Dehydroxyselenocyanation of Alcohols Under Grinding

Condition

Xinzhe Zhao, ^a Hongquan Yin, *^{a,b} and Fu – Xue Chen *^{a,b}

^a School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, P. R. China.

^b Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of

Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus),

Beijing 102488, China

E-mail: hqyin77@bit.edu.cn (Hongquan Yin); fuxue.chen@bit.edu.cn (Fu-Xue Chen)

Supporting Information

Contents

1.General Information	S2
2.Starting Materials	S3
3.General Experimental Procedures	S6
4.Optimization of Reaction Conditions	S9
5. Characterization Data and Spectrum of Products	S14
6.Copies of ¹ H, ¹³ C, ¹⁹ F and HMBC NMR Spectra	S26
7.Reference	S72

1. General Information

Unless otherwise noted, reagents and solvents were purchased from commercial suppliers (such as Energy Chemical Corporation, Bide Pharm etc.) and used without further purification. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded at 25 °C on a Bruker Advance 400 M NMR or 500 M NMR spectrometers (CDCl₃, DMSO – d_6 as solvent). HMBC spectra were recorded at 25 °C on a Bruker Avance III HD 700 MHz NMR spectrometers (CDCl₃ as solvent). Chemical shifts of ¹H, ¹⁹F, ³¹P, ⁷⁷Se and ¹³C NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.00) and relative to the signal of SiMe₄ (δ 0.00 singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); p (pentent); m (multiplets), etc. Coupling constants are reported as a J value in Hertz (Hz). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm, DMSO – $d_{6:}\delta$ H = 2.50 ppm, δ C = 39.52 ppm,). The high resolution mass spectrum (HRMS) were recorded on an Agilent (Q-TOF6520) unit with an ESI source. IR spectra were measured on a Shimadzu IRAffinnity-1s spectrometer. Melting points were measured on a binocular microscope XT4A melting point apparatus (uncorrected). Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system. The alkaline potassium permanganate solution used as the color reagent is prepared by dissolving 1.5 g of potassium permanganate, 10 g of potassium carbonate, and 0.125 g of sodium hydroxide in 200 mL of distilled water.

2.Starting Materials

Table S1. Substrate scope of this work

Seleno/thiocyanated reagents $1^{[1-5]}$ and alcohols $2\mathbf{x}^{[6]}$, $2\mathbf{an}^{[7]}$, $2\mathbf{ao}^{[8]}$ were prepared according to published procedures, $2\mathbf{w}$, $2\mathbf{y}$ and $2\mathbf{ad}$ were prepared according to the General Procedure (Section 3, 3.1). The remaining substrates are all commercially available.

Add a solution of 4–acetylbenzoic acid (1 g, 6.10 mmol, 1.0 equiv) in THF (6 mL) to a solution of LiAlH₄ 1 M in THF (691 mg, 18.29 mmol, 3.0 equiv) cooled at 0 °C. Stir the mixture at 0 °C for 12 hours. Add water (5 mL), NaOH 1 M (1.3 mL) to the mixture. Filter the resulting suspension and purified by column chromatography (eluent: PE/EA = 2:1) to obtain **2x** in 90% yield.

Heat a suspension of 1,8–naphthalic anhydride (1.98 g, 10.0 mmol, 1.0 equiv) and 5–amino–1–pentanol (1.34 g, 13.0 mmol, 1.3 equiv) in absolute EtOH (90 mL) under reflux for 5 hours. Remove the solvent under reduced pressure. Wash the residue by ethanol and then purified by column chromatography (eluent: PE/EA = 3:1) to obtain the product **2an**.

To a solution of 4–Phenoxyphenol (1.86 g, 10 mmol, 1.0 equiv), Potassium carbonate (6.9 g, 50 mmol, 5 equiv), and acetone (25 mL) was added 2–Bromoethanol (3.72 g, 30 mmol, 3.0 equiv). The resulting mixture was stirred and refluxed at 90°C for 24 h under nitrogen. The mixture was poured into 30 mL water solution and extracted with ethyl acetate (EtOAc) (3×10 mL). The combined organic layers were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. The organic layer was concentrated in vacuo to obtain the crude mixture, which was purified by silica gel flash chromatography (eluent: PE/EA = 5:1) to obtain the product **2ao**.

The synthetic methods for compounds 2w, 2y and 2ad are described in

Section 3, 3.1.

Spectra of Starting Materials

 α -Methyl-1,4-benzenedimethanol (2x)

Colorless liquid; 90% yield; eluent: PE/EA = 2:1. ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.32 (m, 4H), 4.91 (q, *J* = 6.5 Hz, 1H), 4.69 (s, 2H), 1.75 (s, 2H), 1.50 (d, *J* = 6.5 Hz, 3H) ppm. Spectra are consistent with literature data^[1].

2-(5-Hydroxypentyl)-1*H*-benz[de]isoquinoline-1,3(2*H*)-dione (**2an**)

White solid; 78% yield; eluent: PE/EA = 3:1; mp. 93–95 °C (lit. mp. 94–96 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.59 (dd, J = 7.3, 1.2 Hz, 2H), 8.21 (dd, J = 8.3, 1.2 Hz, 2H), 7.75 (dd, J = 8.2, 7.3 Hz, 2H), 4.23 – 4.16 (m, 2H), 3.67 (t, J = 6.5 Hz, 2H), 1.84 – 1.74 (m,

2H), 1.67 (m, 2H), 1.51 (m, 2H) ppm. Spectra and melting point are consistent with literature data^[2].

2-(4-Phenoxyphenoxy)ethanol (2ao)

White solid; 57% yield; eluent: PE/EA = 5:1. mp. 120–122 °C (lit. mp. 120–122 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.09 – 6.89 (m, 7H),

4.08 (dd, J = 5.2, 3.8 Hz, 2H), 3.97 (dd, J = 5.2, 3.8 Hz, 2H), 2.05 (br, 1H) ppm. Spectra and melting point are consistent with literature data^[3].

The spectral data for compounds 2w, 2y, and 2ad are provided in Section 6.

