Synthesis of 3,4-unsubstituted isoquinolone derivatives from benzimidates and

vinylene carbonate via cobalt(III)-catalyzed C-H activation/cyclization

Weiyan Xu,^a Haowen Dang,^a Huiru Sheng,^b Jiabin Shen,^{*b} and Min Wang^{*a}

^a College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou 310036, China.

^b Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University Hangzhou 310015, P. R. China.

Email: shenjiabinhznu@163.com (Shen, J.);mwang@hznu.edu.cn (Wang, M.)

Supporting Information

Table of contents

1.	General Information	2
2.	Experimental Section	2
3.	Characterization of Products	7
4.	References	11
5.	NMR Spectra for the Products	12

1. General Information

All the solvents involved in the reaction were dried by standard methods. The reagents were purchased from chemical reagent suppliers, such as Anergy, Bidet, etc, and were used without further purification. All products were separated by silica gel (200-300 mesh) column chromatography with petroleum ether (PE) (60-90°C) and ethyl acetate (EA). ¹H and ¹³C NMR spectra were recorded on a Bruker Advance 500 spectrometer at ambient temperature with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard. High resolution mass spectrometry (HRMS) data were recorded by Agilent LC 1200 / MS QTOF6520. Melting points were measured by WRS-1B type melting point apparatus and are uncorrected.

2. Experimental Section

2.1 Screening of reaction conditions

Table S1. Screening of reaction conditions for additive.

OEt NH + O	$ \begin{array}{c} $	h OEt
1a	2	3a
Entry	Additive	Yield (%) ^b
1	none	37
2	HOAc	31
3	NaOAc	55
4	Zn(OAc) ₂	46
5	КОАс	45
6	AgOAc	39
7	CsOAc	trace
8	K ₂ CO ₃	trace
9	Na ₂ CO ₃	36
10	PhCOONa	43
11	1-AdCOOH	42
12	Ag ₂ O	trace

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.4 mmol), Cp*Co(CO)I₂ (10 mol%), AgSbF₆ (20 mol%), Additive (10 mol%), HFIP (2 mL) at 100 °C for 12 h under air atmosphere. ^b Yields were determined by ¹H NMR.

Table S2. Screening of reaction conditions for solvent.

Entry	Solvent	Yield (%) ^b
1	DCE	16
2	THF	trace
3	DMSO	N.D.
4	EtOH	N.D.
5	TFE	23
6	Toluene	21
7	DMF	N.D.
8	1,4-dioxane	N.D.
9	PhCl	22
10	HFIP	55
11 ^c	HFIP	33
12 ^d	HFIP	45
13 ^e	HFIP: EtOH	trace
14 ^f	HFIP: TFE	31

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.4 mmol), Cp*Co(CO)I₂ (10 mol%), AgSbF₆ (20 mol%), NaOAc (10 mol%), Solvent (2 mL) at 100 °C for 12 h under air atmosphere. ^b Yields were determined by ¹H NMR. ^c 1 mL. ^d 3 mL. ^e HFIP: EtOH=1: 1. ^f HFIP: TFE=1: 1.

Table S3. Screening of reaction conditions for oxidants.

OEt NH +		[Cp*Co(CO)l ₂], <mark>Oxidant</mark> NaOAc, HFIP, 100 ^o C, 12 h	→ OEt
1a	2		3a
Entry		Oxidant	Yield (%) ^b
1		AgSbF ₆	46
2		AgBF ₄	74
3		K ₂ S ₂ O ₈	19
4		PhI(OAc) ₂	Trace

28

OEt NH + 1a	2	[Cp*Co(CO)I ₂], AgBF ₄ NaOAc, HFIP, 100 ^o C, Time	→ OEt N 3a
Entry		Time (h)	Yield (%) ^b
1		10	60
2		12	74
3 ^c		12	15
4 ^{<i>d</i>}		12	21
5		14	69

Table S4. Screening of reaction conditions for time and atmosphere.

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), Cp*Co(CO)I₂ (10 mol%), AgBF₄ (20 mol%), NaOAc (10 mol%), HFIP (2 mL) at 100 °C for X h under air atmosphere. ^b Yields were determined by ¹H NMR. ^c under Ar atmosphere. ^d under N₂ atmosphere.

Table S5. Screening of reaction conditions for temperature.

