Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information (SI) for for Organic & Biomolecular Chemistry

Supporting Information

A Novel Acenaphthoimidazolyidene Oxazolinic Palladium Complex and its Efficient Catalysis in Suzuki Cross-Coupling Reactions of N-Acyl-Glutarimides via N-C Cleavage

Qinyue Deng*a, Tenglong Lina, Xiaohu Liua, Han Shaoa, Xiaojun Lyua, Xiaoting Wub, Fei Xiong*a, Wanfang Li*a

[a] School of Materials and Chemistry, University of Shanghai for Science and Technology,334 Jungong Road, Shanghai 200093 (P. R. China)

[b] Central Analytical Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

*E-mail: dqy1991@usst.edu.cn (Qingyue Deng); fxiong@usst.edu.cn (Fei Xiong); lwf@usst.edu.cn (Wanfang Li)

Table of Contents

1.General Information
2.Synthetic procedures
2.1 Synthesis of the catalysts
2.2 Gerneral procedure for Pd-catalyzed Suzuki–Miyaura Cross-coupling reactions of Amides.
2.3 Gerneral procedure for the N-acyl-glutarimides synthesis4
3.Optimization of Suzuki-Miyaura cross-coupling of N-acyl-glutarimides
4. Isolated compounds data
5 Crystal structure information for Pd-NHC complex 3a11
6 ¹ H NMR, ¹³ C NMR and ESI-MS spectra for important compounds12
7. References

General Information

All commercial reagents were used directly without further purification, unless otherwise stated. Dry dimethyl sulfoxide (DMSO) was purchased from Alfa Aesar, stored over 4 Å molecular sieves, and handled under N₂. 1,4-dioxane, acetonitrile and 2-Propanol ('PrOH) were distilled from anhydrous calcium chloride prior to use. Toluene, and tetrahydrofuran (THF) were distilled from sodium/benzophenone prior to use. *t*-BuOK was purchased from Acros. All reaction vials (50 mL) were purchased from Beijing Synthware Glass. CDCl₃ was purchased from Cambridge Isotope Laboratories. ¹H, ¹³C NMR were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. The chemical shifts (δ) for ¹H are given in parts per million (ppm) referenced to the residual proton signal of the deuterated solvent (CHCl₃ at δ 7.26 ppm); coupling constants are expressed in hertz (Hz). ¹³C NMR spectra were referenced to the carbon signal of CDCl₃ (77.0 ppm). The following abbreviations are used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, q = quartet. ESI-MS spectra were recorded on an Aglient 7250& JEOL-JMS-T100LP AccuTOF instrument.

2.Synthetic procedures

2.1 Synthesis of the catalysts.

Scheme S1. Synthesis of Pd-NHC complex 3.

Scheme S2. Synthesis of Pd-NHC complex 4.

Acenaphthoimidazolylidene palladacycle complex 3 was prepared according to literature procedure^[S1]. Under an N₂ atmosphere, a mixture of acenaphthoimidazolium (or imidazolium) chlorides^[S2] (0.55 mmol), PdCl₂ (0.5 mmol), K₂CO₃ (2.0 mmol), 2-phenyl-2-oxazoline (0.75 mmol) was stirred in anhydrous THF (2.0 mL) under reflux for 20 h. After cooling down, the mixture was diluted with CH_2Cl_2 , filtered. The product was loaded directly on a silica gel column and purified by flash chromatography to give a yellow solid.