3. General Experimental Procedures

3.1 General Procedures

Add selenocyanation reagent **1a** (0.22 mmol) and triphenylphosphine (0.21 mmol) to an oven–dried ceramic mortar with a diameter of 60 mm. After shaking to mix thoroughly, add alcohol (0.20 mmol). Then, use a ceramic pestle to quickly grind the mixture until the system changes into an orange to red paste. Grinding is completed after 2 minutes. Without quenching, transfer the paste to a chromatography column to obtain the product. As a significant amount of unpleasant odor is released during the grinding process, it is recommended that all operations should be carried out in a fume hood.

3.2 Gram–Scale Reactions and Derivatization of Products

3.2.1 Gram–Scale Reaction

Add *N*-selenocyanatophthalimide (4.4 mmol, 1.11 g, 1.1 equiv) and triphenylphosphine (4.2 mmol, 1.10 g, 1.05 equiv) to an oven-dried ceramic mortar with a diameter of 90 mm. After shaking to mix thoroughly, add **2af** (4.0 mmol, 1.35 g, 1.0 equiv). Then, use a ceramic pestle to quickly grind the mixture until the system changes into a red paste. Grinding is completed after 2 minutes. Without quenching, transfer the paste to a chromatography column (eluent: PE/EA = 10:1) to obtain the product **3af** resulting in 80% yield (1.37 g).

3.2.2 Derivatization of Products

Add *N*-thiocyanatophthalimide (0.44 mmol, 89.8 mg, 1.1 equiv) and triphenylphosphine (0.42 mmol, 110mg, 1.05 equiv) to an oven-dried ceramic mortar with a diameter of 60 mm. After shaking to mix thoroughly, add **2af** (0.4 mmol, 135.2 mg, 1.0 equiv). Then, use a ceramic pestle to quickly grind the mixture until the system changes into a red paste. Grinding is completed after 2 minutes. Without quenching, transfer the paste to a chromatography column (eluent: PE/EA = 5:1) to obtain the product **4a** resulting in 73% yield (110.7 mg).

To a 25 mL Schlenk tube charged with CuI (15.2 mg, 0.08 mmol, 0.2 equiv) and Cs_2CO_3 (130.4 mg, 0.4 mmol, 1.0 equiv) in acetonitrile (2.0 mL) under an argon atmosphere at room temperature was added **3af** (170.9 mg, 0.4 mmol, 1.0 equiv). Then, (4–chlorophenyl) acetylene (81.6 mg, 0.6 mmol, 1.5 equiv) was added. The reaction was stirred for 3 h. The solution was concentrated in vacuo to get the crude product, which was purified by flash chromatography (eluent: PE/EA = 15:1) to obtain the product **4b** resulting in 82% yield (175.8 mg).

To a 25 mL Schlenk tube were added **3af** (170.9 mg, 0.4 mmol, 1.00 equiv) and EtOH (4.0 mL). Then NaBH₄ (30.4 mg, 0.8 mmol, 2.0 equiv) was added at 0 °C. After stirring 10 minutes, the glycosyl bromide was added (247.2 mg, 0.6 mmol, 1.5 equiv) and the reaction mixture was stirred at room temperature for 4 h. The mixture was poured into aq. sat. NH₄Cl (30 mL), and extracted with DCM (2×10 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and

concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA = 3:1) to afford the product **4c** resulting in 65% yield (190.4 mg).

4. Optimization of Reaction Conditions

OH + 2a, 1.0 equiv	N-SeCt 0 1a, x equiv	٧	PPh ₃ (y equiv)	SeCN
Entry	X	у	Yield(%) ^b	
1	1.5	1.3	71	
2	1.3	1.1	75	
3	1.1	1.05	86	
4	1.05	1.0	73	
5	1.05	1.1	66	
6	0.8	0.8	51	
7°	1.1	1.05	80	

Table S2. Investigation of the Ratio between SeCN Source and Phosphine.^{*a,b,c*}

^a Standard Conditions: 4–phenylbutan–1–ol (**2a**, 0.2 mmol,1.0 equiv, 30.2 mg), *N*–Selenocyanatophthalimide (**1a**, x equiv), triphenylphosphine (y equiv) to an oven–dried ceramic mortar with a diameter of 60 mm. Then, use a ceramic pestle to quickly grind the mixture until the system changes into an orange paste. ^b Isolated yield. ^c Agate mortars were used instead of ceramic mortars.

Table S3. Optimization of the SeCN Source^{*a,b*}

1	1b	69
2	1c	62
3	1d	43
4	1e	NR

^a Standard Conditions: 4–phenylbutan–1–ol (**2a**, 0.2 mmol, 1.0 equiv, 30.2 mg), SeCN source (**1**, 0.22 mmol, 1.1 equiv), triphenylphosphine (55.0 mg, 0.21 mmol, 1.05 equiv) to an oven–dried ceramic mortar with a diameter of 60 mm. Then, use a ceramic pestle to quickly grind the mixture until the system changes into an orange paste. ^b Isolated yield.

Table S4. Optimization of the Phosphorus ^{*a,b*}

^a Standard Conditions: 4–phenylbutan–1–ol (**2a**, 0.2 mmol, 1.0 equiv, 30.2 mg), *N*–Selenocyanatophthalimide (**1a**, 50.4 mg, 0.22 mmol, 1.1 equiv), phosphorus (0.21 mmol, 1.05 equiv) to an oven–dried ceramic mortar with a diameter of 60 mm. Then, use a ceramic pestle to quickly grind the mixture until the system changes into an orange paste. ^b Isolated yield.

During some experiments, an impurity exhibiting similar polarity to the target product was detected. This impurity was subsequently identified as triphenylphosphine selenide by comparison with a standard spectrum. To investigate the origin of this byproduct, control experiments were performed.

Ph₃P	+	Phth-SeCN	>	Ph ₃ P=O	+	$Ph_3P=Se$
0.21 mmol		0.22 mmol	Grinding	70% yield		22% yield

The experiments revealed that triphenylphosphine selenide could be formed by simply grinding triphenylphosphine and **1a** together, even without the addition of the substrate.

