, 77.17 (q, J = 3.1 Hz), 70.0, 40.4 (q, J = 27.9 Hz), 31.7, 19.1, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.4 (t, J = 10.5 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₀F₃N₂O⁺ 325.1523, Found 325.1525.

2,2'-bis(1-butoxy-3,3,3-trifluoropropyl)-4,4'bipyridine (4t')

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound 4t' was obtained by silica gel column

chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 23 mg, 23% yield, yellow oil. ¹**H NMR (400 MHz, CDCl**₃) δ 8.71 (d, J = 5.1 Hz, 2H), 7.72 (dd, J = 3.5, 1.2 Hz, 2H), 7.51 – 7.45 (m, 2H), 4.78 (dd, J = 8.7, 3.8 Hz, 2H), 3.49 (t, J = 6.4 Hz, 4H), 2.77 – 2.54 (m, 4H), 1.67 – 1.54 (m, 4H), 1.48 - 1.34 (m, 4H), 0.91 (t, J = 7.4 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 161.6, 150.4, 146.63, 146.57, 125.8 (q, J = 277.5 Hz), 120.7, 120.6, 118.02, 118.05, 77.2, 70.0, 40.4 (q, J = 27.9 Hz), 31.8, 19.2, 13.8.
¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.9 Hz, 6F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{24}H_{31}F_6N_2O_2^+$ 493.2285, Found 493.2289.

2-(1-butoxy-3,3,3-trifluoropropyl)-4-(4-(pyridin-4-yl)phenyl)pyridine (4u)

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound **4u** was obtained by silica gel column

chromatography (eluent: petroleum ether/EtOAc = 1:1, v/v). 21 mg, 26% yield, yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 8.71 (d, J = 5.5 Hz, 2H), 8.66 (d, J = 5.1 Hz, 1H), 7.79 (s, 4H), 7.73 (d, J = 0.9 Hz, 1H), 7.57 (dd, J = 4.7, 1.4 Hz, 2H), 7.50 (dd, J = 5.1, 1.7 Hz, 1H), 4.78 (dd, J = 8.7, 3.9 Hz, 1H), 3.59 – 3.42 (m, 2H), 2.75 – 2.57 (m, 2H), 1.67 – 1.56 (m, 2H), 1.48 – 1.35 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 161.1, 150.2, 150.1, 148.5, 147.6, 138.9, 138.8, 127.8, 125.9 (q, J = 277.8 Hz), 121.6, 120.7, 118.1, 77.3 (q, J = 3.1 Hz), 69.9, 40.5 (q, J = 27.8 Hz), 31.8, 19.2, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (t, J = 10.4 Hz, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{23}H_{24}F_3N_2O^+$ 401.1836, Found 401.1838.

2,6-bis(1-butoxy-3,3,3-trifluoropropyl)-4-(4-(pyridin-4-yl)phenyl)pyridine (4u')

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound **4u'** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 25 mg, 22% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.68 (s, 2H), 7.80 (s, 4H), 7.65 (d, *J* = 3.7 Hz, 2H), 7.59 (d, *J* = 5.4 Hz, 2H), 4.84 – 4.68 (m, 2H), 3.60 – 3.44 (m, 4H), 2.79 – 2.52 (m, 4H), 1.67 – 1.57 (m, 4H), 1.48 – 1.37 (m, 4H), 0.92 (dt, *J* = 7.3, 2.0 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 161.0, 160.9, 150.2, 149.35, 149.41, 147.5, 139.0, 138.8, 127.84, 127.82, 127.7, 125.9 (q, J = 277.8 Hz), 125.0 (q, J = 277.8 Hz), 121.6, 117.3, 117.2, 70.00, 69.97, 40.4 (q, J = 27.9 Hz), 40.3 (q, J = 27.8 Hz), 31.84, 31.82, 19.24, 19.21, 13.82, 13.81.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (t, J = 10.5 Hz, 6F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{30}H_{35}F_6N_2O_2^+$ 569.2598, Found 569.2603.

1,4-bis(2-(1-butoxy-3,3,3trifluoropropyl)pyridin-4-yl)benzene

(4u'')

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound **4u''** was

obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 23 mg, 20% yield, white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.66 (d, J = 5.1 Hz, 2H), 7.80 (s, 4H), 7.73 (s, 2H), 7.50 (dd, J = 5.1, 1.6 Hz, 2H), 4.78 (dd, J = 8.7, 3.8 Hz, 2H), 3.57 – 3.43 (m, 4H), 2.79 – 2.54 (m, 4H), 1.68 – 1.56 (m, 4H), 1.50 – 1.36 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 161.1, 150.1, 148.4, 138.9, 127.8, 125.9 (q, *J* = 277.5 Hz), 120.7, 118.1, 77.3 (q, *J* = 3.1 Hz), 70.0, 40.5 (q, *J* = 27.9 Hz), 31.8, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.4 (t, J = 10.5 Hz, 6F).

HRMS (ESI): [M+H]⁺ calcd for C₃₀H₃₅F₆N₂O₂⁺ 569.2598, Found 569.2602.

2-(1-butoxy-3,3-difluoropropyl)isonicotinonitrile

Following the typical experimental procedure A on 0.2 mmol scale. Compound **4v** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 34 mg, 68% yield, yellow oil.

¹**H NMR (600 MHz, CDCl₃)** δ 8.75 (dd, J = 5.1, 0.6 Hz, 1H), 7.67 (s, 1H), 7.45 (dd, J = 5.0, 1.4 Hz, 1H), 6.05 (tdd, J = 56.9, 6.0, 3.8 Hz, 1H), 4.63 (dd, J = 8.5, 4.9 Hz, 1H), 3.48 – 3.36 (m, 2H), 2.33 – 2.21 (m, 2H), 1.64 – 1.55 (m, 2H), 1.44 – 1.34 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³**C NMR (151 MHz, CDCl₃)** δ 163.0, 150.4, 124.2, 121.9, 121.4, 116.5, 115.4 (t, J = 238.9 Hz), 77.6 (dd, J = 8.5, 4.7 Hz), 70.1, 40.8 (t, J = 21.9 Hz), 31.7, 19.2, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -117.3 – 117.8 (m, 2F).

HRMS (ESI): [M+H]⁺ calcd for C₁₃H₁₇F₂N₂O⁺ 225.1304, Found 225.1309.

2-(1-butoxy-3,3,3-trifluoropropyl)-4-chloroquinoline (5a)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5a** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 60 mg, 90% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.24 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), 7.70 (s, 1H), 7.66 (t, J = 7.6 Hz, 1H), 4.87 (dd, J = 7.5, 5.2 Hz, 1H), 3.47 (t, J = 6.4 Hz, 2H), 2.75 – 2.57 (m, 2H), 1.68 – 1.54 (m, 2H), 1.47 – 1.33 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.9, 148.4, 143.9, 130.7, 129.5, 127.6, 125.9, 125.8 (q, J = 277.5 Hz), 124.1, 118.1, 77.5 (q, J = 2.8 Hz), 70.0, 40.2 (q, J = 28.1 Hz), 31.7, 19.1, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (t, J = 10.4 Hz, 3F). HRMS (ESI): [M+H]⁺ calcd for C₁₆H₁₈ClF₃NO⁺ 332.1024, Found 332.1023.