3 (65%): To our delight, yellow crystals of palladacycle **1a**, which are suitable for single crystal diffraction analysis, were obtained by slow diffusion of petroleum ether into a dichloromethane solution of complex **1a** for 3d. The data can be obtained from The Cambridge Crystallographic Data Centre (2101485). ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.45 (d, *J* = 7.4 Hz, 2H), 7.70 (t, *J* = 8.1 Hz, 4H), 7.54 (d, *J* = 7.7 Hz, 4H), 7.40 – 7.31 (m, 3H), 7.04 (t, *J* = 7.7 Hz, 2H), 6.81 (d, *J* = 7.0 Hz, 2H), 4.35 (t, *J* = 9.8 Hz, 2H), 4.00 (t, *J* = 9.8 Hz, 2H), 3.48 – 3.34 (m, 4H), 1.38 (d, *J* = 6.5 Hz, 12H), 0.92 (d, *J* = 6.8 Hz, 12H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 165.86, 163.09, 147.58, 140.32, 134.00, 131.78, 130.48, 129.80, 129.53, 129.17, 127.90, 127.23, 126.12, 125.10, 124.67, 122.00, 67.55, 53.94, 28.86, 25.75, 24.14. HR-MS (ESI): *m/z* 800.2594 (calcd, [M-Cl] ⁺); 800.2599 (found, [M-Cl] ⁺).

4 (67%): ¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.33 (d, J = 7.8 Hz, 2H), 7.60 (t, J = 7.8 Hz, 2H), 7.40 (dd, J = 18.5, 7.7 Hz, 5H), 7.11 (d, J = 4.6 Hz, 4H), 4.30 (t, J = 9.8 Hz, 2H), 3.94 (t, J = 9.8 Hz, 2H), 3.22 – 3.07 (m, 4H), 1.38 (s, 12H), 1.10 (d, J = 6.8 Hz, 12H). ¹³C NMR (CDCl₃,101 MHz, 298 K): δ 165.76, 156.92, 147.08, 135.18, 131.79, 130.11, 129.75, 127.97, 124.92, 123.94, 67.40, 54.14, 28.71, 26.38, 22.90.

2.2 General procedure for Pd-catalyzed Suzuki–Miyaura Cross-coupling reactions of Amides.

To a 50 mL schlenk tube containing base (0.6 mmol), catalyst **3** (0.5 mol%) and boronic acids (0.6 mmol) purged with N_2 (3 times) and Toluene (2 mL) was injected via a syringe. The amides (0.4 mmol) were added subsequently. (Note: if amides were solid, it was introduced before adding Toluene). The result mixture was then heated at 80 °C for 5 h. After cooling to room temperature, a small amount of silica gel was added, and the solvent was removed in vacuo. The product was loaded directly on a silica gel column and purified by flash chromatography to provide the desired product.

Scheme S3. General procedure for Pd-catalyzed Suzuki-Miyaura Cross-coupling

2.3 General procedure for the N-acyl-glutarimides synthesis.

Scheme S4. General procedure for the N-acyl-glutarimide synthesis

An oven-dried round-bottomed flask (100 mL) equipped with a stir bar was charged with amine (8.84 mmol, 1.0 equiv.), triethylamine(typically, 2.0 equiv.), DMAP(typically, 0.25 equiv.), and dichloromethane (typically, 50 mL), placed under a positive pressure of nitrogen, and subjected to three evacuation/backfill-ing cycles under high vacuum.87 Acyl chloride (typically, 1.1 equiv.) was added dropwise to the reaction mixture with vigorous stirring at 0 °C, and the reaction mixture was stirred overnight at room temperature. After the indicated time, the reaction mixture was diluted with Et₂O (20 mL) and filtered. The organic layer was washed with HCl (1.0 N, 30 mL) and brine (30 mL), dried, and concentrated. Unless stated otherwise, the crude product was purified by recrystallization (toluene) to give analytically pure product. ^[S3]

3.Optimization of Suzuki-Miyaura cross-coupling of N-acyl-glutarimides.