ZXZ-230-1 ZXZ

7.74 7.74 7.72 7.72 7.72 7.71 7.71 7.70 7.69 7.69 The identification of the byproduct triphenylphosphine selenide was accomplished through comprehensive spectroscopic characterization including ¹H (500 MHz, CDCl₃), ¹³C (126 MHz, CDCl₃), ³¹P (162 MHz, CDCl₃), and ⁷⁷Se (76 MHz, CDCl₃) NMR analyses, complemented HRMS. The spectrum was compared with

the reference spectrum reported in the literature.^[9] ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.68 (m, 6H), 7.50 – 7.39 (m, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 132.7 (d, *J* = 11.3 Hz), 131.8 (d, *J* = 76.9 Hz), 131.7 (d, *J* = 3.8 Hz), 128.6 (d, *J* = 12.6 Hz) ppm. ³¹P NMR (162 MHz) δ 35.3(p, *J* = 13.7 Hz) ppm. ⁷⁷Se NMR (76 MHz) δ –265.9 (d, *J* = 736.2 Hz) ppm. HRMS *m*/*z*: calcd. for C₁₈H₁₆PSe [M + H]⁺ 343.0155, found 343.0142.

The mixed ¹H NMR spectrum of 3a and triphenylphosphine selenide.

The mixed 13 C NMR spectrum of **3a** and triphenylphosphine selenide.

The mixed ³¹P NMR spectrum of **3a** and triphenylphosphine selenide.

The mixed 77 Se NMR spectrum of **3a** and triphenylphosphine selenide.

300 250 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -280 -300 -320 -340 f1 (ppm)

5. Characterization Data and Spectra of Products

(4-selenocyanatobutyl)benzene (3a)

SeCN Following the general procedure (eluent: PE/EA = 10:1), **3a** was obtained in 86% yield (41.1 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.23 – 7.15 (m, 3H), 3.04 (t, *J* = 7.3 Hz, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 1.93 (p, *J* = 7.3 Hz, 2H), 1.77 (p, *J* = 7.6 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 141.4, 128.5, 128.4, 126.1, 101.5, 35.1, 30.8, 30.4, 29.4 ppm. ⁷⁷Se NMR (76 MHz, CDCl₃): δ 208.89. HRMS *m*/*z*: calcd. for C₁₁H₁₄NSe [M + H]⁺ 240.0291, found 240.0287.

(selenocyanatomethyl)benzene (3b)

Following the general procedure (eluent: PE/EA = 10:1), **3b** was obtained in 81% yield (31.9 mg) as white solid. mp. 70–72 °C (lit. mp. 71–72 °C). ¹H NMR (500 MHz, CDCl₃): δ 7.38 – 7.32 (m, 5H),

4.31 (s, 2H) ppm, ¹³C NMR (126 MHz, CDCl₃): δ 135.4, 129.2, 129.0, 128.7, 101.9, 32.8 ppm. Spectra and melting point were consistent with literature data^[10].

1-fluoro-4-(selenocyanatomethyl)benzene (3c)

Following the general procedure (eluent: PE/EA = 10:1), **3c** was obtained in 77% yield (33.1 mg) as white solid. mp. 64–66 °C (lit. mp. 64–65 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.31

(m, 2H), 7.06 (t, J = 8.6 Hz, 2H), 4.27 (s, 2H) ppm, ¹³C NMR (126 MHz, CDCl₃) δ 162.8 (d, J = 249.1 Hz), 131.4 (d, J = 3.2 Hz), 130.8 (d, J = 8.7 Hz), 116.2 (d, J = 22.1 Hz), 101.7, 31.8 ppm, ¹⁹F NMR (471 MHz, CDCl₃) δ –112.30 (m, 1F) ppm. Spectra and melting point were consistent with literature data^[11].

1-chloro-4-(selenocyanatomethyl)benzene (3d)

CI

Following the general procedure (eluent: PE/EA = 10:1), **3d** was obtained in 82% yield (37.9 mg) as white solid. mp. 57–58 °C (lit. mp. 58–59 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J*

= 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 4.24 (s, 2H) ppm, ¹³C NMR (126 MHz, CDCl₃) δ 134.7, 134.1, 130.3, 129.4, 101.6, 31.9 ppm. Spectra and melting point were consistent with literature data^[11].

1-bromo-4-(selenocyanatomethyl)benzene (3e)

Following the general procedure (eluent: PE/EA = 10:1), **3e** was obtained in 75% yield (41.3 mg) as white solid. mp. 63–65 °C (lit. mp. 63–64 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.51 –

7.49 (d, J = 8.5, 2H), 7.25 – 7.23 (d, J = 8.5, 2H), 4.22 (s, 2H) ppm, ¹³C NMR (126 MHz, CDCl₃) δ 134.7, 132.4, 130.6, 122.9, 101.5, 31.9 ppm. Spectra and melting point were consistent with literature data^[10].

1-iodo-4-(selenocyanatomethyl)benzene (3f)

Following the general procedure (eluent: PE/EA = 5:1), **3f** was obtained in 70% yield (45.2 mg) as white solid. mp:78–80 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.68 (d, *J* = 8.4 Hz, 2H), 7.15 – 7.08 (d, *J* = 8.4 Hz, 2H), 4.22 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 138.3, 135.2, 130.7, 101.4, 94.5, 32.0 ppm. HRMS *m*/*z*: calcd. for C₇H₆I [M – SeCN]⁺ 216.9509, found 216.9505.

1-methyl-4-(selenocyanatomethyl)benzene (3g)

Following the general procedure (eluent: PE/EA = 10:1), **3g** was obtained in 72% yield (30.4 mg) as white solid. mp. 45–47 °C (lit. mp. 45–46 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.23 (m,

2H), 7.18 (d, J = 7.8 Hz, 2H), 4.29 (s, 2H), 2.36 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 138.7, 132.3, 129.9, 129.0, 102.1, 32.9, 21.3 ppm. Spectra and melting point were consistent with literature data^[10].

1-(tert-butyl)-4-(selenocyanatomethyl)benzene (3h)

Following the general procedure (eluent: PE/EA = 10:1), **3h** was obtained in 63% yield (31.9 mg) as white solid. mp. 90–91 °C (lit. mp. 89–90°C). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 4.31 (s, 2H), 1.33 (s,

9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 150.9, 131.2, 127.7, 125.1, 101.1, 33.7, 31.7, 30.2 ppm. Spectra and melting point were consistent with literature data^[10].

