Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting information

Identification and synthesis of 4'-ortho-aminobenzoyl ascarosides

as sex pheromones of gonochoristic Caenorhabditis nigoni

Célia P. Bergame^{a,†}, Chuanfu Dong^{b,†}, Siva Bandi^a, Marie-Désirée Schlemper-Scheidt^a, Sylvain Sutour^c, and Stephan H. von Reuß^{a,b,c}*

	Content	Pages
Tab. S1	ESI-HR-MS/MS data of 4'-ortho-aminobenzoyl ascarosides	2
Fig. S1a-d	NMR spectra of C. nigoni JU1422 RP-C18 fractions	3 – 6
Fig. S2a-c	ESI-(–)-HR-MS/MS spectra of 4'-ortho-aminobenzoyl ascarosides	7 – 9
Fig. S3	ESI-(+)-HR-MS/MS spectra of 4'-ortho-aminobenzoyl ascarosides	10
Fig. S4a-c	EICs for <i>m/z</i> 250.1074 showing homologous AB-ascarosides	11 – 13
Fig. S5	Phylogeny of analyzed Caenorhabditis species	14
Fig. S6	¹ H NMR analysis of isolated AB-asc-C5 (6a)	15
Fig. S7a-h	dqf-COSY spectra of isolated AB-asc-C5 (6a) and AB-asc-C6 (6b)	16 – 23
Fig. S8	Comparative HPLC analysis of isolated and synthetic AB-asc-C5 (6a)	24
Fig. S9	Comparative ¹ H NMR analysis of isolated and synthetic AB-asc-C5 (6a)	25
Fig. S10	AB-asc-C5 (6a) retention assay with C. nigoni males	26
Fig. S11	AB-asc-C5 (6a) retention assay with C. nigoni females	27
Fig. S12	AB-asc-C5 (6a) retention assay with C. tropicalis hermaphrodites	28
Fig. S13-100	NMR spectra of synthetic and isolated compounds	29 – 115

	Side	[M – H]⁻	calc m/z	obs m/z	Δ (ppm)	RT
	chain		[M – H]⁻	[M – H]⁻		[min]
§abas#5	C3	$C_{16}H_{20}NO_{7}^{-}$	338.1245	338.1252	-1.9	17.58
abas#11	C4	$C_{17}H_{22}NO_7^{-1}$	352.1402	352.1407	-1.3	18.00
abas#9	C5	$C_{18}H_{24}NO_{7}^{-}$	366.1558	366.1557	0.3	18.73
abas#12	C6	$C_{19}H_{26}NO_7^-$	380.1715	380.1708	1.9	19.67
abas#7	ΔC7	$C_{20}H_{26}NO_7^-$	392.1715	392.1720	-1.3	20.53
abas#1	C7	$C_{20}H_{28}NO_7^-$	394.1871	394.1866	1.4	20.81
abas#13	ΔC8	$C_{21}H_{28}NO_7^-$	406.1871	nd		
abas#14	C8	$C_{21}H_{30}NO_7^-$	408.2028	408.2033	-1.2	22.14
abas#3	ΔC9	$C_{22}H_{30}NO_7^-$	420.2028	420.2025	0.7	22.90
abas#10	С9	$C_{22}H_{32}NO_7^-$	422.2184	422.2180	1.1	23.50
abas#15	ΔC10	$C_{23}H_{32}NO_7^-$	434.2184	434.2193	-2.0	24.29
abas#16	C10	$C_{23}H_{34}NO_7^{-}$	436.2341	436.2334	1.4	24.98
abas#17	ΔC11	$C_{24}H_{34}NO_7^{-1}$	448.2341	448.2351	-2.4	25.79
abas#18	C11	$C_{24}H_{36}NO_{7}^{-}$	450.2497	450.2493	1.0	26.53
abas#2	C6-MK	$C_{19}H_{26}NO_{6}^{-}$	364.1766	nd*		
abas#6	C6-OH	$C_{19}H_{26}NO_{6}^{-}$	366.1922	nd*		

 Table S1a. ESI-(-)-HR-MS/MS data of 4'-ortho-aminobenzoyl ascarosides (AB-asc-C#, abas).