		+	_B(OH) ₂ n mol% Base, Tol	3a ► luene	
Entry	[Cat.]/mol%	Base	Solvent	T/ºC	Yield/%
1	2	K ₂ CO ₃	THF	80	85
2	2	K ₃ PO ₄	THF	80	95
3	2	Na ₂ CO ₃	THF	80	58

4	2	KOAc	THF	80	71
5	2	КОН	THF	80	45
6	2	TEA	THF	80	2
7	2	DBU	THF	80	ND
8	2	'BuOK	THF	80	33
9	2	K ₃ PO ₄	CH ₃ CN	80	5
10	2	K ₃ PO ₄	Dioxane	80	98
11	2	K ₃ PO ₄	^{<i>i</i>} PrOH	80	1
12	2	K ₃ PO ₄	DMSO	80	ND
13	2	K ₃ PO ₄	Toluene	80	99
14	2	K ₃ PO ₄	Toluene	75	95
15	2	K ₃ PO ₄	Toluene	65	83
16	2	K ₃ PO ₄	Toluene	45	ND
17	2	K ₃ PO ₄	Toluene	25	ND
18	1	K ₃ PO ₄	Toluene	80	92
19	0.5	K ₃ PO ₄	Toluene	80	92
20	0.3	K ₃ PO ₄	Toluene	80	90
21	0.2	K ₃ PO ₄	Toluene	80	89
22	0.1	K ₃ PO ₄	Toluene	80	82
23	0.05	K ₃ PO ₄	Toluene	80	57
24 ^c	2	K ₃ PO ₄	Toluene	80	95
25^d	2	K ₃ PO ₄	Toluene	80	98
26 ^d	0.5	K ₃ PO ₄	Toluene	80	98
27 ^e	0.5	K ₃ PO ₄	Toluene	80	92
28 ^f	0.5	K ₃ PO ₄	Toluene	80	82
29 ^g	0.5	K ₃ PO ₄	Toluene	80	66
30 ^{<i>h</i>}	0.5	K ₃ PO ₄	Toluene	80	61
31 ^{<i>i</i>}	0.5	K ₃ PO ₄	Toluene	80	72

^{*a*} Conditions: N-acyl-glutarimide (0.4 mmol, 1.0 equiv.), phenylboronic acid (0.6 mmol, 1.5 equiv.), Base (0.6 mmol, 1.5 equiv.) were stirred in 2 mL solvent under N₂ atmosphere for 15 h. ^{*b*} Isolated yield.^{*c*} 10 h.^{*d*} 5 h. ^{*e*} 4 h. ^{*f*} 3 h. ^{*g*} 2 h. ^{*h*} 1 h. ^{*i*} 5 h in air.

4. Isolated compounds data

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.82 (d, J = 32.0 Hz, 4H), 7.56 (t, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 4H); ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.95, 137.79, 132.63, 130.26, 128.49.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.90 -7.79 (m, 2H), 7.63 -7.57 (m, 1H), 7.51-7.38 (m, 3H), 7.37-7.23 (m, 3H), 2.36 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 198.64, 133.14, 131.01, 130.25, 130.14, 128.53, 128.48, 125.21, 19.98.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.87 – 7.77 (m, 2H), 7.68 – 7.56 (m, 3H), 7.54 – 7.47 (m, 2H), 7.45 – 7.36 (m, 2H), 2.45 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.95, 138.13, 137.74, 137.61, 133.17, 132.31, 130.43, 130.02, 128.21, 128.06, 127.34, 21.34.

¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* 7.83 – 7.76 (m, 2H), 7.75 – 7.70 (m, 2H), 7.62 – 7.54 (m, 1H), 7.51 – 7.44 (m, 2H), 7.30 – 7.26 (m, 2H), 2.45 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* 196.54, 143.25, 137.99, 134.92, 132.16, 130.32, 129.94, 128.99, 128.22, 21.66.

9a^[S4]:

¹H NMR (CDCl₃, 400 MHz, 298 K):δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.85 (dd, *J* = 8.1, 1.4 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.66 (dd, *J* = 7.4, 1.8 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.50 (dt, *J* = 9.9, 7.8 Hz, 4H), 7.45 – 7.39 (m, 1H)..¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.37, 145.26, 140.01, 137.80, 136.27, 132.39, 130.74, 130.02, 128.99, 128.33, 128.20, 127.32, 126.99.