OEt NH	+	[Cp*Co(CO)I ₂], AgBF ₄ NaOAc, HFIP, <mark>Temp</mark> , 12h	→ OEt
1a	2		3a
Entry		Temp (°C)	Yield (%) ^b
1		90	66
2		100	74

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.6 mmol), Cp*Co(CO)I₂ (10 mol%), AgBF₄ (20 mol%), NaOAc (10 mol%), HFIP(2 mL) at Y °C for 12 h under air atmosphere. ^b Yields were determined by ¹H NMR.

2.2 General procedure for synthesis of 3a.

The synthesis of 1-ethoxyisoquinoline was taken as an example. Ethyl benzimidate **1a** (0.2 mmol), 1,3-dioxol-2-one **2a** (0.6 mmol), $Cp^*Co(CO)I_2$ (10 mol%), $AgBF_4$ (20 mol%), NaOAc (10 mol%) were dissolved in HFIP (2 mL). The reaction mixture was stirred at 100 °C for 12 h. The resulting mixture was cooled to room temperature. After concentrating on the solvent, the product was purified by flash chromatography with PE: EtOAc = 100: 1 to give the product **3a**.

2.3 General procedure for H / D exchange experiment.

Ethyl benzimidate-2,3,4,5,6-d5 **d5-1a** (0.2 mmol), 1,3-dioxol-2-one **2a** (0.6 mmol), Cp*Co(CO)I₂ (10 mol%), AgBF₄ (20 mol%), NaOAc (10 mol%) were dissolved in HFIP (2 mL). The reaction mixture was stirred at 100 °C for 12 h. The resulting mixture was cooled to room temperature. After concentrating on the solvent, the product was purified by flash chromatography with PE: EtOAc = 100: 1 to give the product **d-3a**. Through nuclear magnetic resonance hydrogen spectrum analysis, it was found that active hydrogen appeared in H₃, with an integral of 55%, and 45% was deuterated, indicating that the C-H activation process of this reaction is reversible.

2.4 General procedure for kinetic isotope experiments

An equimolar mixture of ethyl benzoylimide **1a** (0.2 mmol) and ethyl deuterated benzoylimide **d5-1a** (0.2 mmol), 1,3-dioxol-2-one **2a** (0.6 mmol), Cp*Co(CO)I₂ (10 mol%), AgBF₄ (20 mol%), NaOAc (10 mol%) were dissolved in HFIP (2 mL). The reaction mixture was stirred at 100 °C for 12 h. The resulting mixture was cooled to room temperature. After concentrating on the solvent, the product was purified by flash chromatography with PE: EtOAc = 100: 1 to give the product. The KIE value ($k_H / k_D = 1.5$) was determined by ¹H NMR analysis, indicateing that the cleavage of the imine-directed ortho C-H bond may not be the rate-determining step of the reaction.

3. Unsuccessful substrate

imine/oxime:

Substituted vinyl carbonate:

Characterization of Products

1-ethoxyisoquinoline (3a)

74% yield as a yellow oil.¹ $R_f = 0.5$ (PE: EA = 100: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 5.8 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.64 (tt, J = 8.0, 1.1 Hz, 1H), 7.53 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.19 (d, J = 5.9 Hz, 1H), 4.57 (q, J = 7.1 Hz, 2H), 1.52 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 139.6, 137.8, 130.3, 126.5, 126.0, 124.2, 119.8, 114.6, 62.0, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₁H₁₂NO : 174.0913, found 174.0913.

1-ethoxy-6-fluoroisoquinoline (3b)

61% yield as a colorless oil. R_f = 0.5 (PE: EA = 100: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.28 (dd, *J* = 9.1, 5.7 Hz, 1H), 8.00 – 7.95 (m, 1H), 7.32 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.25 (td, *J* = 8.8, 2.5 Hz, 1H), 7.13 (dd, *J* = 6.0, 0.9 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 1.50 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 162.6, 160.6, 141.0, 139.6 (d, *J* = 10 Hz), 127.4 (d, *J* = 8.75 Hz), 116.8, 116.2 (d, *J* = 25 Hz), 114.3 (d, *J* = 3.75 Hz), 109.8 (d, *J* = 20 Hz), 62.1, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for $C_{11}H_{11}$ FNO : 192.0819, found 192.0818.