1-methoxy-4-(selenocyanatomethyl)benzene (3i)

Following the general procedure (eluent: PE/EA = 8:1), **3i** was obtained in 77% yield (35.0 mg) as yellow solid. mp. 53-54 °C (lit. mp. 52–54 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.25

(d, J = 8.7 Hz, 2H), 6.92 - 6.85 (d, J = 8.7 Hz, 2H), 4.30 (s, 2H), 3.81 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 130.4, 127.2, 114.6, 102.2, 55.4, 32.9 ppm. Spectra and melting point were consistent with literature data^[12].

4–(selenocyanatomethyl)–1,1'–biphenyl (**3j**)

Following the general procedure (eluent: PE/EA = 10:1), 3j was obtained in 70% yield (38.2 mg) as white solid. mp. 175-176 °C (lit. mp. 174-175 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.53 (m, 4H), 7.48 – 7.41 (m, 4H), 7.40 –

7.33 (m, 1H), 4.36 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 141.7, 140.2, 134.3, 129.5, 128.9, 127.9, 127.7, 127.1, 101.9, 32.7 ppm. Spectra and melting point were consistent with literature data^[10].

1-(selenocyanatomethyl)-4-(trifluoromethyl)benzene (**3k**)

Following the general procedure (eluent: PE/EA = 8:1), 3k was obtained in 52% yield (27.6 mg) as pink solid. mp. 54-55 ^oC (lit. mp. 54–55 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.29 (s, 2H) ppm. ¹⁹F NMR (471 MHz, CDCl3) δ -62.74 (s, 3F) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 130.8 (q, J = 32.7 Hz), 129.4, 126.1 (q, J = 3.8 Hz), 123.8 (q, J = 272.6 Hz), 101.1, 31.5 ppm. Spectra and melting point were consistent with literature data^[11].

1-nitro-4-(selenocyanatomethyl)benzene (31)

Following the general procedure (eluent: PE/EA = 5:1), 31 SeCN was obtained in 45% yield (21.8 mg) as white solid. mp. O_2N 122–123°C (lit. mp. 122–124 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.28 – 8.22 (d, J = 8.9 Hz, 2H), 7.58 – 7.52 (m, 2H), 4.31 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 143.1, 129.9, 124.4, 100.6, 31.0 ppm. Spectra and melting point were consistent with literature data^[10].

4–(selenocyanatomethyl)benzonitrile (**3m**)

Following the general procedure (eluent: PE/EA = 3:1), 3m was obtained in 51% yield (22.6 mg) as white solid. mp. 135–137 °C (lit. mp. 136–137 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.27 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 133.1, 129.9, 118.4, 112.8, 101.0, 31.6 ppm. Spectra were consistent with literature data^[10].

1-methyl-3-(selenocyanatomethyl)benzene (3n)

SeCN

Following the general procedure (eluent: PE/EA = 10:1), **3n** was obtained in 68% yield (28.7 mg) as white solid. mp. 53–54°C (lit. mp. 55.5–56.5 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.13 (m, 4H), 4.27 (s, 2H), 2.35 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ

139.0, 135.3, 129.7, 129.5, 129.1, 126.1, 102.1, 32.9, 21.4 ppm. Spectra and melting point were consistent with literature data^[11].

1-methyl-2-(selenocyanatomethyl)benzene (**30**)

SeCN

Following the general procedure (eluent: PE/EA = 10:1), **30** was obtained in 59% yield (24.9 mg) as white solid. mp. $30-32^{\circ}C$ (lit. mp. 29–30 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.17 (m, 4H),

4.36 (s, 2H), 2.41 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 132.9, 131.1, 130.2, 129.2, 126.8, 101.8, 31.5, 19.2 ppm. Spectra and melting point were consistent with literature data^[10].

1,3-dimethoxy-5-(selenocyanatomethyl)benzene (**3p**)

Following the general procedure (eluent: PE/EA = 5:1), **3p** was obtained in 70% yield (36.0 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.50 (d, J = 2.2 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 4.24 (s, 2H), 3.80 (s, 6H) ppm. ¹³C NMR (126 MHz,

CDCl₃) δ 161.2, 137.4, 106.9, 102.0, 100.7, 55.5, 33.0 ppm. HRMS (ESI) *m/z*: calcd. for C₁₀H₁₂NO₂Se [M + H]⁺ 258.0033, found 258.0028. IR (KBr) 2947, 2872, 2149(SeCN), 1207 cm⁻¹.

2–(selenocyanatomethyl)naphthalene (**3q**)

SecN Following the general procedure (eluent: PE/EA = 10:1), **3q** was obtained in 78% yield (38.5 mg) as white solid. mp. 114–116 °C (lit. mp. 115–116 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.80 (m, 4H), 7.51 – 7.49 (m, 2H), 7.45–7.43 (d, J = 8.4 Hz, 1H), 4.45 (s, 2H) ppm. ¹³C NMR (126

MHz, CDCl₃) δ 133.2, 133.1, 132.7, 129.2, 128.2, 128.0, 127.8, 126.8, 126.8, 126.3, 101.9, 33.4 ppm. Spectra and melting point were consistent with literature data^[10].

9-(selenocyanatomethyl)anthracene (3r)

Following the general procedure (eluent: PE/EA = 10:1), **3r** was obtained in 69% yield (41.0 mg) as yellow solid. mp:163–165 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.49 (s, 1H), 8.25 – 8.24 (d, *J* = 7.5, 2H), 8.05 – 8.03 (d, *J* = 7.5, 2H), 7.64–7.67 (m, 2H), 7.53 – 7.50 (m,

2H), 5.48 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 131.5, 130.0, 129.7, 129.6, 127.4, 125.5, 124.3, 123.1, 102.3, 26.8 ppm. HRMS (ESI) *m/z*: calcd. for C₁₆H₁₂NSe [M + H]⁺ 298.0135, found 298.0142.