9b^[S4]:

¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* 7.83 – 7.75 (m, 4H), 7.61 – 7.55 (m, 1H), 7.53 – 7.45 (m, 4H), 1.37 (s, 9H).¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* 196.46, 156.19, 137.97, 134.85, 132.17, 130.15, 129.98, 128.21, 125.25, 35.12, 31.16.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.86 – 7.79 (m, 2H), 7.75 (dq, *J* = 9.1, 2.1 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.49 – 7.42 (m, 2H), 6.99 – 6.92 (m, 2H), 3.87 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.52, 163.21, 138.25, 132.53, 131.87, 130.11, 129.69, 128.16, 113.53, 55.46.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.87 – 7.80 (m, 2H), 7.77 (dt, *J* = 7.0, 1.4 Hz, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.45 (m, 2H), 7.00 – 6.93 (m, 2H), 4.14 (q, *J* = 7.0 Hz, 2H), 1.47 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.58, 162.69, 138.37, 132.58, 131.84, 129.97, 129.72, 128.18, 114.01, 63.79, 14.70.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.92 – 7.84 (m, 2H), 7.83 – 7.75 (m, 2H), 7.66 – 7.58 (m, 1H), 7.51 (dd, *J* = 8.3, 6.9 Hz, 2H), 7.23 – 7.14 (m, 2H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.26, 166.63, 137.47, 132.69, 132.60, 132.44, 129.85, 128.33, 115.54, 115.32.¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ -105.97 (ddd, *J* = 13.6, 8.4, 5.4 Hz).

¹H NMR (CDCl₃, 500 MHz, 298 K): δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.83 – 7.78 (m, 2H), 7.76 (d, *J* = 8.1 Hz, 2H), 7.66 – 7.60 (m, 1H), 7.51 (t, *J* = 7.8 Hz, 2H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.53, 140.76, 136.76, 133.58, 133.09, 130.14, 130.11, 128.54, 125.41, 125.38, 125.34.¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ - 63.01.

12^[S4]

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.10 (dq, J = 7.8, 0.8 Hz, 1H), 8.01 (dt, J = 8.2, 1.2 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.90 – 7.84 (m, 2H), 7.63 – 7.56 (m, 2H), 7.55 – 7.44 (m, 5H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 198.00, 138.29, 136.33, 133.20, 131.24, 130.38, 128.42, 128.38, 127.74, 127.23, 126.43, 125.67, 124.31.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.28 (t, *J* = 1.2 Hz, 1H), 7.97 – 7.85 (m, 6H), 7.64 – 7.49 (m, 5H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.74, 137.88, 135.25, 134.80, 132.36, 131.85, 130.08, 129.39, 128.32, 128.30, 128.28, 127.80, 126.78, 125.76.

¹H NMR (CDCl₃, 500 MHz, 298 K): δ 8.37 (d, J = 9.3 Hz, 1H), 8.26 – 8.16 (m, 4H), 8.18 – 8.02 (m, 4H), 7.91 (dd, J = 7.8, 1.7 Hz, 2H), 7.65 – 7.59 (m, 1H), 7.48 (t, J = 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 198.44, 138.75, 133.15, 131.16, 130.66, 130.59, 129.73, 129.12, 128.86, 128.45, 127.19, 126.94, 126.39, 126.05, 125.91, 124.79, 124.72, 124.41, 123.75.

¹H NMR (CDCl₃, 500 MHz, 298 K): δ 7.92 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.50 (d, *J* = 8.1 Hz, 3H), 6.91 (s, 1H)..¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 189.45, 148.57, 143.96, 138.84, 132.48, 128.83, 128.55, 126.54, 110.22.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.94 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.91 – 7.82 (m, 2H), 7.64 – 7.56 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.39 (dd, *J* = 5.1, 2.9 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 189.96, 141.26, 138.59, 133.92, 132.29, 129.34, 128.58, 128.36, 126.21.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.68 – 7.60 (m, 2H), 7.54 – 7.46 (m, 1H), 7.42 (dd, J = 8.2, 6.7 Hz, 2H), 6.59 (tt, J = 3.7, 1.7 Hz, 1H), 2.44 (tq, J = 6.3, 2.2 Hz, 2H), 2.31 – 2.24 (m, 2H), 1.78 – 1.65 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 198.20, 144.03, 138.69, 131.20, 129.09, 127.96, 26.08, 23.91, 21.98, 21.62.

¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* 7.81 – 7.74 (m, 4H), 7.63 – 7.58 (m, 1H), 7.52 – 7.44 (m, 4H).¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* 195.49, 138.91, 137.28, 135.90, 132.64, 131.47, 130.21, 129.93, 129.56, 128.65, 128.41.

¹H NMR (CDCl₃, 500 MHz, 298 K): δ 7.81 – 7.75 (m, 2H), 7.68 (d, J = 8.6 Hz, 2H), 7.65 – 7.57 (m, 3H), 7.49 (dd, J = 8.3, 7.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.78, 137.30, 136.43, 132.82, 131.75, 131.70, 130.08,

128.55, 127.65.

¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* 7.90 -7.79 (m, 2H), 7.63 -7.57 (m, 1H), 7.51-7.38 (m, 3H), 7.37-7.23 (m, 3H), 2.36 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* 198.64, 133.14, 131.01, 130.25, 130.14, 128.53, 128.48, 125.21, 19.98.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.87 – 7.77 (m, 2H), 7.68 – 7.56 (m, 3H), 7.54 – 7.47 (m, 2H), 7.45 – 7.36 (m, 2H), 2.45 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.95, 138.13, 137.74, 137.61, 133.17, 132.31, 130.43, 130.02, 128.21, 128.06, 127.34, 21.34.

¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* 7.83 – 7.76 (m, 2H), 7.75 – 7.70 (m, 2H), 7.62 – 7.54 (m, 1H), 7.51 – 7.44 (m, 2H), 7.30 – 7.26 (m, 2H), 2.45 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* 196.54, 143.25, 137.99, 134.92, 132.16, 130.32, 129.94, 128.99, 128.22, 21.66.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.92 – 7.84 (m, 2H), 7.83 – 7.75 (m, 2H), 7.66 – 7.59 (m, 1H), 7.52 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.23 – 7.14 (m, 2H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.27, 166.67, 164.15, 137.54, 132.72, 132.63, 132.47, 129.88, 128.37, 115.57, 115.35. ¹⁹F NMR (CDCl₃, 100 MHz, 298 K): δ -105.98 (tt, *J* = 8.2, 5.5 Hz).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.93 – 7.87 (m, 2H), 7.83 – 7.78 (m, 2H), 7.78 – 7.74 (m, 2H), 7.67 – 7.61 (m, 1H), 7.54 – 7.48 (m, 2H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 195.52, 140.70, 136.70, 133.06, 130.11, 130.08, 128.50, 125.38, 125.34, 125.30, 125.26.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.92 – 7.89 (m, 1H), 7.87 – 7.83 (m, 1H), 7.80 – 7.74 (m, 1H), 7.73 – 7.70 (m, 1H), 7.68 – 7.64 (m, 1H), 7.55 – 7.39 (m, 4H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.34, 145.26, 140.01, 137.81, 136.28, 132.65, 132.39, 131.48, 130.75, 130.02, 129.94, 128.99, 128.66, 128.43, 128.33, 128.21, 127.32, 126.99.

