Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Total synthesis of Griseocazine D2 and D3

Subhasish Pradhan¹ and Rajesh Viswanathan*

* Corresponding Author: Rajesh Viswanathan

E-mail Address: rajesh@lab.iisertirupati.ac.in

Table of contents

1.	Abbreviations	3-4
2.	Table S1: - Comparative Synthetic methods for achieving	5-8
	C3-normal isoprenylation.	
3.	General procedure and compound characterization Data	9-23
4.	Spectroscopic data	24-57
5.	Comparison table of ¹ H & ¹³ C between isolated and synthetic (This work)	58-63

Abbreviations

ACN	Acetonitrile
BINOL	1,1'-Bi-2-naphthol
Boc anhydride	tert-butyloxycarbonyl anhydride
BOP-chloride	Bis-(2-oxo-3-oxazolidinyl) phosphinic chloride
CDCl ₃	Deuterated Chloroform
CD ₃ OD	Deuterated Methanol
DCM	Dichloromethane
DKP	2,5-Diketopiperazine
EtOAc	Ethyl Acetate
HCl	Hydrochloric Acid
MeOH	Methanol
MHz	MegaHertz
mmol	Millimole
μL	Microlitre
NaHCO ₃	Sodium Bicarbonate
Na_2SO_4	Sodium Sulphate

NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
[Pd(allyl)Cl] ₂	Allyl palladium chloride dimer
PMA (stain)	Phosphomolybdic acid
RT	Room temperature
THF	Tetrahydrofuran
TMS	Tetramethyl silane
Trp	Tryptophan
Trp-OMe	Tryptophan methyl ester

		r.t., 12h	C 9%	D.; Viswanathan,
				R. Regioselective Cope
				Rearrangement and Prenyl
				Transfers on Indole Scaffold
				Mimicking Fungal and Bacterial
				Dimethylallyltryptophan
				Synthases. J. Org.
				Chem. 2014 , 79, 10049-10049.
				2. Khopade, T. M.; Ajayan,
				K.; Joshi, S. S.; Lane, A.
				L.; Viswanathan, R. Bioinspired
				Brønsted Acid-Promoted
				Regioselective Tryptophan
				Isoprenylations. ACS
				<i>Omega</i> 2021 , <i>6</i> , 10840–10858
		Me Me Br Br (6 equiv.) Mg(NO ₃) ₂ ·6H ₂ O (5 equiv AcOH/AcONa (pH 2.9) r.t., 20h	(A) = H = H = H = H = H = H = H = H = H =	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ $
			H Me 3 22% Combined yield v	e N N N M M M 4 4 with 1(a)
3	Prenyl	$Mg(NO_3)_2$ $\otimes 6H_2$	1(b) 19%	Caballero, E.; Avendañ o,

bromide	equiv.)	Indolyltriethylborate: A Useful
	Et ₃ B (1.2 equiv.)	Reagent for Synthesis of C3-
	1,4-dioxane, r.t.,	Quaternary Indolenines. Org. Lett.
	12h	2013 , <i>15</i> , 1950–1953.

1. L-Trp-OMe-HCl:

To Magnetically stirring solution of L-Trp (20g, 97.93 mmol, 1.0 equiv.) with excess methanol, Thionyl chloride (17.76 ml, 244.82 mmol, 2.5

equiv.) was added dropwise by dropping funnel at 0 °C (under ice bath). After completion of the addition, reflux the solution at 60 °C for 18 h. After complete conversion, evaporate the excess methanol under Rota Vap. This led to the formation of a solid compound (25 g, 98.15 mmol, 100.22% yield) of white colure due to the formation of the hydrochloride salt. Data:

mp 204–209 °C. $[\alpha]_{\mathbf{D}+17.8 (c \ 0.52, CH_3OH).}^{20}$ ¹H NMR (400 MHz, CD₃OD) δ 7.44 (dt, J = 7.8, 1.0 Hz,1H), 7.29 (dt, J = 8.2, 0.9 Hz, 1H), 7.10 (s, 1H), 7.04 (m, 1H), 6.97 (m, 1H), 4.23 (dd, J = 7.4, 5.5 Hz,1H), 3.70 (s, 3H), 3.40 – 3.33 (m, 1H), 3.28 (d, J = 7.4 Hz, 1H). ¹³C {¹H} NMR (101 MHz, CD₃OD) δ 169.4, 136.9, 126.7, 124.1, 121.5, 118.9, 117.4, 111.2, 106.0, 53.2, 52.2, 26.1. HRMS(ESI) m/z: [M + H] ⁺ calcd. for C₁₂H₁₅N₂O₂ 219.1128; found 219.1127.