6-chloro-1-ethoxyisoquinoline (3c)

65% yield as a white solid.² M. p. = 43–45 °C. R_f = 0.6 (PE: EA = 80: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 5.9 Hz, 1H), 7.70 (s, 1H), 7.45 (dt, J = 8.8, 1.6 Hz, 1H), 7.10 (dt, J = 6.0, 1.1 Hz, 1H), 4.56 (q, J = 7.0 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 141.0, 138.8, 136.7, 127.3, 126.2, 125.0, 118.0, 113.8, 62.3, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₁H₁₁CINO : 208.0524, found 208.0525.

6-bromo-1-ethoxyisoquinoline (3d)

62% yield as a white solid. M. p. = 56–58 °C. R_f = 0.6 (PE: EA = 100: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.9 Hz, 1H), 7.97 (d, *J* = 5.9 Hz, 1H), 7.84 (d, *J* = 1.9 Hz, 1H), 7.56 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.08 – 7.01 (m, 1H), 4.54 (q, *J* = 7.1 Hz, 2H), 1.49 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 141.0, 139.0, 129.8, 128.2, 126.1, 125.1, 118.2, 113.5, 62.2, 14.5. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₁H₁₁BrNO : 252.0019, found 252.0019.

Methyl 1-ethoxyisoquinoline-6-carboxylate (3e)

65% yield as a white solid. M. p. = 76–78 °C. R_f = 0.4 (PE: EA = 60: 1). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.51 (d, *J* = 1.6 Hz, 1H), 8.26 – 8.20 (m, 1H), 8.08 (d, *J* = 5.9 Hz, 1H), 8.05 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.54 (dd, *J* = 5.9, 0.9 Hz, 1H), 4.53 (q, *J* = 7.1 Hz, 2H), 3.95 (s, 3H), 1.45 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.7, 159.5, 140.6, 136.9, 131.1, 128.4, 125.9, 124.2, 120.6, 115.3, 61.9, 52.5, 14.3. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₃H₁₄NO₃ : 232.0968, found 232.0966.

1-ethoxy-6-(trifluoromethyl)isoquinoline (3f)

44% yield as a colorless oil. $R_f = 0.7$ (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 5.8, 0.9 Hz, 1H), 7.94 (s, 1H), 7.62 (dd, J = 8.7, 1.5 Hz, 1H), 7.18 (q, J = 2.1, 1.3 Hz, 1H), 4.51 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 141.2 (q, J = 8.8 Hz), 137.1, 132.1 (q, J = 31.3 Hz), 125.6 (q, J = 2.5 Hz), 123.9 (q, J = 271.3 Hz), 123.7 (q, J = 3.8 Hz), 122.2, 121.1, 114.8 (q, J = 2.5 Hz), 62.5, 14.5. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₂H₁₁F₃NO : 242.0787, found 242.079.

1-ethoxy-6-methylisoquinoline (3g)

51% yield as a colorless oil. $R_f = 0.6$ (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 5.9 Hz, 1H), 7.49 (s, 1H), 7.35 (dd, J = 8.5, 1.6 Hz, 1H), 7.11 (d, J = 5.9 Hz, 1H), 4.55 (q, J = 7.0 Hz, 2H), 2.51 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 140.6, 139.7, 138.2, 128.5, 125.2, 124.1, 118.0, 114.3, 61.9, 21.9, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₂H₁₄NO : 188.107, found 188.107.

1-ethoxy-6-methoxyisoquinoline (3h)

62% yield as a yellow oil. $R_f = 0.6$ (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, J = 9.1 Hz, 1H), 7.92 (d, J = 5.9 Hz, 1H), 7.12 (dd, J = 9.1, 2.5 Hz, 1H), 7.11 – 7.07 (m, 1H), 6.99 (d, J = 2.4 Hz, 1H), 4.54 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.0, 160.6, 140.4, 139.9, 126.1, 118.4, 114.7, 114.2, 104.6, 61.9, 55.3, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₂H₁₄NO₂ : 204.1019, found 204.1017.

6-(tert-butyl)-1-ethoxyisoquinoline (3i)

61% yield as a yellow oil.² $R_f = 0.5$ (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 5.9 Hz, 1H), 7.65 (d, J = 1.9 Hz, 1H), 7.61 (dd, J = 8.8, 2.0 Hz, 1H), 7.17 (d, J = 5.9 Hz, 1H), 4.56 (q, J = 7.1 Hz, 2H), 1.51 (t, J = 7.1 Hz, 3H), 1.41 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 153.5, 139.6, 138.0, 125.2, 123.9, 121.3, 117.9, 114.9, 61.9, 35.1, 31.1, 14.7. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₅H₂₀NO : 230.1539, found 230.1545.