2-(1-butoxy-3,3,3-trifluoropropyl)-4-methylquinoline (5b)

Following the typical experimental procedure A on 0.2 mmol scale, compound **5b** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 15:1, v/v). 47 mg, 76% yield, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.61 – 7.54 (m, 1H), 7.43 (s, 1H), 4.85 (dd, J = 7.9, 5.0 Hz, 1H), 3.44 (t, J = 6.5 Hz, 2H), 2.74 (s, 3H), 2.71 – 2.57 (m, 2H), 1.69 – 1.51 (m, 2H), 1.45 – 1.33 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.4, 147.4, 145.6, 129.7, 129.4, 127.7, 126.4, 125.9 (q, J = 277.6 Hz), 123.7, 118.5, 77.9 (q, J = 3.1 Hz), 69.7, 40.4 (q, J = 28.0 Hz), 31.8, 19.2, 19.0, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (t, J = 10.5 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₁F₃NO⁺ 312.1570, Found 312.1509.

4-(1-butoxy-3,3,3-trifluoropropyl)-2-methylquinoline (5c)

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound **5c** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v).

46 mg, 74% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.08 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.41 (s, 1H), 5.24 (dd, J = 9.1, 2.1 Hz, 1H), 3.51 – 3.31 (m, 2H), 2.76 (s, 3H), 2.73 – 2.60 (m, 1H), 2.57 – 2.41 (m, 1H), 1.66 – 1.54 (m, 2H), 1.46 – 1.34 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 159.0, 148.3, 145.9, 129.8, 129.4, 126.2, 125.7 (q, *J* = 277.7 Hz), 123.7, 122.2, 119.1, 73.0, 69.8, 41.4 (q, *J* = 27.9 Hz), 31.8, 25.4, 19.2, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -64.0 (t, J = 10.4 Hz, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{17}H_{21}F_3NO^+$ 312.1570, Found 312.1569.

4-(1-butoxy-3,3,3-trifluoropropyl)quinoline-2-carbonitrile (5d)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5d** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 21 mg, 32% yield, White

solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.25 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.92 – 7.86 (m, 1H), 7.85 (s, 1H), 7.81 – 7.75 (m, 1H), 5.31 (dd, J = 9.1, 2.6 Hz, 1H), 3.42 (t, J = 6.6 Hz, 2H), 2.77 – 2.61 (m, 1H), 2.57 – 2.42 (m, 1H), 1.66 – 1.56 (m, 2H), 1.48 – 1.36 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 148.51, 148.46, 133.9, 131.4, 131.1, 130.0, 126.0, 125.4 (q, J = 277.7 Hz), 122.4, 120.5, 117.4, 72.5 (q, J = 2.5 Hz), 70.4, 41.3 (q, J = 28.3 Hz), 31.7, 19.2, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.9 (t, J = 10.2 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₁₈F₃N₂O⁺ 323.1366, Found 23.1365.

methyl 4-(1-butoxy-3,3,3-trifluoropropyl)quinoline-2-carboxylate (5e)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5e** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 52 mg, 73% yield, yellow

oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 8.5 Hz, 1H), 8.32 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.82 (t, J = 7.6 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 5.31 (dd, J = 9.0, 2.1 Hz, 1H), 4.09 (s, 3H), 3.40 (t, J = 6.4 Hz, 2H), 2.85 – 2.66 (m, 1H), 2.59 – 2.42 (m, 1H), 1.67 – 1.52 (m, 2H), 1.46 – 1.34 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 165.7, 148.0, 147.9, 147.6, 131.9, 130.2, 129.2, 126.1, 125.6 (q, J = 277.6 Hz), 122.4, 118.5, 73.1, 69.9, 53.3, 41.3 (q, J = 28.1 Hz), 31.7, 19.1, 13.7.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -63.9 (t, J = 10.3 Hz, 3F).

HRMS (**ESI**): [M+H]⁺ calcd for C₁₈H₂₁F₃NO₃⁺ 356.1469, Found 356.1467.

4-(1-butoxy-3,3,3-trifluoropropyl)-6-fluoro-2-methylquinoline (5f)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5f** was obtained by silica gel column chromatography

(eluent: petroleum ether/EtOAc = 5:1, v/v). 59 mg, 92% yield, yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 8.06 (dd, J = 9.2, 5.6 Hz, 1H), 7.66 (dd, J = 10.1, 2.7 Hz, 1H), 7.46 (dd, J = 9.2, 7.2, 2.7 Hz, 1H), 7.39 (s, 1H), 5.08 (dd, J = 9.0, 3.0 Hz, 1H), 3.37 (t, J = 6.4 Hz, 2H), 2.73 (s, 3H), 2.78 – 2.63 (m, 1H), 2.53 – 2.40 (m, 1H), 1.63 – 1.54 (m, 2H), 1.45 – 1.32 (m, 2H), , 0.89 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.1 (d, J = 247.6 Hz), 158.2 (d, J = 2.6 Hz), 145.5, 145.3 (d, J = 5.6 Hz), 132.1 (d, J = 9.2 Hz), 125.6 (q, J = 277.5 Hz), 124.3 (d, J = 9.5 Hz), 120.2, 119.4 (d, J = 25.5 Hz), 106.4 (d, J = 23.1 Hz), 73.5, 69.7, 41.1 (q, J = 28.0 Hz), 31.7, 25.2, 18.9, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.0 (t, J = 10.4 Hz, 3F), -112.3 (dd, J = 14.7, 8.9 Hz 1F) HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₀F₄NO⁺ 330.1476, Found 330.1474.

4-(1-butoxy-3,3,3-trifluoropropyl)-6-chloro-2methylquinoline (5g)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5g** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 61 mg, 88% yield, yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 – 7.96 (m, 2H), 7.64 (dd, J = 8.9, 2.1 Hz, 1H), 7.40 (s, 1H), 5.12 (dd, J = 9.1, 2.6 Hz, 1H), 3.37 (t, J = 6.3 Hz, 2H), 2.74 (s, 3H), 2.72 – 2.62 (m, 1H), 2.56 – 2.38 (m, 1H), 1.63 – 1.54 (m, 2H), 1.45 – 1.34 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 159.3, 146.8, 145.1, 132.1, 131.3, 130.3, 125.6 (q, *J* = 277.6 Hz), 124.4, 121.6, 120.3, 73.4, 69. 8, 41.3 (q, *J* = 28.0 Hz), 31.7, 25.3, 19.2, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.9 (t, J = 10.3 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₀ClF₃NO⁺ 346.1181, Found 346.1180.