2-(selenocyanatomethyl)pyridine (3s)

Following the general procedure (eluent: PE/EA = 3:1), **3s** was obtained in 44% yield (17.4 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.54 (dt, J = 5.0, 1.3 Hz, 1H), 7.73 (td, J = 7.7, 1.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.30 – 7.23 (m, 1H), 4.55 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 154.4, 149.4, 137.1, 123.1, 122.3, 103.1, 34.5 ppm. HRMS (ESI) *m/z*: calcd. for C₇H₇N₂Se [M + H]⁺ 198.9774, found 198.9761.

2-(selenocyanatomethyl)thiophene (3t)

Following the general procedure (eluent: PE/EA = 3:1), **3t** was obtained in 62% yield (25.2 mg) as yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.26 – 7.25 (d, J = 6.4, 1H), 7.07 – 7.06 (m, 1H), 6.93 – 6.90 (dd, J_1 = 4.4, J_2 = 6.4, 1H), 4.50 (s, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 136.3, 127.6, 126.5, 126.1, 100.9, 25.9. Spectra were consistent with literature data^[13].

(3-selenocyanatoprop-1-yn-1-yl)benzene (**3u**)

Following the general procedure (eluent: PE/EA = 8:1), **3u** was obtained in 65% yield (28.7 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.38 – 7.28 (m, 3H), 4.01 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 132.0, 129.1,

128.4, 121.8, 101.0, 87.7, 82.3, 15.8 ppm. HRMS (ESI) m/z: calcd. for C₁₀H₈NSe [M + H]⁺ 221.9822, found 221.9815.

(4–(selenocyanatomethyl)phenyl)methanol (**3v**)

Following the general procedure (eluent: PE/EA = 3:1), the reaction scale was expanded to 0.5 mmol. **3v** was obtained in 73% yield (82.9 mg) as white solid. mp:69–71 °C. ¹H

NMR (500 MHz, CDCl₃) δ 7.32 (m, 4H), 4.61 (s, 2H), 4.26 (s, 2H), 2.62 (s, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 141.6, 134.8, 129.2, 127.6, 102.3, 64.5, 32.6 ppm. HRMS (ESI) *m*/*z*: calcd. for C₉H₁₀NOSe [M + H]⁺ 227.9928, found 227.9930.

1,4-bis(selenocyanatomethyl)benzene (**3w**)

Following the general procedure (eluent: PE/EA = 3:1), synthesize **3w** through the following two routes, with the first being: using **2v** as the substrate, a one-pot two-step

method was employed, adding 1.05 equivalents of triphenylphosphine and 1.1 equivalents of selenium cyanide reagent in two portions, resulting in a 47% yield (29.7 mg). Alternatively, the purified **3v** obtained after separation can be used as the substrate to synthesize **3w**, resulting in a 71% yield (47.4 mg). If a purer product cannot be obtained, one may attempt to wash the solid with dichloromethane, as the product has a relatively low solubility in dichloromethane. However, this may lead to the loss of trace amounts of the product. mp. 153–154 °C (lit. mp. 152–155 °C). ¹H NMR (500 MHz, DMSO – d_6) δ 7.37 (s, 4H), 4.32 (s, 4H) ppm. ¹³C NMR (126 MHz, DMSO – d_6) δ 138.4, 129.6, 105.4, 32.8 ppm. Spectra and melting point were consistent with literature data^[14].

1-(4-(selenocyanatomethyl)phenyl)ethan-1-ol (3x)

Following the general procedure (eluent: PE/EA = 3:1), the reaction scale was expanded to 0.5 mmol, **3x** was obtained in 66% yield (79.5 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (q, *J* = 8.2 Hz, 4H), 4.87 (q, *J* = 6.5 Hz, 1H), 4.28 (s,

2H), 2.20 (s, 1H), 1.47 (d, J = 6.5 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 146.5, 134.5, 129.2, 126.2, 102.1, 69.9, 32.6, 25.2 ppm. The HMBC spectrum, displayed in Part 6, indicated a coupling interaction between the hydrogen atoms on the α – carbon of the primary alcohol and the carbon center in the selenocyanate substituent. HRMS (ESI) m/z: calcd. for C₁₀H₁₂NOSe [M + H]⁺ 242.0084, found 242.0080.

1-(1-selenocyanatoethyl)-4-(selenocyanatomethyl)benzene (**3y**)

Following the general procedure (eluent: PE/EA = 3:1), synthesize **3y** through the following two routes, with the first being: using **2x** as the substrate, a one-pot two-step method was employed, adding 1.05 equivalents of triphenylphosphine

and 1.1 equivalents of selenium cyanide reagent in two portions, resulting in a 23% yield (15.2 mg). Alternatively, the purified **3x** obtained after separation can be used as the substrate to synthesize **3y**, resulting in a 43% yield (28.4 mg) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 4.89 (q, J = 7.0 Hz, 1H), 4.27 (s, 2H), 2.03 (d, J = 7.0 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 140.3, 136.4, 129.7, 127.9, 102.3, 101.7, 44.9, 32.1, 22.6 ppm. HRMS (ESI) m/z: calcd. for C₁₁H₁₁N₂Se₂ [M + H]⁺ 330.9253, found 330.9253.

(selenocyanatomethylene)dibenzene (3z)

Following the general procedure (eluent: PE/EA = 20:1), **3z** was obtained in 41% yield (22.4 mg) as pink solid. mp. 48–50 °C (lit. mp. 48–49 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.33 (m, 4H), 7.33 – 7.26 (m, 4H), 7.26 – 7.21 (m, 2H), 6.04 (s, 1H) ppm. ¹³C CDCl₃) δ 136 8 128 1 127 6 127 5 101 7 53 5 ppm. Spectra and

NMR (126 MHz, CDCl₃) δ 136.8, 128.1, 127.6, 127.5, 101.7, 53.5 ppm. Spectra and melting point were consistent with literature data^[15].

Selenocyanatomethane (3aa)

SeCN Following the general procedure (eluent: pentane/DCM = 15:1, Use alkaline potassium permanganate as a chromogenic reagent), the reaction scaled of 0.5 mmol, rotary evaporation was performed at 0 °C, **3aa** was obtained in 53% yield (32.1 mg) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 2.51(s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 102.0, 8.5 ppm. HRMS (ESI) *m/z*: calcd. for C₂H₄NSe [M + H]⁺ 121.9509, found 121.9500.