*: C. nigoni is devoid of the asc-C6-MK (ascr#2) and asc-C6-OH (ascr#6) building blocks [1].

	Side	[M + H]⁺	calc m/z	obs m/z	Δ (ppm)	RT
	chain		[M + H]⁺	[M + H]⁺		[min]
§abas#5	C3	$C_{16}H_{22}NO_7^+$	340.1391	340.1388	-0.9	17.58
abas#11	C4	$C_{17}H_{24}NO_{7}^{+}$	354.1547	354.1541	-1.6	18.00
abas#9	C5	$C_{18}H_{26}NO_7^+$	368.1704	368.1707	0.8	18.73
abas#12	C6	$C_{19}H_{28}NO_7^+$	382.1860	382.1866	1.6	19.67
abas#7	ΔC7	$C_{20}H_{28}NO_7^+$	394.1860	394.1855	-1.3	20.53
abas#1	C7	$C_{20}H_{30}NO_7^+$	396.2017	396.2021	1.0	20.81
abas#13	ΔC8	$C_{21}H_{30}NO_7^+$	408.2017	nd		
abas#14	C8	$C_{21}H_{32}NO_7^+$	410.2173	410.2178	1.2	22.14
abas#3	ΔC9	$C_{22}H_{32}NO_7^+$	422.2173	422.2169	-0.9	22.90
abas#10	C9	$C_{22}H_{34}NO_7^+$	424.2330	424.2333	0.7	23.50
abas#15	ΔC10	$C_{23}H_{34}NO_7^+$	436.2330	436.2341	2.5	24.29
abas#16	C10	$C_{23}H_{36}NO_{7}^{+}$	438.2486	438.2482	-0.9	24.98
abas#17	ΔC11	$C_{24}H_{36}NO_{7}^{+}$	450.2486	450.2489	0.7	25.79
abas#18	C11	$C_{24}H_{38}NO_7^+$	452.2643	452.2640	-0.7	26.53
abas#2	C6-MK	$C_{19}H_{28}NO_{6}^{+}$	366.1911	nd*		
abas#6	C6-OH	$C_{19}H_{30}NO_{6}^{+}$	368.2068	nd*		

 Table S1b. ESI-(+)-HR-MS/MS data of 4'-ortho-aminobenzoyl ascarosides (AB-asc-C#, abas).

*: *C. nigoni* is devoid of the asc-C6-MK (ascr#2) and asc-C6-OH (ascr#6) building blocks [1].

[1] C. Dong, D. K. Reilly, C. Bergame, F. Dolke, J. Srinivasan, S. H. von Reuß, J Org Chem., 2018, 83, 7109.

Figure S1a: *dqf*-COSY spectrum of *C. nigoni* JU1422 RP-C18 fraction eluted with 70% methanol (400 MHz, in CD₃OD).

Figure S1b: Section of the *dqf*-COSY spectrum (Figure S1a) of the *C. nigoni* JU1422 RP-C18 fraction eluted with 70% methanol (400 MHz, in CD₃OD) showing signals for basic ascarosides (ascr) and 4'-substituted ascarosides (abas).

4

Figure S1c: Section of the *dqf*-COSY spectrum (Figure S1a) of the *C. nigoni* JU1422 RP-C18 fraction eluted with 70% methanol (400 MHz, in CD₃OD) showing signals for basic ascarosides (ascr) and 4'-substituted ascarosides (abas).

Figure S1d: Section of the *dqf*-COSY spectrum of the *C. nigoni* JU1422 RP-C18 fraction eluted with 70% methanol (400 MHz, in CD₃OD) showing signals for an *ortho*-aminobenzoyl unit.

Figure S2a: ESI-(–)-HR-MS/MS spectra of 4'-ortho-aminobenzoyl ascarosides (AB-asc-Cx; abas).

Figure S2b: ESI-(–)-HR-MS/MS spectra of 4'-ortho-aminobenzoyl ascarosides (AB-asc-C#; abas).

Figure S2c: ESI-(–)-HR-MS/MS spectra of 4'-ortho-aminobenzoyl ascarosides (AB-asc-C#; abas).

Figure S3: ESI-(+)-HR-MS (top) and MS/MS spectra (bottom) of AB-asc-C5 (6a, abas#9).