4,8-bis(1-butoxy-3,3,3-trifluoropropyl)-2,6-

dimethylquinoline (5h)

Following the typical experimental procedure B on 0.2 mmol scale. compound **5h** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 27mg, 28% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (s, 1H), 7.75 (s, 1H), 7.38 (s, 1H), 5.21 (d, *J* = 9.1 Hz, 1H), 4.92 (dd, *J* = 8.7, 2.9 Hz, 1H), 3.45 – 3.36 (m, 3H), 3.33 – 3.25 (m, 1H), 2.76 (s, 3H), 2.71 – 2.59 (m, 2H), 2.54 (s, 3H), 2.50 – 2.27 (m, 2H), 1.65 – 1.50 (m, 4H), 1.46 – 1.32 (m, 4H), 0.94 – 0.86 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 158.7, 147.2, 145.3, 141.6, 133.7, 126.9, 125.79 (q, *J* = 277.6 Hz), 125.75 (q, *J* = 277.7 Hz), 123.4 (d, *J* = 3.0 Hz), 123.3, 119.3 (d, *J* = 6.3 Hz), 73.2, 72.9, 69.8 (d, *J* = 3.7 Hz), 69.2, 41.36 (q, *J* = 55.1, 27.6 Hz), 41.34 (q, *J* = 55.8, 28.0 Hz), 31.77 (d, *J* = 4.9 Hz), 29.7, 25.3, 19.6, 19.2 (d, *J* = 6.2 Hz), 13.8 (d, *J* = 14.2 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -64.0 (dt, J = 10.4, 7.4 Hz, 6F).

HRMS (ESI): [M+H]⁺ calcd for C₂₅H₃₄F₆NO₂⁺ 494.2488, Found 494.2486.

4-(1-butoxy-3,3,3-trifluoropropyl)-7-fluoro-2-methylquinoline (5i)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5i** was obtained by silica gel column chromatography

(eluent: petroleum ether/EtOAc = 5:1, v/v). 57 mg, 87% yield, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 9.2, 6.0 Hz, 1H), 7.70 (dd, J = 10.1, 2.4 Hz, 1H), 7.36 - 7.28 (m, 2H), 5.16 (dd, J = 9.0, 2.4 Hz, 1H), 3.38 (t, J = 6.4 Hz, 2H), 2.74 (s, 3H), 2.72 - 2.63 (m, 1H), 2.54 - 2.39 (m, 1H), 1.64 - 1.52 (m, 2H), 1.45 - 1.33 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, J = 250.4 Hz), 160.4, 149.7 (d, J = 12.2 Hz), 146.0, 125.6 (q, J = 277.6 Hz), 124.6 (d, J = 9.8 Hz), 120.8, 118.8, 116.4 (d, J = 34.4 Hz), 113.4 (d, J = 20.0 Hz), 73.4, 69.8, 41.4 (q, J = 28.0 Hz), 31.7, 25.4, 19.2, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** *δ* -63.0 (t, *J* = 10.3 Hz, 3F), -109.65 (s, 1F).

HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₀F₄NO⁺ 330.1476, Found 330.1474.

4-(1-butoxy-3,3,3-trifluoropropyl)-7-chloro-2-methylquinoline (5j)

Following the typical experimental procedure A on 0.2 mmol scale, compound **5j** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 59 mg, 86% yield,

yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.07 (d, J = 1.7 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.48 (dd, J = 9.0, 1.8 Hz, 1H), 7.37 (s, 1H), 5.15 (dd, J = 8.9, 2.3 Hz, 1H), 3.38 (t, J = 6.4 Hz, 2H), 2.74 (s, 3H), 2.73 – 2.63 (m, 1H), 2.54 – 2.38 (m, 1H), 1.64 – 1.53 (m, 2H), 1.45 – 1.33 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.3, 149.0, 145. 9, 135.3, 128.8, 127.1, 125.6 (q, J = 277.6 Hz), 123.8, 122.2, 119.6, 73.4, 69.8, 41.3 (q, J = 28.0 Hz), 31.7, 25.4, 19.2, 13.7.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -63.98 (t, J = 10.3 Hz, 3F).

HRMS (**ESI**): [M+H]⁺ calcd for C₁₇H₂₀ClF₃NO⁺ 346.1181, Found 346.1179.

4-(1-butoxy-3,3,3-trifluoropropyl)-8-fluoro-2-methylquinoline (5k)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **5k** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 61 mg, 92% yield, yellow

oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (d, J = 8.3 Hz, 1H), 7.53 – 7.35 (m, 3H), 5.19 (dd, J = 9.1, 2.5 Hz, 1H), 3.45 – 3.33 (m, 2H), 2.80 (s, 3H), 2.75 – 2.59 (m, 1H), 2.56 – 2.40 (m, 1H), 1.63 – 1.55 (m, 2H), 1.46 – 1.33 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 159.6, 158.2 (d, J = 256.1 Hz), 145.9 (d, J = 2.1 Hz), 138.7 (d, J = 10.8 Hz), 125.9 (d, J = 8.3 Hz), 125.6 (q, J = 277.6 Hz), 125.5 (d, J = 1.7 Hz), 120.2, 118.0 (d, J = 4.7 Hz), 113.6 (d, J = 19.3 Hz), 73.1, 69.9, 41.3 (q, J = 28.0 Hz), 31.7, 25.6, 19.1, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.0 (t, J = 10.3 Hz, 3F), -123.3 (dd, J = 9.5, 4.7 Hz, 1F). HRMS (ESI): [M+H]⁺ calcd for C₁₇H₂₀F₄NO⁺ 330.1476, Found 330.1474.

4-(1-butoxy-3,3,3-trifluoropropyl)-8-chloro-2-methylquinoline (51) Following the typical experimental procedure A on 0.2 mmol scale. Compound **51** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 10:1, v/v). 63 mg, 91% yield, yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.47 (s, 1H), 7.43 (t, J = 8.0 Hz, 1H), 5.20 (dd, J = 9.1, 1.7 Hz, 1H), 3.38 (t, J = 6.3 Hz, 2H), 2.81 (s, 3H), 2.75 – 2.60 (m, 1H), 2.54 – 2.39 (m, 1H), 1.64 – 1.53 (m, 2H), 1.45 – 1.32 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H). ¹³**C NMR (151 MHz, CDCl**₃) δ 160.0, 146.2, 144.6, 134.0, 129.5, 125.9, 125.6 (q, J = 277.6 Hz), 125.1, 121.3, 120.1, 73.1, 69.8, 41.3 (q, J = 28.0 Hz), 31.7, 25.7, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -64.0 (t, J = 10.3 Hz, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{17}H_{20}ClF_3NO^+$ 346.1181, Found 346.1180.

1-(1-butoxy-3,3,3-trifluoropropyl)isoquinoline (5m)

Following the typical experimental procedure A in 2mL DMSO-H₂O (2:1) on 0.2 mmol scale. Compound **5m** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 43

mg, 72% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.57 (d, *J* = 8.5 Hz, 1H), 8.50 (d, *J* = 5.7 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.75 - 7.67 (m, 1H), 7.66 - 7.57 (m, 2H), 5.41 (dd, *J* = 8.5, 4.4 Hz, 1H), 3.41 - 3.32 (m, 2H), 3.13 - 2.95 (m, 1H), 2.83 - 2.66 (m, 1H), 1.60 - 1.43 (m, 2H), 1.36 - 1.23 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 158.2, 141.6, 136.8, 130.1, 127.6, 127.5, 126.3, 126.0 (q, *J* = 277.2 Hz), 124.7, 121.2, 76.9 (q, *J* = 2.8 Hz), 68.8, 39.1 (q, *J* = 27.9 Hz), 31.7, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (t, J = 10.6, 3F).