¹H NMR (CDCl₃, 400 MHz, 298 K): *δ* 7.95 – 7.82 (m, 3H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.68 – 7.59 (m, 2H), 7.53 – 7.40 (m, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): *δ* 196.32, 145.21, 139.96, 137.75, 136.22, 132.37, 130.73, 129.99, 128.97, 128.31, 128.19, 127.29, 126.96.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 8.28 (t, *J* = 1.2 Hz, 1H), 7.97 – 7.85 (m, 6H), 7.64 – 7.49 (m, 5H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 196.74, 137.88, 135.25, 134.80, 132.36, 131.85, 130.08, 129.39, 128.32, 128.30, 128.28, 127.80, 126.78, 125.76.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.87 (dq, *J* = 7.7, 2.4, 1.8 Hz, 2H), 7.72 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.65 (dd, *J* =

3.8, 1.2 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.53 – 7.46 (m, 2H), 7.18 – 7.14 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 188.23, 143.66, 138.18, 134.84, 134.21, 132.28, 129.18, 128.43, 127.97.

¹H NMR(CDCl₃, 400 MHz, 298 K): δ 8.14-7.97 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 5.03 (ddd, *J* = 12.6, 8.6, 3.8 Hz, 1H), 2.06-1.88 (m, 2H), 1.87-1.71 (m, 2H), 1.58 (ddd, *J* = 9.4, 7.7, 3.2 Hz, 3H), 1.51-1.30 (m, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 166.25, 132.92, 131.28, 129.78, 128.51, 73.28, 31.90, 25.75, 23.92.

¹H NMR (CDCl3, 500 MHz, 298 K) δ 8.14 (d, *J* = 8.2 Hz, 2H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.80 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.64 – 7.59 (m, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 3.96 (s, 3H).¹³C NMR (CDCl₃, 100 MHz, 298 K) δ 196.37, 166.65, 141.66, 137.28, 133.57, 133.33, 130.48, 130.15, 129.87, 128.84, 52.85.

¹H NMR (CDCl3, 500 MHz, 298 K) δ 7.91 – 7.84 (m, 2H), 7.79 (dd, J = 7.8, 3.9 Hz, 4H), 7.67 – 7.61 (m, 1H), 7.51 (t, J = 7.8 Hz, 2H).¹³C NMR (CDCl₃, 100 MHz, 298 K) δ 195.41, 141.56, 136.66, 133.71, 132.55, 130.61, 130.44, 129.01, 118.40, 115.99.

¹H NMR (CDCl3, 500 MHz, 298 K) δ 8.34 (d, J = 8.7 Hz, 2H), 7.93 (d, J = 8.7 Hz, 2H), 7.83 – 7.77 (m, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H).¹³C NMR (CDCl₃, 100 MHz, 298 K) δ 194.57, 149.55, 142.62, 136.02, 133.25, 130.47, 129.87, 128.45, 123.31.

¹H NMR (CDCl₃, 500 MHz, 298 K): δ 7.88 – 7.81 (m, 2H), 7.54 (dd, J = 7.7, 1.3 Hz, 1H), 7.47 (td, J = 8.1, 7.1, 4.6 Hz, 2H), 7.29 (td, J = 8.4, 2.7 Hz, 1H), 7.17 (t, J = 8.5 Hz, 2H)... ¹³C NMR (CDCl₃, 100 MHz, 298 K) δ 193.94, 166.73, 164.71, 163.63, 161.65, 139.71, 133.40, 133.38, 132.84, 132.77, 130.24, 130.18, 125.77, 125.74, 119.71, 119.54, 116.84, 116.66, 115.87, 115.70. ¹⁹F NMR (CDCl₃, 100 MHz, 298 K) δ -105.18, -111.72.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 7.86 – 7.79 (m, 2H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.37 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.22 – 7.13 (m, 2H), 6.92 (d, *J* = 8.3 Hz, 1H), 3.98 (d, *J* = 8.2 Hz, 6H).¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 194.12, 166.29, 163.78, 153.04, 149.06, 134.40 (d, *J* = 3.2 Hz), 132.28, 132.20, 130.07, 125.20, 115.40, 115.18, 112.04, 109.73, 56.08, 56.03. ¹⁹F NMR (CDCl₃, 100 MHz, 298 K): δ -106.90 (ddd, *J* = 13.9, 8.3, 5.5 Hz).