Figure S4a: Extracted ion chromatograms for m/z 250.1074 $[C_{13}H_{16}NO_4]^+$ showing homologous 4'ortho-aminobenzoyl ascarosides (AB-asc-Cx, abas). *: 2-Methylthio-n6-isopentenyladenine at m/z250.1121 $[M+H]^+$ for $C_{11}H_{16}N_5S^+$ showing fragments at m/z 182.0495 for $C_6H_8N_5S^+$ and 134.0461 for $C_5H_4N_5^+$.

Figure S4b: Extracted ion chromatograms for m/z 250.1074 $[C_{13}H_{16}NO_4]^+$ showing homologous 4'ortho-aminobenzoyl ascarosides (AB-asc-Cx, abas). *: 2-Methylthio-n6-isopentenyladenine at m/z250.1121 $[M+H]^+$ for $C_{11}H_{16}N_5S^+$ showing fragments at m/z 182.0495 for $C_6H_8N_5S^+$ and 134.0461 for $C_5H_4N_5^+$.

Figure S4c: Extracted ion chromatograms for m/z 250.1074 $[C_{13}H_{16}NO_4]^+$ showing homologous 4'ortho-aminobenzoyl ascarosides (AB-asc-Cx, abas). *: 2-Methylthio-n6-isopentenyladenine at m/z250.1121 $[M+H]^+$ for $C_{11}H_{16}N_5S^+$ showing fragments at m/z 182.0495 for $C_6H_8N_5S^+$ and 134.0461 for $C_5H_4N_5^+$.

Figure S5: Phylogeny of analyzed *Caenorhabditis* species from the Elegans group [1, 2] and occurrence of homologous 4'-*ortho*-aminobenzoyl ascarosides (AB-asc-Cx, abas) as deduced from extracted ion chromatograms for m/z 250.1074 [C₁₃H₁₆NO₄]⁺; androdioecious species underlined.

<u> </u>	C3, Δ C9, C9 traces
C. nigoni	C3 - C11
<u>C. briggsae</u>	none
C. sinica	none
C. remanei	none
L <u>C. tropicalis</u>	C3 - C11
C. wallacei	C7 traces
┌ C. doughertyi	none
^L C. brenneri	C3, C7 traces

K. C. Kiontke, M. A. Félix, M. Ailion, M. V. Rockman, C. Braendle, J. B. Pénigault, D. H. Fitch, BMC Evol Biol., 2011, 11, 339.

[2] M. A. Félix, C. Braendle, A. D. Cutte, *PLoS One*, 2014, **9**, e94723.

Figure S6: Comparative analysis of ¹H NMR spectra showing (a): a mixture of AB-asc-C5 (**6a**) and asc-C11 (**1b**) isolated from *C. nigoni*, (b): AB-asc-C6 (**6b**) isolated from *C. nigoni*, and (c): synthetic asc-C11 (**1b**).

Figure S7a: Section of the *dqf*-COSY spectrum of AB-asc-C5 (6a, abas#9) and asc-C11 (1b, ascr#18) isolated from *C. nigoni*.

Figure S7b: Section of the *dqf*-COSY spectrum of AB-asc-C6 (6b, abas#12) from *C. nigoni*.

Figure S7c: Section of the *dqf*-COSY spectrum of AB-asc-C5 (6a, abas#9) and asc-C11 (1b, ascr#18) from *C. nigoni* showing signals for a 4'-substituted ascaroside.

Figure S7d: Section of the *dqf*-COSY spectrum of AB-asc-C6 (6b, abas#12) from *C. nigoni* showing signals for a 4'-substituted ascaroside.

Figure S7e: Section of the *dqf*-COSY spectrum of AB-asc-C5 (6a, abas#9) and asc-C11 (1b, ascr#18) from *C. nigoni* showing signals for the C5 agylcone.

Figure S7f: Section of the *dqf*-COSY spectrum of AB-asc-C6 (**6b**) from *C. nigoni* showing signals for the C6 agylcone.

Figure S7g: Section of the daf-COSY spectrum of AB-asc-C5 (6a) from C. nigoni showing signals for the ortho-aminobenzoyl unit.