HRMS (**ESI**): [M+H]⁺ calcd for C₁₆H₁₉F₃NO⁺ 298.1413, Found 298.1413.

6-(1-butoxy-3,3,3-trifluoropropyl)phenanthridine (5n)

Following the typical experimental procedure B for 12 hours on 0.2 mmol scale. Compound **5n** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 47 mg, 68% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.74 (d, *J* = 8.3 Hz, 1H), 8.68 (d, *J* = 8.3 Hz, 1H), 8.58 (d, *J* = 8.1 Hz, 1H), 8.21 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.92 – 7.83 (m, 1H), 7.80 – 7.66 (m, 3H), 5.51 (dd, *J* = 8.9, 4.0 Hz, 1H), 3.54 – 3.39 (m, 2H), 3.24 – 3.05 (m, 1H), 2.96 – 2.79 (m, 1H), 1.63 – 1.47 (m, 2H), 1.39 – 1.26 (m, 2H), 0.83 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 158.0, 143.0, 133.5, 130.7, 130.3, 128.8, 127.4, 126.2 (q, *J* = 277.3 Hz), 126.0, 124.12, 124.11, 122.6, 121.9, 77.8 (q, *J* = 3.0 Hz), 68.6, 38.6 (q, *J* = 28.0 Hz), 31.8, 19.1, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.4 (dt, J = 10.8, 2.1 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₂₀H₂₁F₃NO⁺ 348.1570, Found 348.1568.

9-(1-butoxy-3,3,3-trifluoropropyl)acridine (50)

Following the typical experimental procedure B for 12 hours on 0.2 mmol scale. Compound **50** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 44 mg, 63%

yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.99 (d, J = 8.3 Hz, 1H), 8.27 (d, J = 8.4 Hz, 3H), 7.80 (t, J = 7.5 Hz, 2H), 7.67 – 7.53 (m, 2H), 6.13 (dd, J = 8.8, 3.7 Hz, 1H), 3.44 – 3.36 (m, 1H), 3.34 – 3.19 (m, 2H), 2.73 – 2.58 (m, 1H), 1.56 – 1.47 (m, 2H), 1.39 – 1.23 (m, 2H), 0.81 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) *δ* 149.0, 148.4, 141.6, 130.8, 130.6, 130.0, 129.8, 126.8, 126.0, 125.8 (q, *J* = 277.6 Hz), 125.7, 124.5, 124.0, 122.0, 71.6 (q, *J* = 3.1 Hz), 69.6, 40.8 (q, *J* = 28.1 Hz), 31.7, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -64.0 (t, J = 10.4, 3F).

HRMS (**ESI**): [M+H]⁺ calcd for C₂₀H₂₁F₃NO⁺ 348.1570, Found 348.1569.

2-(3,3,3-trifluoro-1-isobutoxypropyl)isonicotinonitrile (6a)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **6a** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 37 mg, 68% yield, yellow oil.

CF₃ ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 5.0 Hz, 1H), 7.70 (s, 1H), 7.46 (dd, J = 4.9, 1.4 Hz, 1H), 4.72 (dd, J = 8.5, 3.8 Hz, 1H), 3.27 – 3.18 (m, 2H), 2.72 – 2.48 (m, 2H), 2.00 – 1.84 (m, 1H), 0.94 (t, J = 6.9 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 162.3, 150.4, 125.6 (q, *J* = 277.4 Hz), 124.3, 122.1, 121.4, 116.4, 77.3, 77.0 (q, *J* = 3.0 Hz), 40.0 (q, *J* = 28.2 Hz), 28.6, 19.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (t, J = 10.3, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₃H₁₆F₃N₂O⁺ 273.1210, Found 273.1208.

2-(3,3,3-trifluoro-1-propoxypropyl)isonicotinonitrile (6b)

Following the typical experimental procedure on A 0.2 mmol scale. Compound **6b** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 38 mg, 73% yield, yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.76 (d, J = 4.9 Hz, 1H), 7.71 (s, 1H), 7.46 (dd, J = 5.0, 1.4 Hz, 1H), 4.74 (dd, J = 8.5, 3.8 Hz, 1H), 3.43 (t, J = 6.7 Hz, 2H), 2.81 – 2.47 (m, 2H), 1.72 – 1.59 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 162.3, 150.4, 125.6 (q, *J* = 277.4 Hz), 124.3, 122.1, 121.4, 116.4, 76.8 (q, *J* = 3.1 Hz), 72.3, 40.0 (q, *J* = 28.2 Hz), 22.9, 10.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (t, J = 10.4, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₂H₁₄F₃N₂O⁺ 259.1053, Found 259.1052.

2-(1-ethoxy-3,3,3-trifluoropropyl)isonicotinonitrile (6c)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **6c** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 35 mg, 72% yield, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 4.9 Hz, 1H), 7.72 (s, 1H), 7.47 (dd, J = 4.9, 1.3 Hz, 1H), 4.75 (dd, J = 8.5, 3.8 Hz, 1H), 3.61 – 3.48 (m, 2H), 2.76 – 2.49 (m, 2H), 1.26 (t, J = 7.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 162.3, 150.4, 125.6 (q, *J* = 277.4 Hz), 124.3, 122.1, 121.4, 116.4, 76.6 (q, *J* = 3.0 Hz), 66.0, 40.1 (q, *J* = 28.1 Hz), 15.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (t, J = 10.4, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₁H₁₂F₃N₂O⁺ 245.0897, Found 245.0895.

2-(1-(cyclohexyloxy)-3,3,3-trifluoropropyl)isonicotinonitrile (6d)Following the typical experimental procedure A on 0.2 mmol scale.Compound 6d was obtained by silica gel column chromatography (eluent:

petroleum ether/EtOAc = 10:1, v/v). 48 mg, 81% yield, yellow oil.

 $CF_3 \sim ^{1}$ H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 4.9 Hz, 1H), 7.77 (s, 1H), 7.45 (dd, J = 4.9, 1.3 Hz, 1H), 4.92 (dd, J = 8.9, 3.4 Hz, 1H), 3.33 - 3.23 (m, 1H), 2.68 - 2.44 (m, 2H), 1.97 (d, J = 11.4 Hz, 1H), 1.82 - 1.65 (m, 3H), 1.57 - 1.46 (m, 1H), 1.45 - 1.27 (m, 2H), 1.26 - 1.16 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 163.4, 150.2, 125.6 (q, *J* = 277.6 Hz), 124.2, 122.2, 121.3, 116.4, 77.7, 74.0 (q, *J* = 2.9 Hz), 40.6 (q, *J* = 27.9 Hz), 33.1, 31.5, 25.5, 24.0, 23.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.1 (t, J = 10.3, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₅H₁₈F₃N₂O⁺ 299.1366, Found 299.1365.