Selenocyanatoethane (3ab)

SeCN Following the general procedure (eluent: pentane/DCM = 15:1, Use alkaline potassium permanganate as a chromogenic reagent), the reaction scaled of 0.5 mmol, rotary evaporation was performed at 0 °C, **3ab** was obtained in 62% yield (41.9 mg) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.08 (q, J = 7.5 Hz, 2H), 1.68 (t, J = 7.4 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 101.3, 23.4, 16.5 ppm. HRMS (ESI) m/z: calcd. for C₃H₆NSe [M + H]⁺ 135.9665, found 135.9673.

2-selenocyanatoethan-1-ol (3ac)

NCSe OH Following the general procedure (eluent: PE/EA = 2:1, Use alkaline

potassium permanganate as a chromogenic reagent), the reaction scaled of 0.5 mmol, **3ac** was obtained in 69% yield (52.1 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 4.06 (m, 2H), 3.30 – 3.21 (m, 2H), 2.32 (br, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 101.5, 61.3, 32.2 ppm. Spectra were consistent with literature data^[16].

1,2-diselenocyanatoethane (3ad)

NCSe SeCN Following the general procedure (eluent: PE/EA = 5:1, Use alkaline potassium permanganate as a chromogenic reagent), synthesize **3ad** through the following two routes, with the first being: using **2ac** as the substrate, a one–pot two–step method was employed, adding 1.05 equivalents of triphenylphosphine and 1.1 equivalents of selenium cyanide reagent in two portions, resulting in a 44% yield (21.1 mg). Alternatively, the purified **3ac** obtained after separation can be used as the substrate to synthesize **3ad**, resulting in a 75% yield (36.0 mg) as brown solid. mp. 110-111 °C (lit. mp. 112 °C). ¹H NMR (500 MHz, CDCl₃) δ 3.46 – 3.44(m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 105.1, 30.0 ppm. HRMS (ESI) *m/z*: calcd. for C₄H₅N₂Se₂ [M + H]⁺ 240.8783, found 240.8788. Spectra were consistent with literature data^[17]

2-selenocyanatopropane (3ae)

Following the general procedure (eluent: pentane/DCM = 15:1, Use alkaline potassium permanganate as a chromogenic reagent), the reaction scaled of 0.5 mmol, rotary evaporation was performed at 0 °C, **3ae** was obtained in 38% yield (28.3 mg) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 3.74 (p, *J* = 6.8 Hz, 1H), 1.65 (d, *J* = 6.8 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 101.5, 38.3, 25.0 ppm. HRMS (ESI) *m*/*z*: calcd. for C₄H₈NSe [M + H]⁺ 149.9822 find 149.9815.

2,3-dimethoxy-5-methyl-6-(10-selenocyanatodecyl)cyclohexa-2,5-diene-1,4-dion e (**3af**)

Following the general procedure (eluent: PE/EA = 10:1), **3af** was obtained in 84% yield (71.7 mg) as orange oil. ¹H NMR (500 MHz, CDCl₃) δ 3.99 (s, 6H), 3.07 (t, *J* = 7.4 Hz, 2H),

2.45 (t, J = 7.5 Hz, 2H), 2.01 (s, 3H), 1.90 (p, J = 7.4 Hz, 2H), 1.47 – 1.25 (m, 14H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 184.7, 184.1, 144.3, 144.3, 143.0, 138.6, 101.6, 61.1, 30.8, 29.7, 29.7, 29.3, 29.3, 29.3, 29.1, 28.8, 28.7, 26.3, 11.9 ppm. HRMS (ESI) m/z: calcd. for C₂₀H₃₀NO₄Se [M + H]⁺ 428.1340, found 428.1340.

2-methyl-5-nitro-1-(2-selenocyanatoethyl)-1*H*-imidazole (**3ag**)

Following the general procedure (eluent: PE/EA = 3:1), **3ag** was obtained in 69% yield (35.9 mg) as brown oil. ¹H NMR (500 MHz, DMSO – d_6) δ 8.05 (s, 1H), 4.67 (t, J = 6.6 Hz, 2H), 3.45 (t, J = 6.6 Hz, 2H), 2.52 (s, 3H) ppm. ¹³C NMR (126 MHz, DMSO – d_6) δ 151.8, 138.9, 133.6, 104.9, 46.4, 29.2, 14.6 ppm. HRMS

(ESI) m/z: calcd. for C₇H₉N₄O₂Se [M + H]⁺ 260.9891, found 260.9882.

2,6-dimethyl-8-selenocyanatooct-2-ene (**3ah**)

Following the general procedure (eluent: PE/EA = 20:1; Use alkaline potassium permanganate as a chromogenic reagent), **3ah** was obtained in 82% yield (40.2 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 5.08 (m, 1H), 3.14 – 3.00 (m, 2H), 2.08 – 1.85 (m, 3H), 1.77 – 1.55 (m, 8H), 1.40 – 1.33 (m, 1H), 1.25 – 1.18 (m, 1H), 0.94(d, *J* = 6.6 Hz, 3H)

ppm. ¹³C NMR (126 MHz, CDCl₃) δ : 131.8, 124.2, 101.5, 37.9, 36.5, 32.4, 27.6, 25.7, 25.3, 19.0, 17.7 ppm. HRMS (ESI) *m*/*z*: calcd. for C₁₁H₂₀NSe [M + H]⁺ 246.0761, found 246.0759.

3-(2-selenocyanatoethyl)-1*H*-indole (**3ai**)

Following the general procedure (eluent: PE/EA = 3:1), **3ai** was obtained in 58% yield (29.0 mg) as pink oil. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.24 - 7.18 (m, 1H), 7.14 (td, *J* = 7.5, 1.0 Hz, 1H), 3.34 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 126.7, 122.6, 122.5, 119.8, 118.4, 112.9, 111.6, 102.1, 30.5, 26.8 ppm. HRMS (ESI) m/z: calcd.

for $C_{11}H_{11}N_2$ Se $[M + H]^+$ 251.0087, found 251.0088.