5 Crystal structure information for Pd-NHC complex 3a

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: a

Bond precision:	C-C = 0.0036 A	Waveleng	th=1.34139
Cell:	a=12.1841(11)	b=28.351(3)	c=12.5884(11)
	alpha=90	beta=102.288(4)	gamma=90
Temperature:	193 K		
	Calculated	Reporte	ed
Volume	4248.8(7)	4248.8	(7)
Space group	P 21/n	P 1 21,	/n 1
Hall group	-P 2yn	-P 2yn	
Moiety formula	C46 H49 C12 N3 C	Pd C46 H49	9 C12 N3 0 Pd
Sum formula	C46 H49 C12 N3 C	Pd C46 H49	0 C12 N3 0 Pd
Mr	837.18	837.18	
Dx,g cm-3	1.309	1.309	
Z	4	4	
Mu (mm-1)	3.339	3.339	
F000	1736.0	1736.0	
F000'	1741.62		
h, k, lmax	15,36,16	15,36,3	16
Nref	9679	9384	
Tmin, Tmax	0.703,0.716	0.603,0	0.752
Tmin'	0.638		
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.60	3 Tmax=0.752
Data completene	ss= 0.970	Theta(max) = 60	.366
R(reflections)=	0.0341(8245)	wR2(reflection)	5)= 0.0899(9384)
S = 1.044	Npar=	486	

The following ALERTS were generated. Each ALERT has the format test-name ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

6¹H NMR, ¹³C NMR and ESI-MS spectra for important compounds

Figure S1. ¹H NMR spectrum of Pd-NHC complex **3**.

Figure S2. ¹³C NMR spectrum of Pd-NHC complex **3**.

Figure S3. ESI-MS spectrum of Pd-NHC complex **3**.

Figure S4. ¹H NMR spectrum of complex **4**.

Figure S5. ¹³C NMR spectrum of complex **4**.

Figure S6. ¹H NMR spectrum of compound 7.

*Figure S7.*¹³C NMR spectrum of compound 7.

-2.36

Figure S9. ¹³C NMR spectrum of compound **8a**.

Figure S11. ¹³C NMR spectrum of compound **8b**.

-2.45

Figure S13. ¹³C NMR spectrum of complex **8c**.

Figure S15. ¹³C NMR spectrum of complex **9a**.

Figure S16. ¹H NMR spectrum of complex 9b.

Figure S18. ¹H NMR spectrum of complex **10a**.

Figure S19. ¹³C NMR spectrum of complex **10a**.

Figure S20. ¹H NMR spectrum of complex **10b**.

Figure S21. ¹³C NMR spectrum of complex **10b**.

Figure S23. ¹³C NMR spectrum of complex **11a**.

Figure S24. ¹⁹F NMR spectrum of complex **11a**.

Figure S25. ¹H NMR spectrum of complex 11b.

Figure S27. ¹⁹F NMR spectrum of complex **11b**.

Figure S29. ¹³C NMR spectrum of compound **12**.

Figure S31. ¹³C NMR spectrum of compound **13**.

Figure S32. ¹H NMR spectrum of compound 14.

Figure S33. ¹³C NMR spectrum of compound 14.

Figure S37. ¹³C NMR spectrum of compound 16.

Figure S39. ¹³C NMR spectrum of compound 17.

Figure S40. ¹H NMR spectrum of compound 18a.

Figure S41. ¹³C NMR spectrum of compound 18a.

Figure S42. ¹H NMR spectrum of compound **18b**.

Figure S43. ¹³C NMR spectrum of compound **18b**.

Figure S45. ¹³C NMR spectrum of compound **19a**.

-2.45

Figure S49. ¹³C NMR spectrum of compound **19c**.

Figure S50. ¹H NMR spectrum of compound 20a.

Figure S51. ¹³C NMR spectrum of compound **20a**.

Figure S53. ¹H NMR spectrum of compound **20b**.