2. Methyl (tert-butoxy carbonyl)-L-tryptophanate:

(4.33 ml, 18.84 mmol, 1.20 equiv.) was added dropwise. After complete addition, let the reaction mixture stir for 16 h at RT. Excess DCM was evaporated after quenching the reaction mixture with adding 1N HCl solution; the resulting residue was dissolved in ethyl acetate, washed with brine, and dried over anhydrous sodium sulphate. On concentration of organic phase dense honey-type product was observed (4.75 g, 14.92 mmol, 95 % yield). Then, it is directly used for subsequent reactions

without purification. Data: mp 150-153 °C. $[\alpha]_{\mathbf{D}}^{20}$ +45.5 (*c* 0.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.23 – 7.15 (m, 1H), 7.16 – 7.07 (m, 1H), 6.99 (d, *J* = 2.1 Hz, 1H), 5.09 (d, *J* = 8.2 Hz, 1H), 4.65 (dd, *J* = 8.4, 5.2 Hz, 1H), 3.68 (s, 3H), 3.29 (dd, *J* = 5.6, 2.8 Hz, 2H), 1.43 (s, 9H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 172.8, 155.2, 136.1, 127.6, 122.7, 122.2, 119.6, 118.7, 111.2, 110.1, 79.8, 54.2, 52.2, 28.3,28.0. HRMS(ESI) *m*/*z*: [M + H] + calcd. for C₁₇H₂₂N₂O₄ 319.1653; found 319.1652.

3. methyl (3-methylbut-2-en-1-yl) carbonate:

Methyl Chloroformate (2.16ml, 27.86 mmol, 1.2 Me OMe equiv.) was added dropwise to the solution of prenyl alcohol (2.38 ml, 23.22 mmol, 1 equiv.), pyridine (5.61 ml, 69.66 mmol, 3 equiv.) in 0.2 M dry DCM under ice bath, then the reaction stirred for 5hr in RT. After that, 100ml of 1N HCl was added to quench the reaction. The organic phase was washed with brine and dried over anhydrous sodium sulphate. The product (3.1g, 21.50 mmol, 92.6% yield) was purified by column chromatography using (10% EtOAc/Hexane) solvent system. Data: ¹H NMR (400 MHz, CDCl₃) δ 5.35 (t, *J* = 7.3, 1.4 Hz, 1H), 4.61 (d, *J* = 7.3 Hz, 2H), 3.75 (s, 3H), 1.74 (s, 3H), 1.70 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.8, 140.0, 118.0, 64.6, 54.6, 25.7, 18.0. HRMS(ESI) m/z: [M + H] ⁺ calcd. for C₇H₁₂O₃ 145.0860; found 145.0866.

4. methyl ((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl) carbonate:

farnesol (5.64ml, 22.48 mmol, 1equiv.), pyridine (5.43ml, 67.45 mmol, 3 equiv.) in 0.2 M dry DCM, methyl chloroformate (2.09ml, 26.98 mmol,3 equiv.) was added dropwise. Then, the reaction mixture was allowed to stir for 5hr in rt. The reaction was quenched by the addition of 150ml of 1N HCl solution. The organic phase was washed with brine and dried over anhydrous sodium sulphate. The product (5.2g, 18.54mmol, 82.48% yield) was purified by column chromatography (10% EtOAc/Hexane) solvent mixture as eluent. Data: ¹H NMR (400 MHz, CDCl₃) δ 5.37 (tq, *J* = 7.2, 1.4 Hz, 1H), 5.08(tq, *J* = 5.3, 1.5 Hz, 2H), 4.65 (d, *J* = 7.2 Hz, 2H), 3.77 (s, 3H), 2.07 (dq, *J* = 16.2, 7.9 Hz, 6H), 1.97 (dd, *J* = 9.2, 6.1 Hz, 2H), 1.72

(s, 3H), 1.67 (s, 3H), 1.59(s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.8, 143.2, 135.5, 131.3, 124.3, 123.5, 117.7, 64.7, 54.6, 39.6, 39.5, 26.7, 26.1, 25.6, 17.6, 16.5, 16.0. HRMS(ESI) m/z: [M + Na] + calcd. for C₁₇H₂₈O₃ 303.1931; found 303.1947.