2-(1-(benzyloxy)-3,3,3-trifluoropropyl)isonicotinonitrile (6e)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **6e** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 50 mg, 82% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 5.0, 0.6 Hz, 1H), 7.70 (s, 1H), 7.47 (dd, J = 5.0, 1.4 Hz, 1H), 7.40 – 7.29 (m, 5H), 4.89 (dd, J = 7.0, 5.3 Hz, 1H), 4.55 (s, 2H), 2.75 – 2.62 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 161.6, 150.4, 136.6, 128.5, 128.2, 128.0, 125.6 (q, J = 277.4 Hz), 124.4, 122.4, 121.4, 116.3, 76.2 (q, J = 2.9 Hz), 72.4, 40.0 (q, J = 28.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (t, J = 10.3, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₆H₁₄F₃N₂O⁺ 307.1053, Found 307.1053.

2-(3,3,3-trifluoro-1-(2,2,3,3-

tetrafluoropropoxy)propyl)isonicotinonitrile (6f)

Following the typical experimental procedure A on 0.2 mmol scale. Compound **6f** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 32 mg, 48% yield, yellow

oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.80 (d, J = 4.9 Hz, 1H), 7.68 (s, 1H), 7.54 (dd, J = 4.9, 1.3 Hz, 1H), 5.97 (tt, J = 53.2, 5.0 Hz, 1H), 4.90 (dd, J = 8.1, 4.3 Hz, 1H), 3.95 – 3.80 (m, 2H), 2.77 – 2.61 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.7, 150.8, 125.2 (q, J = 277.3 Hz), 125.1, 122.1, 121.9, 116.0, 114.5 (tt, J = 250.1, 27.2 Hz), 109.0 (tt, J = 249.7, 34.7 Hz), 78.4 (q, J = 2.9 Hz), 67.0 (t, J = 28.9 Hz), 40.0 (q, J = 28.8 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -63.6 (t, J = 10.1, 3F), -123.85 – 126.19 (m, 2F), -137.89 –140.55 (m, 2F). (m, 2F). HRMS (ESI): [M+H]⁺ calcd for C₁₂H₁₀F₇N₂O⁺ 331.0676, Found 331.0678.

2-(3-(trifluoromethyl)tetrahydrofuran-2-yl)isonicotinonitrile (6g)

Following the typical experimental procedure B in 2mL DMSO-H₂O (3:2) on 0.2 mmol scale. Compound **6g** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 21 mg, 43% yield, yellow oil.

 CF_3 ¹H NMR (600 MHz, CDCl₃) δ 8.78 (d, J = 4.9 Hz, 1H), 7.71 (s, 1H), 7.46 (dd, J = 4.9, 1.2 Hz, 1H), 5.16 (d, J = 4.6 Hz, 1H), 4.09 (t, J = 6.9 Hz, 2H), 3.48 – 3.38 (m, 1H), 2.25 – 2.20 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 161.4, 150.4, 128.0 (q, J = 277.9 Hz), 124.3, 122.9, 121.2, 116.3, 80.1 (q, J = 4.7, 2.2 Hz), 68.6, 48.5 (q, J = 27.5 Hz), 26.6 (q, J = 2.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -69.7 (d, J = 9.6, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{11}H_{10}F_3N_2O^+$ 243.0740, Found 243.0738.

2-(3-(trifluoromethyl)tetrahydro-2H-pyran-2-yl)isonicotinonitrile (6h)

Following the typical experimental procedure A at 60 °C on 0.2 mmol scale. Compound **6h** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 5:1, v/v). 19 mg, 38% yield, yellow oil liquid.

 CF_3 ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 4.9 Hz, 1H), 7.58 (s, 1H), 7.48 (dd, J = 5.0, 1.4 Hz, 1H), 4.54 (d, J = 9.5 Hz, 1H), 4.14 – 4.07 (m, 1H), 3.60 (dt, J = 11.3, 3.6 Hz, 1H), 2.89 – 2.74 (m, 1H), 2.27 – 2.19 (m, 1H), 1.90 – 1.72 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.0, 150.4, 125.9 (q, *J* = 279.8 Hz), 124.8, 124.3, 121.1, 116.2, 79.2 (q, *J* = 1.6 Hz), 68.2, 44.2 (q, *J* = 24.9 Hz), 23.9, 22.7 (q, *J* = 2.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -69.7 (d, J = 8.3, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₂H₁₂F₃N₂O⁺ 257.0897, Found 257.0895.

7. Scale-up experiment

To a solution of the quinoline substrate (0.82 g, 5 mmol, 1.0 equiv.) in 50 mL DMSO-H₂O (3:2) was added TFA (383 μ L, 5mmol, 1.0 equiv.) and stirrling was kept at room temperature for 5 minutes. Subsequently, CF₃SO₂Na (2.37 g, 15 mmol, 3.0 equiv.), *n*-butyl vinyl ether (3.24 mL, 25 mmol, 5.0 equiv.) and TBHP (2.06 mL, 15 mmol, 3.0 equiv.) were added. The tube was sealed with and the reaction was stirred at room temperature for 1 minute. The system was immediately put in an ice bath and stirred at 0 °C for 2 hours. The mixture was cooled to room temperature, diluted with 80ml H₂O and neutralized with NaHCO₃. After extraction with EA three times, the combined organic layers were washed with brine and dried over Na₂SO₄. The crude mixture was purified by silica gel column chromatography using hexane / ethyl acetate (8:1) as the eluent, affording the product as a yellow oil (1.21 g, 79%).

8. Transformation of product

8.1. Suzuki coupling reaction

Compound **4h** (65.0 mg, 0.2 mmol, 1.0 equiv.), phenylboronic acid (60.8 mg, 0.4 mmol, 2.0 equiv.), K_2CO_3 (82.9 mg, 0.6 mmol, 3.0 equiv.), $Pd(Ph_3P)_4$ (23.1 mg, 0.02 mmol, 0.1 equiv.), were successively added to a 15 mL Schlenk tube, followed by the addition of THF (2.0 mL) and H₂O (0.2 mL) under nitrogen atmosphere. The mixture was heated to 70 °C for and stirred for 6 h. After cooling to room temperature, the solvent was removed by distillation under reduced pressure. The product was purified by silica gel column chromatography using hexane / ethyl acetate (30:1) as the eluent to give the product as a yellow oil (49.1 mg, 76%).

8.2. Dehalogenation reaction

Under nitrogen atmosphere Compound **4h** (65.0 mg, 0.2 mmol, 1.0 equiv.), DMF (2 mL), *t*-BuOK (67.2 mg, 0.6 mmol, 3.0 equiv.), CuI (17.2 mg, 0.09 mmol, 0.45 equiv.), (Bpin)₂ (152.3mg, 0.6mol, 3.0 equiv.), were successively added to a 15 mL Schlenk tube under nitrogen atmosphere. The mixture was heated to at 80 °C for 5h. After cooling to room temperature, the solvent was removed by distillation under reduced pressure. The crude mixture was purified by silica gel column chromatography using hexane / ethyl acetate (15:1) as the eluent to give the product as a yellow oil (26.2 mg, 53%).