1-ethoxy-6-phenylisoquinoline (3j)

85% yield as a pale yellow oil.¹ R_f = 0.5 (PE: EA = 80: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 8.5 Hz, 1H), 7.90 (d, *J* = 5.8 Hz, 1H), 7.78 (d, *J* = 2.0 Hz, 1H), 7.65 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.38 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.33 – 7.27 (m, 1H), 7.12 (d, *J* = 6.0 Hz, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 143.0, 140.4, 140.1, 138.2, 128.9, 127.9, 127.5, 126.0, 124.8, 123.9, 118.8, 114.8, 62.0, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for $C_{17}H_{16}NO$: 250.1226, found 250.1225.

1-ethoxy-6-(dimethylamino)isoquinoline (3k)

68% yield as a pale yellow solid, M. p. = 73–74 °C.¹ R_f = 0.3 (PE: EA = 60: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 9.2 Hz, 1H), 7.83 (d, *J* = 5.9 Hz, 1H), 7.04 (dt, *J* = 9.2, 2.5 Hz, 1H), 6.99 (d, *J* = 6.0 Hz, 1H), 6.69 (t, *J* = 2.2 Hz, 1H), 4.53 (q, *J* = 7.1 Hz, 2H), 3.05 (s, 6H), 1.49 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.7, 151.3, 139.9, 139.8, 125.3, 114.8, 113.9, 111.7, 103.7, 61.5, 40.2, 14.7. HRMS (ESI-TOF) [M+H]⁺ Calculated for $C_{13}H_{17}N_2O$: 217.1335, found 217.1346.

7-chloro-1-ethoxyisoquinoline (3m)

74% yield as a pale yellow solid. M. p. = 48–50 °C.¹ R_f = 0.5 (PE: EA = 80: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.22 (m, 1H), 7.98 (d, *J* = 5.8 Hz, 1H), 7.66 (dd, *J* = 8.8, 1.3 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.16 (d, *J* = 5.9 Hz, 1H), 4.56 (q, *J* = 7.1 Hz, 2H), 1.51 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.8, 140.1, 136.1, 132.0, 131.2, 127.7, 123.5, 120.4, 114.2, 62.3, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₁H₁₁CINO : 208.0524, found 208.0524.

7-ethoxythieno[2,3-c]pyridine (3o)

41% yield as a colorless oil.¹ R_f = 0.6 (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 5.6 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.32 (dd, *J* = 5.3, 1.4 Hz, 1H), 7.29 (dd, *J* = 5.6, 1.1 Hz, 1H), 4.58 (q, *J* = 7.0 Hz, 2H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 147.3, 140.5, 131.1, 123.4, 123.0, 112.0, 62.1, 14.7. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₉H₁₀NOS : 180.0478, found 180.0478.

1-ethoxybenzo[g]isoquinoline (3p)

56% yield as a yellow solid. M. p. = 81–83 °C. R_f = 0.4 (PE: EA = 80: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.88 (s, 1H), 8.23 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 6.2 Hz, 1H), 7.56 (ddd, *J* = 8.2, 6.5, 1.3 Hz, 1H), 7.50 (ddd, *J* = 7.9, 6.5, 1.3 Hz, 1H), 7.30 (d, *J* = 6.1 Hz, 1H), 4.65 (q, *J* = 7.1 Hz, 2H), 1.59 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 137.8, 134.3, 134.1, 131.8, 129.2, 127.8, 127.3, 125.6, 124.4, 124.1, 119.2, 114.4, 62.2, 14.6. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₅H₁₄NO : 224.107, found 224.107.

1-methoxyisoquinoline (3q)

70% yield as a colorless oil.¹ R_f = 0.6 (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.25 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.00 (d, *J* = 5.8 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.66 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.54 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.22 (dd, *J* = 5.8, 0.9 Hz, 1H), 4.15 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 139.4, 137.8, 130.5, 126.6, 126.1, 124.2, 119.8, 114.9, 53.8. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₀H₁₀NO : 160.0757, found 160.0757.