(7*R*,11*R*, *E*)–3,7,11,15–tetramethyl–1–selenocyanatohexadec–2–ene (**3aj**)

NCSe NCSe Following the general procedure (eluent: PE/EA = 20:1; Use alkaline potassium permanganate as a chromogenic reagent), **3aj** was obtained in 78% yield (60.1 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 5.47 – 5.38 (t, J = 8.5 Hz, 1H), 3.82 (d, J = 8.4 Hz, 2H), 2.14 – 1.98 (m, 2H), 1.74 (s, 2H), 1.58 – 1.00 (m, 20H), 0.91 – 0.82 (m, 12H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 117.1, 102.0, 39.9, 39.4, 37.4, 37.4, 37.3, 36.5, 32.8, 32.7, 28.0, 27.8, 25.1, 24.8, 24.5, 22.7, 22.7, 19.8, 19.7, 16.2 ppm. HRMS (ESI) m/z: calcd. for C₂₁H₄₀NSe [M + H]⁺ 386.2326, found 386.2322. 5-methyl-1-((2R,5S)-5-(selenocyanatomethyl)-2,5-dihydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (**3ak**)

Following the general procedure (eluent: PE/EA = 1:1), **3ak** was obtained in 59% yield (36.9 mg) as pink solid. ¹H NMR (500 MHz, DMSO – d_6) δ 11.35 (s, 1H), 7.26 (s, 1H), 6.82 (s, 1H), 6.48 (d, J = 5.8 Hz, 1H), 6.09 (d, J = 4.9 Hz, 1H), 5.05 (s, 1H), 3.38 (dd, J = 12.9, 5.1 Hz, 1H), 3.32 – 3.26 (m, 1H), 1.78 (s, 3H) ppm. ¹³C NMR (126 MHz, DMSO – d_6) δ 163.8, 150.8, 136.1, 135.2, 126.6, 109.7, 104.5, 89.4, 84.4, 33.0, 12.1 ppm. HRMS

m/z: calcd. for C₁₁H₁₂N₃O₃Se [M + H]⁺ 314.0044, found 314.0040.

2-chloro-10-(3-(4-(2-selenocyanatoethyl)piperazin-1-yl)propyl)-10*H*-phenothiazi ne (**3al**)

Following the general procedure (eluent: EA), **3al** was obtained in 72% yield (70.8 mg) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.18 – 7.08 (m, 2H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.96 – 6.82 (m, 4H), 3.89 (t, *J* = 6.8 Hz, 2H), 3.46 (t, *J* = 6.5 Hz, 2H), 2.74 (t, *J* = 6.6 Hz, 2H), 2.58 – 2.30 (m, 10H), 1.91 (p, *J* = 6.9 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 146.5, 144.5, 133.2, 127.9, 127.5, 127.4, 124.8, 123.5,

122.9, 122.3, 115.9, 115.8, 104.8, 55.2, 54.3, 52.9, 52.6, 45.2, 30.2, 24.2. HRMS (ESI) m/z: calcd. for C₂₂H₂₆ClN₄SSe [M + H]⁺ 493.0732, found 493.0730.

(1*S*,4*R*)–1–isopropyl–4–methyl–2–selenocyanatocyclohexane (**3am**)

NCSe, N

2,3-dimethoxy-5-methyl-6-(10-thiocyanatodecyl)cyclohexa-2,5-diene-1,4-dione (4a)

Following the general procedure (eluent: PE/EA = 5:1), **4a** was obtained in 73% yield (56.1 mg) as red oil. ¹H NMR (500 MHz, CDCl₃) δ 3.95 (s, 6H), 2.92 (t, *J* = 7.3 Hz, 2H), 2.44 – 2.38 (m, 2H), 1.98 (s,

3H), 1.79 (p, J = 7.4 Hz, 2H), 1.45 – 1.33 (m, 2H), 1.36 – 1.23 (m, 14H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 184.8, 184.3, 144.5, 144.4, 143.2, 138.8, 112.5, 61.3, 34.2, 30.0, 29.9, 29.5, 29.4, 29.4, 29.0, 28.8, 28.1, 26.5, 12.0 ppm. HRMS (ESI) *m*/*z*: calcd. for C₂₀H₃₀NO₄S [M + H]⁺ 380.1896, found 380.1900.

2–(10–(((4–chlorophenyl)ethynyl)selanyl)decyl)–5,6–dimethoxy–3–methylcyclohexa –2,5–diene–1,4–dione (**4b**)

Following the general procedure (eluent: PE/EA = 5:1), **4b** was obtained in 82% yield (175.8 mg) as orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.26 (m, 2H), 3.99 (s, 6H), 2.87 (t, *J* = 7.3 Hz, 2H), 2.45(t, *J* = 7.5 Hz, 2H), 2.01 (s, 3H), 1.85 (p, *J* = 7.4 Hz, 2H), 1.47 – 1.25 (m, 14H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 184.7, 184.2, 144.3, 144.3, 143.1, 138.7, 133.9, 132.7, 128.6, 122.2,

98.3, 72.0, 61.1, 30.1, 29.8, 29.7, 29.4, 29.4, 29.3, 29.3, 29.0, 28.7, 26.4, 11.9 ppm. HRMS (ESI) *m*/*z*: calcd. for C₂₇H₃₄ClO₄S [M + H]⁺ 537.1311, found 537.1306.