Figure S7h: Section of the *dqf*-COSY spectrum of AB-asc-C6 (6b) from *C. nigoni* showing signals for the *ortho*-aminobenzoyl unit.

Figure S8: Comparative HPLC-ESI-(–)-HR-MS analysis of enriched AB-asc-C5 (**6a** abas#9) from *C. nigoni* and the synthetic material along with coinjection of a 1:1 mixture of the natural and the synthetic 4-AB-asc-C5.

Figure S9: Comparative analysis of ¹H NMR (400 MHz) spectra of AB-asc-C5 (6a) enriched from *C. nigoni* JU1422, the synthetic AB-asc-C5 (6a) standard, along with a mixture of the natural and synthetic material showing their identify.

Figure S10: Retention assay with synthetic AB-asc-C5 (6a, abas#9) and C. nigoni JU1422 males.

Figure S11: Retention assay with synthetic AB-asc-C5 (6a, abas#9) and C. nigoni JU1422 females.

Figure S12: Retention assay with synthetic AB-asc-C5 (6a, abas#9) and C. tropicalis JU1373 hermaphrodites.

Figure S13: ¹H NMR (400 MHz, CD₃OD) of 1-*O*-methyl-6-deoxy- α -L-*arabino*-hexopyranoside (8).

Figure S14: ¹H NMR (400 MHz, CDCl₃) of 1-*O*-methyl-6-deoxy-2,3-(*O*-isopropylidene)-α-L-*arabino*-hexopyranoside (**9**).

Figure S15: ¹H NMR (400 MHz, CDCl₃) of 1-*O*-methyl-6-deoxy-2,3-*O*-(isopropylidene)-4-*tert*-butyldiphenylsilyl-α-L-*arabino*-hexopyranoside (**10**).

Figure S16: ¹H NMR (400 MHz, CDCl₃) of *O*-methyl-6-deoxy-4-*tert*-butyldiphenylsilyl-α-L-*arabino*-hexopyranoside (**11**).

Figure S17: ¹H NMR (400 MHz, CDCl₃) 1-*O*-methyl-6-deoxy-2,3-(*O*-sulfite)-4-*tert*-butyldiphenylsilyl- α -L-*arabino*-hexopyranoside (**12**).

Figure S19: ¹H NMR (400 MHz, CDCl₃) of 1-*O*-methyl-4-*O*-tert-butyldiphenylsilyl-3,6-dideoxy-α-L-arabino-hexopyranoside (**14**).

Figure S20: ¹H NMR (400 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-tert-butyldiphenylsilyl-3,6-dideoxy-α-L-arabino-hexopyranoside (**15a**).

Figure S21:¹H NMR (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-benzyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15b**).

Figure S22: ¹³C NMR (150 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-benzyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15b**).

Figure S23: *dqf*-COSY (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-benzyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15b**).

Figure S24: HSQC (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-benzyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15b**).

Figure S25: ¹H NMR (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-allyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15c**).

Figure S26: ¹³C NMR (150 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-allyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15c**).

Figure S27: *dqf*-COSY (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-allyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15c**).

Figure S28: HSQC (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-4-*O*-allyl-3,6-dideoxy-α-L-*arabino*-hexopyranoside (**15c**).

Figure S29: ¹H NMR (400 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-tert-butyldiphenylsilyl-3,6-dideoxy-α-L-arabino-hexopyranose (**16a**).

Figure S30: ¹H NMR (600 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-benzyl 3,6-dideoxy-α-L-*arabino*-hexose (**16b**).

Figure S31:¹³C NMR (150 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-benzyl 3,6-dideoxy-α-L-*arabino*-hexose (**16b**).

Figure S32: dqf-COSY (600 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-benzyl 3,6-dideoxy-α-L-*arabino*-hexose (**16b**).

Figure S33: HSQC (600 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-benzyl 3,6-dideoxy-α-L-*arabino*-hexose (**16b**).

Figure S34: ¹H NMR (600 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-allyl 3,6-dideoxy-α-L-*arabino*-hexose (**16c**).

Figure S35: ¹³C NMR (150 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-allyl 3,6-dideoxy-α-L-*arabino*-hexose (**16c**).

Figure S36: dqf-COSY (600 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-allyl 3,6-dideoxy-α-L-*arabino*-hexose (**16c**).