1-isopropoxyisoquinoline (3r)

56% yield as a colorless oil. $R_f = 0.7$ (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.27 (dd, J = 8.4, 1.1 Hz, 1H), 7.98 (d, J = 5.9 Hz, 1H), 7.71 (dt, J = 8.2, 0.9 Hz, 1H), 7.64 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.52 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.17 (dd, J = 5.9, 0.8 Hz, 1H), 5.57 (p, J = 6.2 Hz, 1H), 1.46 (d, J = 6.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 139.6, 138.0, 130.3, 126.3, 126.0, 124.4, 120.2, 114.3, 68.5, 22.1. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₂H₁₄NO : 188.107, found 188.107.

1-butoxyisoquinoline (3s)

80% yield as a colorless oil.³ R_f = 0.6 (PE: EA = 100: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.98 (d, *J* = 5.9 Hz, 1H), 7.72 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.64 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.53 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.19 (dd, *J* = 5.9, 0.8 Hz, 1H), 4.51 (t, *J* = 6.6 Hz, 2H), 1.94 – 1.84 (m, 2H), 1.58 (m, *J* = 7.4 Hz, 2H), 1.03 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 139.7, 137.8, 130.3, 126.5, 126.0, 124.2, 119.9, 114.6, 66.1, 31.1, 19.5, 13.9. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₃H₁₆NO : 202.1226, found 202.1226.

1-phenylisoquinoline (3t)

66% yield as a white solid foam.¹ R_f = 0.4 (PE: EA = 50: 1) ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 5.7 Hz, 1H), 8.14 – 8.08 (m, 1H), 7.89 (d, J = 7.7 Hz, 1H), 7.75 – 7.62 (m, 4H), 7.58 – 7.47 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 160.7, 142.2, 139.5, 136.8, 130.0, 129.9, 128.5, 128.3, 127.6, 127.1, 126.9, 126.7, 119.9. HRMS (ESI-TOF) [M+H]⁺ Calculated for C₁₅H₁₂N : 206.0964, found 206.097.

4. References

- 1. A. Inami, Y. Nishii, K. Hirano, M. Miura, Org. Lett., 2023, 25, 3206.
- 2. K. Ghosh, Y. Nishii, M. Miura, ACS Catal., 2019, 9, 11455.
- 3. T. Chen, P. Pedersen, N. Dow, R. Fayad, C. Hauke and D. MacMillan, *J. Am. Chem. Soc.*, **2022**, *144*, 8296.

5. Copies of ¹H and ¹³C Spectra

3a ¹H NMR

3a ¹³C NMR

3b¹³C NMR

3c¹³C NMR

3d ¹H NMR

3d ¹³C NMR

3e¹³C NMR

			DMSO DMSO DMSO DMSO DMSO DMSO DMSO DMSO	
5.71 9.53	5.87 5.91 5.91 5.33 5.33 5.33 5.33 5.33 5.33 5.33 5.3	06	46 00] 83] 83] 17] 00]	32
165		1.	201 66 66 66 66 66	4.
- T T	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Ŭ	i cicici ci	1

3f¹H NMR

3f¹³C NMR

3g ¹H NMR

3g¹³C NMR

3h ¹³C NMR

3i¹H NMR

3i¹³C NMR

3j¹³C NMR

3k¹³C NMR

3m¹³C NMR

30¹H NMR

30 ¹³C NMR

88.88 88.26 88.06 88.05 88.06 88.05

3p¹³C NMR

3q ¹H NMR

88.26

3q ¹³C NMR

3r¹H NMR

∞	5	1	- N	0	6	6	9	\circ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	୍ୟ	୍ୟ	୍ୟ	0	0	0	NO.	NO.	4	4	\mathbf{c}	N	0	3	\mathbf{c}	C1	C1		0	0	∞	∞	6	9	5	∞	1	SO.	4	r-	9
 N 	0	0	۱c	1	C1	0	0	5	5	5	5	5	5	5	5	9	9	9	9	9	9	9	5	SO.	5	5	5	ŝ	ŝ	-				5	5	5	ŝ	SO.	4	4
	•																														•				•					
∞	8	∞	0 0	Ô	00	00	00	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	S.	-	
- L-		- L	_	L					-	-			_	-	-	_	_		-	_	_	-								-	-							_	-	_

3r¹³C NMR

3s ¹³C NMR

3t¹H NMR

3t ¹³C NMR