2-(acetoxymethyl)-6-((10-(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien -1-yl)decyl)selanyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (**4c**)

Following the general procedure (eluent: PE/EA = 2:1), **4c** was obtained in 65% yield (190.3 mg) as orange oil

¹H NMR (500 MHz, CDCl₃) δ 5.20 (t, J = 9.3 Hz, 1H), 5.09 (td, J = 9.6, 7.0 Hz, 2H), 4.72 (d, J = 10.2 Hz, 1H), 4.24 (m, 1H), 4.17 – 4.08 (m, 1H), 3.99 (s, 6H), 3.70 (ddd, J = 10.1, 4.9, 2.4 Hz, 1H), 2.82 – 2.66 (m, 2H), 2.45 (t, J = 7.5 Hz, 2H), 2.10 – 1.99 (m, 15H), 1.74 – 1.65 (m, 2H), 1.43 – 1.23 (m, 14H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 184.7, 184.1, 170.6, 170.2, 169.4, 169.4, 144.3, 144.3, 143.0, 138.6, 77.4, 76.9, 73.8, 72.8, 70.8, 68.3, 62.2, 61.1, 30.3, 29.8, 29.8, 29.5, 29.4, 29.3, 29.1, 28.7, 26.4, 23.8, 20.8, 20.7, 20.6, 20.6, 11.9 ppm. HRMS (ESI) *m/z*: calcd. for C₃₃H₄₉O₁₃Se [M + H]⁺ 733.2338, found 733.2344. 2-(5-selenocyanatopentyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5a)

Following the general procedure (eluent: PE/EA = 5:1), **5a** was obtained in 78% yield (58.0 mg) as white solid. mp. 124–125 °C (lit. mp. 126–127 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.59 (m, 1H), 8.21 (m, 1H), 7.75 (t, *J* = 7.8 Hz, 1H), 4.20 (t, *J* = 7.4 Hz,

1H), 3.09 (t, J = 7.4 Hz, 1H), 2.00 (p, J = 7.5 Hz, 1H), 1.81 (p, J = 7.7 Hz, 1H), 1.59 (p, J = 6.4 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 134.0, 131.6, 131.3, 128.1, 127.0, 122.6, 101.5, 39.9, 30.4, 29.4, 27.2, 26.6 ppm. Spectra were consistent with literature data^[7].

1-phenoxy-4-(2-selenocyanatoethoxy)benzene (5b)

Following the general procedure (eluent: PE/EA = 5:1), **5b** was obtained in 69% yield (44.0 mg) as white solid. mp. 52–54 °C (lit. mp. 54 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.06 (tt, J = 7.3, 1.1 Hz, 1H), 7.00 – 6.87 (m, 6H), 4.36 (t, J = 6.0 Hz, 2H), 3.42 (t, J = 6.0 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 154.0, 151.3, 129.7, 122.8, 120.8, 117.9, 115.9, 101.2, 67.1, 28.2 ppm. Spectra were consistent with literature data^[14].

6. Copies of ¹H, ¹³C, ¹⁹F and HMBC NMR Spectra

fl (ppm)

f1 (ppm)

$^{19}\mathrm{F}\,\mathrm{NMR}$ of 3c

¹³C NMR of **3f**

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

13 C NMR of **3m**

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S40

S46

f1 (ppm)

f1 (ppm)

HMBC NMR of 3x

¹H NMR of **3**z

S55

¹H NMR of **3ah**

¹H NMR of **3aj**

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of **4b**

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm)

1 H NMR of **4**c

fl (ppm) ¹H NMR of **5b**

180 170 160 150 140 130 120 110 100

6.Reference

[1] J.–A. Xiao, X.–L. Cheng, R.–F. Meng, X.–S. Qin, H. Peng, J.–W. Ren, Z.–Z. Xie, J.–G. Cui and Y.–M. Huang, *Synthesis*, 2021, **53**, 954–960.

[2] D. Wu, J. Qiu, C. Li, L. Yuan, H. Yin and F.-X. Chen, J. Org. Chem., 2019, 84, 15500–15507.

[3] D. Zhu, A.-H. Ye and Z.-M. Chen, Synthesis, 2021, 53, 3744-3750.

[4] J.-A. Xiao, Y.-C. Li, X.-L. Cheng, W.-Q. Chen, J.-G. Cui, Y.-M. Huang, J. Huang, Q. Xiao, W. Su and H. Yang, Org. Chem. Front., 2019, 6, 3246–3257.

[5]J. Qiu, D. Wu, P. G. Karmaker, H. Yin and F.-X. Chen, Org. Lett., 2018, 20, 1784–1787.

[6] M. Digiacomo, A. Martelli, L. Testai, A. Lapucci, M. C. Breschi, V. Calderone and S. Rapposelli, *Bioorg. Med. Chem.*, 2015, **23**, 422–428.

[7] J. F. Blake, S. L. Xu, D. D. Parker, D. E. Sells, M. E. Winkler, M. M. Kendall and A. E. Palmer, *Bioorg. Med. Chem.*, 2005, **13**, 4407–4418.

[8] M. Dong, Y.-Q. Si, S.-Y. Sun, X.-P. Pu, Z.-J. Yang, L.-R. Zhang, L.-H. Zhang, F. P. Leung, C. M. C. Lam, A. K. Y. Kwong, J. Yue, Y. Zhou, I. A. Kriksunov, Q. Hao and H. C. Lee, *Org. Biomol. Chem.*, 2011, 9, 3246–3257.

[9] T. Gáti, A. Simon, G. Tóth, D. Magiera, S. Moeller and H. Duddeck, *Magn. Reson. Chem.*, 2004, 42, 600–604.

[10] S. Redon and P. Vanelle, *Synthesis*, 2023, **55**, 510–518.

[11] M. J. Nasim, K. Witek, A. Kincses, A. Y. Abdin, E. Żesławska, M. A. Marć, M. Gajdács, G. Spengler, W. Nitek, G. Latacz, E. Karczewska, K. Kieć–Kononowicz, J. Handzlik and C. Jacob, *New J. Chem.*, 2019, 43, 5958–5968.

[12] F. Yu, C. Li, C. Wang, H. Zhang and Z.-Y. Cao, Org. Lett., 2021, 23, 7156-7160.

[13] J. M. Cook Jr., "Process for the preparation of 1,2,3,4–tetrahydro– β –carboline derivatives," US Pat., US20020165215, 2002.

[14] K. Banerjee, G. Padmavathi, D. Bhattacherjee, S. Saha, A. B. Kunnumakkara and K. P. Bhabak, *Org. Biomol. Chem.*, 2018, **16**, 8769–8782.

[15] P. T. Meinke and G. A. Krafft, J. Am. Chem. Soc., 1988, 110, 8679-8685.

[16] S.-I. Kang and C. P. Spears, Synthesis, 1988, 2, 133-135.
[17] L. F. Hernández-Ayala, M. Reina, M. Flores-Alamo and L. Ruiz-Azuara, J. Mol. Struct., 2020, **1205**, 127449.