Figure S37: HSQC (600 MHz, CDCl₃) of 2-*O*-benzoyl-4-*O*-allyl 3,6-dideoxy-α-L-*arabino*-hexose (**16c**).

Figure S38: ¹H NMR (600 MHz, CDCl₃) of 1-*O*-methyl-6-deoxy-2,3-(*O*-benzylidene)- α -L-*arabino*-hexopyranoside (**17**).

Figure S39: ¹³C NMR (150 MHz, CDCl₃) of 1-*O*-methyl-6-deoxy-2,3-(*O*-benzylidene)-α-L-*arabino*-hexopyranoside (**17**).

Figure S40: dqf-COSY (600 MHz, CDCl₃) of 1-*O*-methyl-6-deoxy-2,3-(*O*-benzylidene)-α-L-*arabino*-hexopyranoside (**17**).

Figure S41: HSQC (600 MHz, CDCl₃) of 1-*O*-methyl-6-deoxy-2,3-(*O*-benzylidene)-α-L-*arabino*-hexopyranoside (**17**).

Figure S42: ¹H NMR (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-3-bromo-3,6-dideoxy-*altro*-hexopyranoside (18).

Figure S43: ¹³C NMR (150 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-3-bromo-3,6-dideoxy-*altro*-hexopyranoside (18).

Figure S44: dqf-COSY (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl-3-bromo-3,6-dideoxy-*altro*-hexopyranoside (**18**).

Figure S45: HSQC of (600 MHz, CDCl₃) of 1-O-methyl-2-O-benzoyl-3-bromo-3,6-dideoxy-altro-hexopyranoside (18).

Figure S46: ¹H NMR (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl 3,6-dideoxy-α-L-*arabino*-hexopyranoside (**19**).

Figure S47: ¹³C NMR (150 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl 3,6-dideoxy- α -L-*arabino*-hexopyranoside (**19**).

Figure S48: dqf-COSY (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl 3,6-dideoxy-α-L-*arabino*-hexopyranoside (**19**).

Figure S49: HSQC (600 MHz, CDCl₃) of 1-*O*-methyl-2-*O*-benzoyl 3,6-dideoxy-α-L-*arabino*-hexopyranoside (**19**).

Figure S50: ¹H NMR (400 MHz, CDCl₃) of (5*R*)-5-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-α-L-arabino-hexopyranosyl)oxy]-1-hexene (**20**).

Figure S51: ¹H NMR (400 MHz, CDCl₃) of (4*R*)-4-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-pentanoic acid (**21**).

Figure S52: ¹³C NMR (100 MHz, CDCl₃) of (4*R*)-4-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-pentanoic acid (**21**).

Figure S53: ¹H NMR (400 MHz, CDCl₃) of (4*R*)-4-[(4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-pentanoic acid (**22**).

Figure S54: ¹H NMR (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-pentanoate (**23**).

Figure S56: ¹³C NMR (100 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-pentanoate (**23**).

Figure S57: ¹H NMR (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-pentanoate (**24a**).

Figure S58: ¹H NMR (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**24b**).

Figure S59: ¹³C NMR (100 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (24b).

Figure S60: *dqf*-COSY (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**24b**).

Figure S61: HSQC (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (24b).

Figure S62: ¹H NMR (400 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy- α -L-arabino-hexopyranosyl)oxy]-1-butyne (25).

Figure S63: ¹³C NMR (100 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-1-butyne (25).

Figure S64: *dqf*-COSY (400 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzoyl-4'-*O*-*tert*-butyldiphenylsilyl-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-butyne (**25**).

Figure S65: HSQC (400 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy- α -L-arabino-hexopyranosyl)oxy]-1-butyne (25).

Figure S66: ¹H NMR (400 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (26).

Figure S67: ¹³C NMR (100 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (26).

Figure S68: *dqf*-COSY (100 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzoyl-4'-*O*-*tert*-butyldiphenylsilyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (26).

Figure S69: HSQC (400 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzoyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (26).

Figure S70: ¹H NMR (400 MHz, CDCl₃) of (3*R*)-3-[(4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (**27**).

Figure S71: ¹³C NMR (100 MHz, CDCl₃) of (3*R*)-3-[(4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (27).

