Supplementary information

Chemical modification of sialylated oligosaccharides to functionalize

nanostructured lipid carriers: exploring two different strategies

Paul Rivollier^{1,2}, Emeline Richard¹, Antoine Hoang², Aurélien Traversier^{3,4,5}, Manuel Rosa-Calatrava^{3,4,5}, Dorothée Jary², Isabelle Texier², Sébastien Fort^{1*}

¹Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France

²Univ. Grenoble Alpes, CEA, LETI, 38054 Grenoble, France

³CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université Lyon, Inserm,
 U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
 ⁴VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université Lyon,
 69008 Lyon, France

⁵Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada

⁶International Associated Laboratory RespiVir France - Canada, Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec 69008 Lyon, Université Claude Bernard Lyon 1, Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2, Québec, Canada

*Corresponding author: sebastien.fort@cermav.cnrs.fr

Characterization of linkers and glycoconjugates

p-Toluenesulfonyl PEG₄ (1)

Figure S1. ¹H NMR spectrum of 1 (CD₃OD, 298K)

Figure S2. ¹³C DEPTQ-135 NMR spectrum of 1 (CD₃OD, 298K)

(N-t-Butoxycarbonyl, N-methyl-hydroxylamine)-PEG₄ (2)

Figure S3. ¹H NMR spectrum of 2 (CD₃OD, 298K)

Figure S4. ¹³C DEPTQ-135 NMR spectrum of 2 (CD₃OD, 298K)

(*N-t*-Butoxycarbonyl, *N*-methyl-hydroxylamine)-PEG₄-(*p*-toluenesulfonyl) (3)

Figure S5. ¹H NMR spectrum of **3** (CD₃OD, 298K)

Figure S6. ¹³C DEPTQ-135 NMR spectrum of 3 (CD₃OD, 298K)

(N-t-Butoxycarbonyl, N-methyl-hydroxylamine)-PEG₄-(S-acetyl) (4)

Figure S7. ¹H NMR spectrum of 4 (CD₃OD, 298K)

Figure S8. ¹³C DEPTQ-135 NMR spectrum of 4 (CD₃OD, 298K)

(*N-t*-Butoxycarbonyl, *N*-methyl-hydroxylamine)-PEG₄-(orthopyridyl disulfide) (5)

Figure S9. ¹H NMR spectrum of 5 (CD₃OD, 298K)

Figure S10. ¹³C DEPTQ-135 NMR spectrum of 5 (CD₃OD, 298K)

Figure S11. ¹H NMR spectrum of 6 (D₂O, 298K)

Figure S12. ¹³C DEPTQ-135 NMR spectrum of 6 (D₂O, 298K)

Figure S13. ¹H NMR spectrum of 7 (D₂O, 298K)

Figure S14. ¹³C DEPTQ-135 NMR spectrum of 7 (D₂O, 298K)

 $N-(\alpha-2,6'-\text{sialyl-1-deoxylactitol-1-yl})$ dodecylamine (8)

Figure S15. ¹H NMR spectrum of 8 (CD₃OD, 298K)

Figure S16. ¹³C DEPTQ-135 NMR spectrum of 8 (CD₃OD, 298K)

 $N-(\alpha-2,6'-sialyl-1-deoxylactitol-1-yl)$ hexadecylamine (9)

Figure S17. ¹H NMR spectrum of 9 (MeOD, 298K)

Figure S18. ¹³C DEPTQ-135 NMR spectrum of 9 (CD₃OD, 298K)

N-(α -2,3'-sialyl-1-deoxylactitol-1-yl)dodecylamine (10)

Figure S19. ¹H NMR spectrum of 10 (CD₃OD, 298K)

Figure S20. ¹³C DEPTQ-135 NMR spectrum of 10 (CD₃OD, 298K)

N-(α -2,6'-sialyl-1-deoxylactitol-1-yl)hexadecylamine (11)

Figure S21. ¹H NMR spectrum of 11 (CD₃OD, 298K)

Figure S22. ¹³C DEPTQ-135 NMR spectrum of 11 (DMSO-d6, 298K)

Figure S23. MALDI-TOF spectrum of Mal-PEG₁₀₀-stearate

Composition and	characterization	of NLC
------------------------	------------------	--------

		Control	Maleimide-PEG-NLC		
			3% mol	5% mol	9% mol
PEG-NLC		maleimide	maleimide	maleimide	
Lipid phase	Lipoid S75	100 mg	50 mg	50 mg	50 mg
	Soybean Oil	205 mg	103 mg	103 mg	103 mg
	Suppocire [™] NC	615 mg	308 mg	308 mg	308 mg
Aqueous phase	PEG ₄₀ -stearate	600 mg	270 mg	240 mg	210 mg
	Mal-PEG ₁₀₀ - stearate		30 mg	60 mg	90 mg
	1X PBS	2480 mg	1800 mg	1800 mg	1800 mg

Table S1. Composition of grafted-NLC formulations.

		C ₁₂	C ₁₆
		(8 or 10)	(9 or 11)
	Lecithin compound	Lipoid™ SPC3	Lipoid™ S75
Lipid		11.3 mg	5 mg
phase	Eldew [™] SL-205	44.6 mg	32.6 mg
	Suppocire [™] NC	14.8 mg	10.9 mg
	Glycolipid	8 or 10	9 or 11
Aqueous		28 mg	8.3 mg
phase	Glycerol	1000 mg	1000 mg
	1X PBS	1800 mg	1800 mg

 Table S2. Composition of glycolipid NLC formulations.

Particle	Average hydrodynamic diameter (nm)	PDI	Zeta potential (mV)
	96±7	0.22±0.01	-21±4
6'-SL-g-NLC	102±1	0.24±0.01	-27±1
	104±1	0.20±0.01	-27±1
3'-SL-g-NLC	102±1	0.22±0.01	-26±0.4
	101±1	0.23±0.01	-27±0.6
	107±1	0.20±0.01	-28±0.6
6'-SL-C16-NLC	62±1	0.20±0.02	-41±4
3'-SL-C16-NLC	84±2	0.17±0.01	-42±5

Table S3. Characteristics of grafted NLC and glycolipid NLC formulations after 2 months storage at 4°C.