2-(1-butoxy-3,3,3-trifluoropropyl)pyridine (7)

Compound 7 was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 8:1, v/v). 26 mg, 53% yield, yellow oil liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 4.6 Hz, 1H), 7.73 (td, *J* = 7.7,

1.5 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.23 (dd, J = 7.0, 5.2 Hz, 1H), 4.69 (dd, J = 8.5, 4.1 Hz, 1H),

3.47 – 3.37 (m, 2H), 2.68 – 2.51 (m, 2H), 1.65 – 1.51 (m, 2H), 1.44 – 1.32 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.2, 149.4, 137.0, 125.9 (q, *J* = 277.4 Hz), 122.9, 120.4, 77.3 (q, *J* = 3.0 Hz), 69.7, 40.5 (q, *J* = 27.8 Hz), 31.8, 19.2, 13.8.

¹⁹**F NMR (376 MHz, CDCl**₃) δ 63.5 (t, J = 10.6 Hz, 3F).

HRMS (**ESI**): [M+H]⁺ calcd for C₁₂H₁₇F₃NO⁺ 248.1257, Found 248.1260.

8.3. Oxidation by SeO₂

To a solution of **4q** (63.8 mg, 0.2 mmol, 1.0 equiv.) in 1,4-dioxane (2 mL), was added SeO₂ (22mg, 0.4 mmol, 2.0 equiv.). The reaction vial was then sealed and heated at 110 °C for 2 hours. The reaction was then cooled to room temperature, filtered through celite, and extraced with EtOAc. The filtrate was dried over Na₂SO₄ and then concentrated in vacuo. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (15:1) as eluent, giving the product as a white solid (52.1 mg, 78%).

methyl 4-(1-butoxy-3,3,3-trifluoropropyl)-6-formylpicolinate (8) Compound 8 was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 2:1, v/v). 52 mg, 78% yield, white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 10.19 (s, 1H), 8.31 (d, J = 1.3 Hz,

1H), 8.10 (d, *J* = 1.3 Hz, 1H), 4.70 (dd, *J* = 8.2, 4.4 Hz, 1H), 4.07 (s, 3H), 3.39 – 3.27 (m, 2H), 2.73 – 2.59 (m, 1H), 2.45 – 2.31 (m, 1H), 1.60 – 1.51 (m, 2H), 1.42 – 1.31 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 192.3, 164.6, 153.4, 153.3, 149.2, 126.6, 125.1 (q, *J* = 277.4 Hz), 121.9, 74.8 (q, *J* = 3.1 Hz), 70.0, 53.4, 41.6 (q, *J* = 28.3 Hz), 31.5, 19.0, 13.7.

¹⁹**F NMR (376 MHz, CDCl**₃) δ 63.4 (t, J = 10.2 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₅H₁₉F₃NO₄⁺ 334.1261, Found 334.1266.

8.4. Reduction

To a reaction tube containing **8** (66.7 mg, 0.2 mmol, 1.0 equiv.) and 2 mL DCM-MeOH (4:1) was added sodium borohydride (7.62 mg, 0.20 mmol, 1.0 equiv.) at room temperature. The reaction was stirred until no starting material remained by TLC. The reaction was quenched by the addition of citric acid monohydrate (41.90 mg, 0.20 mmol, 1.0 equiv.). After stirring for an additional 10 minutes, the mixture was basified by the addition of saturated aqueous NaHCO₃. The organic layers were separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (hexane/ethyl acetate = 1:2), affording the product as a yellow oil (32.2 mg, 63% yield).

methyl 4-(1-butoxy-3,3,3-trifluoropropyl)-6-(hydroxymethyl)picolinate (9)

Compound **9** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 1:2, v/v). 22 mg, 63% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.99 (s, 1H), 7.53 (s, 1H), 4.88 (s, 2H), 4.62 (dd, *J* = 8.5, 4.1 Hz, 1H), 4.00 (s, 3H), 3.32 (t, *J* = 6.4 Hz, 2H), 2.71 – 2.55 (m, 1H), 2.44 – 2.28 (m, 1H), 1.61 – 1.49 (m, 2H), 1.43 – 1.29 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 165.3, 161.1, 152.2, 147.8, 125.2 (q, *J* = 277.4 Hz), 121.6, 121.5, 75.0 (q, *J* = 3.1 Hz), 69.8, 64.6, 53.0, 41.7 (q, *J* = 28.1 Hz), 31.6, 19.1, 13.7.

¹⁹F NMR (376 MHz, CDCl₃) δ 63.5 (t, J = 10.3 Hz, 3F).

HRMS (ESI): [M+H]⁺ calcd for C₁₅H₂₁F₃NO₄⁺ 336.1418, Found 336.1414.

8.5. Oxidation by *m*-CPBA

To a solution of 4q (63.8 mg, 0.2 mmol, 1.0 equiv.) in DCM (2 mL) was added *m*-CPBA (51.8 mg, 0.3 mmol, 1.5 equiv.) in batches at 0 °C. After stirring for 16 h at room temperature, sodium bicarbonate solution was added. The aqueous layer was extracted with DCM and the combined organic phase was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was subjected to column chromatography, affording the product as a yellow oil (57.6 mg, 86%).

4-(1-butoxy-3,3,3-trifluoropropyl)-2-(methoxycarbonyl)-6methylpyridine 1-oxide (10)

Compound **10** was obtained by silica gel column chromatography (eluent: petroleum ether/EtOAc = 1:2, v/v). 58 mg, 87% yield, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.39 (d, *J* = 1.8 Hz, 1H), 7.30 (d, *J* = 1.9 Hz, 1H), 4.49 (dd, *J* = 8.0, 4.6 Hz, 1H), 3.99 (s, 3H), 3.36 – 3.27 (m, 2H), 2.66 – 2.56 (m, 1H), 2.52 (s, 3H), 2.41 – 2.25 (m, 1H), 1.57 – 1.49 (m, 2H), 1.41 – 1.29 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H)

³**C NMR (151 MHz, CDCl₃)** *δ* 162.4, 150.8, 141.9, 137.9, 125.2, 125.1 (q, *J* = 277.4 Hz), 121.7, 74.2 (q, *J* = 3.0 Hz), 69.7, 53.3, 41.5 (q, *J* = 28.0 Hz), 31.5, 19.0, 17.9, 13.6.

¹⁹**F NMR (376 MHz, CDCl₃)** δ 63.4 (t, J = 10.3 Hz, 3F).

HRMS (ESI): $[M+H]^+$ calcd for $C_{15}H_{21}F_3NO_4^+$ 336.1418, Found 336.1419.

9. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

¹H NMR spectrum of compound **4a** in CDCl₃ (600 MHz)

76	76	02	47		- 4	0	40	26	74	74	73	72	80	p o	40	48	47	46	45	44	43	0	000	89	67	67	99	65	64	63	90	o u	2 6		26	55	55	54	64	63	61	60	202	3:	4	42	4	40	39	37	93	65	5	5
φ	¢	1	1	- 1		- 1	Ś	~	4	4	4	4	 ; c	5 c	η	ņ	ė	ŝ	ŝ	ć	i e	i c	Ņ,	Ń	Ņ	Ņ	N	Ņ	Ņ	\$	ic	ic	ic	Ņ,	Ņ	Ņ	Ņ	Ņ	÷	÷	-	5	.	 	÷	÷	÷	÷	÷	÷	0	j	C	5

¹⁹F NHR spectrum of compound **4a** in CDCl₃ (376 MHz)

¹H NMR spectrum of compound **4b** in CDCl₃ (400 MHz)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190
¹H NMR spectrum of compound **4c** in CDCl₃ (400 MHz)

A & 3 0 0 0 0 0 0 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
V V 8 8 8 V 9 9	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ουρορορορορορορορορορορορορορορορορορορ
88777777	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1444000000000000000	~~~~~~~~~~~~~~~~~~

¹⁹F NHR spectrum of compound **4c** in CDCl₃ (376 MHz)

40 30 20 10 0 -10

¹H NMR spectrum of compound **4d** in CDCl₃ (400 MHz)

8.78 8.77 7.7.75 7.7.55 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.75 7.7.55 7.7.55 7.7.55 7.7.55 7.7.55 7.7.55 7.7.75 7.7.75 7.7.55 7.

¹H NMR spectrum of compound **4e** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **4e** in CDCl₃ (376 MHz)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170

¹H NMR spectrum of compound **4f** in CDCl₃ (400 MHz)

¹³C NMR spectrum of compound **4f** in CDCl₃ (151 MHz)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹⁹F NHR spectrum of compound **4f** in CDCl₃ (376 MHz)

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170

¹H NMR spectrum of compound **4g** in CDCl₃ (400 MHz)

8.47 8.46 7.47 7.47 7.47 7.47 7.24 7.24 7.24 7.23 4.69 4.68	4.67 3.46 3.46 3.45 3.45 3.45 3.44 3.44 3.44 3.44 3.44	3.41 2.64 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5	1.62 1.63 1.61 1.61 1.59 1.58 1.58 1.58 1.58 1.57 1.57	1.56 1.55 1.44 1.42 1.42 1.38 1.37 1.37 0.93 0.91 0.89

 $^{19}\mathrm{F}$ NHR spectrum of compound 4g in CDCl3 (376 MHz)

$\frac{1}{50}$ $\frac{1}{40}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{-20}$ $\frac{1}{-30}$ $\frac{1}{-40}$ $\frac{1}{-50}$ $\frac{1}{-60}$ $\frac{1}{-70}$ $\frac{1}{-80}$ $\frac{1}{-90}$ $\frac{1}{-100}$ $\frac{1}{-120}$ $\frac{1}{-130}$ $\frac{1}{-140}$ $\frac{1}{-150}$ $\frac{1}{-160}$ $\frac{1}{-100}$ $\frac{1}{-10$

¹³C NMR spectrum of compound **4h** in CDCl₃ (151 MHz)

161.92	150.18	133.94 128.49 126.65 126.28 124.82 123.93 122.98	77.21 77.00 76.87 76.85 76.83 76.79 70.06	40.60 40.41 40.23 31.72 19 13	13.76

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹⁹F NHR spectrum of compound **4h** in CDCl₃ (376 MHz)

40 30 20

10 0 -10 -20 -30 -40 -50 -60

-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

¹H NMR spectrum of compound **4i** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **4i** in CDCl₃ (376 MHz)

50

-140 -150 -160 -170

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

¹H NMR spectrum of compound **4k** in CDCl₃ (400 MHz)

30 220 210 200 190 180 170 160 150 140 130 120 110 100 ¹⁹F NHR spectrum of compound 4k in CDCl₃ (376 MHz)

-63.00-63.03-63.06

CE/

¹H NMR spectrum of compound **4I** in CDCl₃ (400 MHz)

^{13}C NMR spectrum of compound 4l in CDCl3 (151 MHz)

165.38	151.37 150.30 148.52	127.94 126.10 124.42 124.26 122.79 122.42	77.21 77.20 74.90 74.88 69.71 52.96 69.71 52.96 69.71 74.88 69.71 74.88 69.71 74.88 69.71 74.83 63.71 71.95 83.1.54 31.54	19.05 13.65
1	$\leq 1 < 1$			

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹⁹F NHR spectrum of compound **4l** in CDCl₃ (376 MHz)

 50
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -110
 -120
 -130
 -140
 -150
 -160
 -190

¹⁹F NHR spectrum of compound **4m** in CDCl₃ (376 MHz)

30 20

10 0 -10 -20

¹³C NMR spectrum of compound **4n** in CDCl₃ (151 MHz)

163.36 159.50	137.18 128.76 126.92 125.08 123.24 121.05 117.40	77.36 77.35 77.21 77.00 76.79 69.67	40.75 40.57 40.39 31.80 31.23 31.23 119.18 13.78
1 1			

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

 $^{19}\mathrm{F}$ NHR spectrum of compound 4n in CDCl3 (376 MHz)

-63.32 -63.35 -63.38

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

¹H NMR spectrum of compound **40** in CDCl₃ (400 MHz)

220 210 200 190 180 170 160 120 110 ¹⁹F NHR spectrum of compound **40** in CDCl₃ (376 MHz)

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -21

^{13}C NMR spectrum of compound 4p in CDCl_3 (151 MHz)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (

¹⁹F NHR spectrum of compound **4p** in CDCl₃ (376 MHz)

\[
 \overline{-63.45}
 -63.47
 \]

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -1

¹⁹F NHR spectrum of compound **4p'** in CDCl₃ (376 MHz)

 $\begin{pmatrix} -63.59 \\ -63.62 \\ -63.64 \\ -63.64 \end{pmatrix}$

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

¹H NMR spectrum of compound 4q in CDCl₃ (400 MHz)

 $\begin{array}{c} 7.37\\ 7.37\\ 7.34\\ 7.34\\ 7.34\\ 7.33\\ 7.34\\ 7.35\\ 7.33\\ 7.35\\ 7.33\\ 7.35\\ 7.33\\ 7.35\\ 7.33\\$

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

¹H NMR spectrum of compound $4\mathbf{r}$ in CDCl₃ (600 MHz)

¹⁹F NHR spectrum of compound **4r** in CDCl₃ (376 MHz)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

¹H NMR spectrum of compound **4s** in CDCl₃ (400 MHz)

8.60 8.60 8.77 8.60 8.77 8.73 8.60 8.73 8.73 8.60 8.73 8.73 8.73 8.73 8.73 8.73 8.73 8.73 8.73 1.74 1.64 1.75 1.65 1.74 1.65 1.74 1.65 1.74 1.65 1.74 1.65 1.74 1.65 1.74 1.65 1.74 1.65 1.74 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1.65 1.75 1

¹⁹F NHR spectrum of compound **4s** in CDCl₃ (376 MHz)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30

 $\begin{pmatrix}
-63.25 \\
-63.28 \\
-63.31
\end{pmatrix}$

20

10 0

-10 -

60

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

¹H NMR spectrum of compound **4t** in CDCl₃ (400 MHz) °CF3

9400	1.0
0000	6 6
ሻሻሻማ	~ ~

50 40 30 20 10

0

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60

¹⁹F NHR spectrum of compound 4t in CDCl₃ (376 MHz)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

¹H NMR spectrum of compound 4t' in CDCl₃ (400 MHz)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170

¹H NMR spectrum of compound **4u** in CDCl₃ (400 MHz)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 --