Figure S54. ¹³C NMR spectrum of compound **20b**.

Figure S55. ¹H NMR spectrum of compound **21a**.

Figure S56. ¹³C NMR spectrum of compound 21a.

Figure S57. ¹H NMR spectrum of compound **21b**.

Figure S58. ¹³C NMR spectrum of compound **21b**.

Figure S59. ¹H NMR spectrum of compound **22**.

Figure S60. ¹³C NMR spectrum of compound **22**.

Figure S63. ¹H NMR spectrum of compound 24.

Figure S64. ¹³C NMR spectrum of compound 24.

Figure S65. ¹H NMR spectrum of compound **25**.

Figure S65. ¹³C NMR spectrum of compound 25.

Figure S66. ¹H NMR spectrum of compound **26a**.

Figure S66. ¹³C NMR spectrum of compound **26a**.

Figure S67. ¹H NMR spectrum of compound **26b**.

Figure S67. ¹³C NMR spectrum of compound **26b**.

Figure S65. ¹H NMR spectrum of compound 27.

Figure S67. ¹⁹F NMR spectrum of complex 27.

Figure S68. ¹H NMR spectrum of compound 28.

Figure S69. ¹³C NMR spectrum of compound **28**.

Figure S70. ¹⁹F NMR spectrum of complex 28.

7. References

- S1. Huang, P.; Wang, Y.-X.; Yu, H.-F.; Lu, J.-M. N-Heterocyclic Carbene–Palladium(II)–4,5-Dihydrooxazole Complexes: Synthesis and Catalytic Activity toward Amination of Aryl Chlorides. *Organometallics* 2014, 33 (7), 1587-1593.
- S2. Tu, T.; Fang, W.; Jiang, J. A highly efficient precatalyst for amination of aryl chlorides: synthesis, structure and application of a robust acenaphthoimidazolylidene palladium complex. *Chem. Commun.*, **2011**, *47*, 12358-12360.
- S3. Tao J, Yu W, Luo J, et al. Na₂CO₃-promoted thioesterification via N–C bond cleavage of amides to construct thioester derivatives. *Journal of Chemical Research.*, **2019**, 43(11-12): 486-492.
- Q. Deng, Q. Zheng, B. Zuo and T. Tu, Robust NHC-palladacycles-catalyzed Suzuki–Miyaura cross-coupling of amides via C-N activation, *Green Synthesis and Catalysis*, 2020, 1, 75-78.
- S5. P. H. Tran, P. E. Hansen, H. M. Hoang, D.-K. N. Chau and T. N. Le, Indium triflate in 1-isobutyl-3methylimidazolium dihydrogen phosphate: an efficient and green catalytic system for Friedel–Crafts acylation, *Tetrahedron Letters*, 2015, 56, 2187-2192.
- S6. G. Meng and M. Szostak, Sterically Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides, *Organic Letters*, 2015, 17, 4364-4367.

- S7. T. Ishiyama, H. Kizaki, T. Hayashi, A. Suzuki and N. Miyaura, Palladium-Catalyzed Carbonylative Cross-Coupling Reaction of Arylboronic Acids with Aryl Electrophiles: Synthesis of Biaryl Ketones, *J. Org. Chem.*, 1998, 63, 4726-4731
- S8. X. Li and G. Zou, Acylative Suzuki coupling of amides: acyl-nitrogen activation via synergy of independently modifiable activating groups, *Chemical Communications*, 2015, 51, 5089-5092.
- S9. J. Zhang, P. Zhang, L. Shao, R. Wang, Y. Ma and M. Szostak, Mechanochemical Solvent Free Suzuki–Miyaura Cross - Coupling of Amides via Highly Chemoselective N–C Cleavage, *Angewandte Chemie International Edition*, 2021, 61.
- S10. G. Meng, S. Shi and M. Szostak, Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides via Site-Selective N–C Bond Cleavage by Cooperative Catalysis, *ACS Catalysis*, 2016, 6, 7335-7339.