Figure S72: *dqf*-COSY (400 MHz, CDCl₃) of (3*R*)-3-[(4'-*O*-*tert*-butyldiphenylsilyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (**27**).

Figure S73: HSQC (400 MHz, CDCl₃) of (3*R*)-3-[(4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (27).

Figure S74: ¹H NMR (400 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (28).

Figure S75: ¹³C NMR (100 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (28).

Figure S76: *dqf*-COSY (400 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzyl-4'-*O*-*tert*-butyldiphenylsilyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (28).

Figure S77: HSQC (400 MHz, CDCl₃) of (*3R*)-3-[(2'-*O*-benzyl-4'-*O*-tert-butyldiphenylsilyl-3',6'-dideoxy-L-arabino-hexopyranosyl)oxy]-1-butene (28).

Figure S78: ¹H NMR (400 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (29).

Figure S79: ¹³C NMR (100 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (29).

Figure S80: dqf-COSY (400 MHz, CDCl₃) of (3*R*)-3-[(2'-O-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (**29**).

Figure S81: HSQC (400 MHz, CDCl₃) of (3*R*)-3-[(2'-*O*-benzyl-3',6'-dideoxy-L-*arabino*-hexopyranosyl)oxy]-1-butene (**29**).

Figure S82: ¹H NMR (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentanoate (**30a**).

Figure S83: ¹³C NMR (100 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentanoate (**30a**).

Figure S84: *dqf*-COSY (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentanoate (**30a**).

Figure S85: HSQC (400 MHz, CDCl₃) of benzyl (4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentanoate (**30a**).

Figure S86: ¹H NMR (400 MHz, CDCl₃) of benzyl (2*E*,4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**30b**).

Figure S87: ¹³C NMR (100 MHz, CDCl₃) of benzyl (2*E*,4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**30b**).

Figure S88: dqf-COSY (400 MHz, CDCl₃) of benzyl (2*E*,4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-arabino-hexopyranosyl)oxy]-2-pentenoate (**30b**).

Figure S89: ¹³C NMR (400 MHz, CDCl₃) of benzyl (2*E*,4*R*)-4-[(2'-*O*-benzyl-4'-(2-(benzyloxy)carbonyl)amino)benzoyl-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**30b**).

Figure S90: ¹H NMR (400 MHz, CD₃OD) of (4*R*)-4-[(4'-*O*-(2-amino-benzoyl)-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (6).

Figure S91: ¹³C NMR (100 MHz, CD₃OD) of (4*R*)-4-[(4'-O-(2-amino-benzoyl)-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (6).

Figure S92: *dqf*-COSY (400 MHz, CD₃OD) of (4*R*)-4-[(4'-*O*-(2-amino-benzoyl)-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (6).

Figure S93: HSQC (400 MHz, CD₃OD) of (4*R*)-4-[(4'-*O*-(2-amino-benzoyl)-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (6).
Figure S94: ¹H NMR (400 MHz, CD₃OD) of (4*R*)-4-[(4'-*O*-(2-methylamino-benzoyl)-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (**31**).

Figure S95: *dqf*-COSY (400 MHz, CD₃OD) of (4*R*)-4-[(4'-*O*-(2-methylamino-benzoyl)-3',6'-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (**31**).

Figure S96: HSQC (400 MHz, CD₃OD) of (4*R*)-4-[(4'-O-(2-methylamino-benzoyl)-3',6'-dideoxy- α -L-*arabino*-hexopyranosyl)oxy]-2-pentanoic acid (**31**).

Figure S97: ¹H NMR Spectrum (400 MHz, CDCl₃) of *N*-Cbz anthranilic acid.

Figure S98: ¹H NMR spectrum (400 MHz, CD₃OD) of AB-asc-C5 (**6a**, n = 2) isolated from *C. nigoni* JU1422.

Figure S99: dqf-COSY spectrum (400 MHz, CD₃OD) of AB-asc-C5 (**6a**, n = 2) isolated from *C. nigoni* JU1422.

Figure S100: *dqf*-COSY spectrum (400 MHz, CD₃OD) of AB-asc-C6 (**6b**, n = 3) isolated from *C. nigoni* JU1422.