¹⁹F NHR spectrum of compound **4u** in CDCl₃ (376 MHz)

`N II .0. CF3

 60
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -180
 -20

¹H NMR spectrum of compound **4u'** in CDCl₃ (400 MHz)

$\begin{array}{c} 8.7\\ 7.86\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.66\\ 7.76\\ 7.16\\$

¹⁹F NHR spectrum of compound **4u'** in CDCl₃ (376 MHz)

-63.21 -63.23 -63.26

CF

60

50 40 30 20 10 0

-10 -20 -30 -40

S68

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2

¹H NMR spectrum of compound **4u**^{''} in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **4u**^{**} in CDCl₃ (376 MHz)

-63.40 ←-63.43 -63.46

CF3

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -19

¹H NMR spectrum of compound **4V** in CDCl₃ (600 MHz)

$\begin{array}{c} 8.75\\ 8.75\\ 8.75\\ 8.75\\ 7.6606\\ 7.6606\\ 6.05\\ 6.066\\ 6.05\\ 6.066\\ 6.05\\ 7.245\\ 7.255\\ 7.223\\ 7.223\\ 7.223\\ 7.225\\ 7.255\\ 7.225\\ 7.225\\ 7.255\\ 7.225\\ 7.255\\ 7.225\\ 7.225\\ 7.255\\ 7.225\\ 7.225\\ 7.255\\ 7.225\\ 7.255\\$

100 50 0 -50 -100 -150 -200 -250 -300

¹⁹F NHR spectrum of compound **5a** in CDCl₃ (376 MHz)

-63.12
-63.14
-63.17

¹H NMR spectrum of compound **5b** in CDCl₃ (400 MHz)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹⁹F NHR spectrum of compound **5c** in CDCl₃ (376 MHz)

¹H NMR spectrum of compound **5d** in CDCl₃ (400 MHz)

\sim	ŝ	ω
6	σ	σ
σ	ς.	ς.
ö	ö	ö
5	\rightarrow	~

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2

¹H NMR spectrum of compound **5e** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **5e** in CDCl₃ (376 MHz)

-63.92
 -63.95
 √ -63.97

¹H NMR spectrum of compound **5f** in CDCl₃ (400 MHz)

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170

40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

¹H NMR spectrum of compound **5g** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **5g** in CDCl₃ (376 MHz)

-63.86 -63.89 -63.92

$\begin{array}{c} 8&15\\ 7&755\\ 7&7$

¹⁹F NHR spectrum of compound **5h** in CDCl3 (376 MHz)

-63.97 -63.98 -63.99 -64.01 -64.01 -64.02
--

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190

¹H NMR spectrum of compound **5i** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **5i** in CDCl₃ (376 MHz)

¹H NMR spectrum of compound **5j** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **5j** in CDCl₃ (376 MHz)

-63.95 -63.98 -64.01

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240

¹H NMR spectrum of compound **5**k in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **5k** in CDCl₃ (376 MHz)

-63.97	-123.32
-64.00	-123.33
-64.03	-123.35
\rightarrow	

¹H NMR spectrum of compound **5**l in CDCl₃ (400 MHz)

0.00

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

 $^{19}\mathrm{F}$ NHR spectrum of compound 5m in CDCl3 (376 MHz)

- -63.55 - -63.58 - -63.61

50 40 30 20 10 0 -10 -20

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ¹H NMR spectrum of compound **5n** in CDCl₃ (400 MHz)

$\begin{array}{c} 88.75\\ 88.73\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.67\\ 88.65\\ 88.67\\ 88.65\\ 88$

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

 $^{19}\mathrm{F}$ NHR spectrum of compound 5n in CDCl3 (376 MHz)

-63.37	-63.38	-63.40	-63.40	-63.43	-63.43
_	<u> </u>	-5	ż	ż	

0

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

¹H NMR spectrum of compound **50** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **50** in CDCl₃ (376 MHz)

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -160 -170 -180 -190 -200 -210

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

 $^{19}\mathrm{F}$ NHR spectrum of compound $\mathbf{6a}$ in CDCl_3 (376 MHz)

-63.14
 -63.17
 -63.20

50

100

50

0

-100

-150

-50

-250

-200

-3

-300

¹H NMR spectrum of compound **6b** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **6b** in CDCl₃ (376 MHz)

-63.23
 -63.26
 -63.28

¹H NMR spectrum of compound **6c** in CDCl₃ (400 MHz)

8.77 7.48 8.77 7.74 7.7.7 7.74 8.8.76 8.8.76 7.7.4 8.8.76 7.44 8.77 7.7.4 8.8.76 8.8.76 8.8.76 7.7.4 8.8.76 8.8.76 8.8.76 7.7.4 8.8.76 8.77 7.46 7.7.4 8.8.76 8.77 8.8.76 8.8.5 8.8.76 8.4.75 8.4.75 8.8.5 8.8.55 8.76 8.4.75 8.8.5 8.8.55 8.76 8.76 8.8.5 8.8.55 8.76 8.76 8.8.5 8.8.55 8.76 8.76 8.8.5 8.8.55 8.76 8.76 8.8.5 8.8.55 8.76 8.76 8.8.5 8.75 8.76 8.76 8.8.5 8.8.55 8.76 8.76 8.8.5 8.75 8.76 8.76 8.8.5 8.75 8.76 8.76 8.8.5 8.75

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

80 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

10

6

 ^{19}F NHR spectrum of compound 6c in CDCl3 (376 MHz)

-63.30 -63.32 -63.35

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2

¹H NMR spectrum of compound **6d** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **6d** in CDCl₃ (376 MHz)

-63.09

 -63.11

 -63.14

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR spectrum of compound **6e** in CDCl₃ (400 MHz)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

120 110 100 90 80

70 60 50 40 30 20 10 (

150 140 130

20

210 200 190 180 170 160

¹⁹F NHR spectrum of compound **6f** in CDCl₃ (376 MHz)

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

-69.66 -69.68

¹⁹F NHR spectrum of compound **6g** in CDCl₃ (376 MHz)

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

¹H NMR spectrum of compound **6h** in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound **6h** in CDCl₃ (376 MHz)

¹⁹F NHR spectrum of compound **7** in CDCl₃ (376 MHz)

180 170 160 150 140 130 120 110 100 90

-63.49 -63.52 -63.55

70

60

50

40

30

20

10

0

-10

80

CE-

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180

¹H NMR spectrum of compound 8 in CDCl₃ (400 MHz)

¹⁹F NHR spectrum of compound 8 in CDCl₃ (376 MHz)

-63.35
-63.38
-63.41

$\frac{1}{60}$ $\frac{1}{50}$ $\frac{1}{40}$ $\frac{1}{30}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{50}$ $\frac{1}{50}$

0.0000 0.00000 0.00000 0.0000

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -12

 ^{19}F NHR spectrum of compound 10 in CDCl3 (376 MHz)

-63.42 -63.44 -63.47

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20

10. References

1. Y. T. He, D. Kang, I. Kim and S. Hong, Metal-free photocatalytic trifluoromethylative pyridylation of unactivated alkenes, *Green Chem.*, 2018, **20**, 5209-5214.