5. 1-(tert-butyl) 2-methyl (3aS,8aS)-3a-(3-methylbut-2-en-1-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b] indole-1,2(2H)-dicarboxylate:

Solution of prenyl carbonate (0.67g, 4.71mmol, 1.5 equiv.) in 10 ml of dry toluene was added dropwise to an ice-cold solution of L-Trp-OMe -NHBoc (1g, 3.14

mmol, 1equiv.), *R*-ligand (84.27mg, 0.15mmol, 0.05equiv.), $[Pd(allyl)Cl]_2$ (57.44mg ,0.15mmol, 0.05 equiv.), Cesium carbonate (1.5g, 4.71 mmol, 1.5 equiv.) in 60ml of dry toluene. The reaction mixture was allowed to stir for 16 hours at 0 °C; after that, the reaction was quenched by the addition of distilled water. The compound was extracted using EtOAc as an organic phase, washed with brine, and dried over anhydrous sodium sulphate. The mixture was loaded to a column and separated by using (10% EtOAc/Hexane) solvent system. Yellow-colored oil of (1g, 2.59mmol, 82% yield) formed under reduced pressure with a trace amount of another

isomer (> 19:1 dr). Data: ${}^{20}_{D}$ -252.45 (*c* 0.24, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.06 (m, *J* = 15.0, 7.4, 3.5, 1.3 Hz, 1H), 6.75 (m, *J* = 7.5, 3.3, 1.0

Hz, 1H), 6.62 (dd, J = 11.0, 7.8 Hz, 1H), 5.20 (d, J = 27.5 Hz, 1H), 5.16 – 5.08 (m, 1H), 4.08 – 3.97 (m, 1H), 3.73 (s, 3H), 2.53 (m, J = 12.6, 7.5 Hz, 1H), 2.35 (m, J = 14.5, 14.0, 7.3 Hz, 2H), 2.17 (ddd, J = 12.9, 8.8, 4.2 Hz, 1H), 1.69 (s, 3H), 1.52 (s, 3H), 1.43 (9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.6, 153.6, 148.4, 135.3, 132.1, 128.4, 123.2, 119.1, 118.9, 109.7, 80.9, 59.4, 57.0, 56.0, 52.1, 38.9, 28.6, 28.2, 25.9, 17.9. HRMS(ESI) m/z: [M + H] ⁺ calcd. for C₂₂H₃₀N₂O₄ 387.2279; found 387.2293.

6. (3aS)-1-(tert-butoxycarbonyl)-3a-(3-methylbut-2-en-1-yl)-

1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid:

^{Me} H LiOH (1234g, 5.14mmol, 4equiv.) was added to the H H solution of C3-Prenylated ester (0.5g, 1.29mmol, 1equiv.) in (1:1:1; by vol.) MeOH: H₂O: THF at 0 °C, then reaction mixture allowed to stir overnight at RT. 1N HCl was added after the completion of the reaction to quench the reaction. The compounds are extracted using DCM as an organic phase, washed with brine, dried over anhydrous sodium sulphate, and loaded into a column. The product spot was isolated by using (2% MeOH/DCM) solvent mixture. A white foamy product (0.3g, 0.805 mmol, 62.3% yield) formed under reduced pressure. Data: $[a]_{D}^{20}$ -156.47 (*c* 0.55, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.05 (m, 2H), 6.80 – 6.71 (m, 1H), 6.63 (dd, *J* = 12.4, 7.8 Hz, 1H), 5.22 (d, *J* = 27.6 Hz, 1H), 5.17 - 5.08 (m, 1H), 4.41-3.99 (m, 1H), 2.59 (ddd, J = 19.5, 12.8, 7.7 Hz,1H), 2.38 (m, 2H), 2.30-2.22 (m, 1H), 1.70(3H), 1.53 (s, 3H), 1.45 (9H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 179.0, 153.8, 148.6, 135.4, 132.1, 128.5, 123.1, 118.8, 109.7, 81.3, 81.1, 59.3, 56.2, 39.2, 35.4, 28.6, 28.2, 25.9, 17.9. HRMS(ESI) m/z: [M + H] + calcd. for C₂₁H₂₈N₂O₄ 373.2122; found 373.2130.

7. 1-(tert-butyl) 2-methyl (2S,3aR,8aR)-3a-((2E,6E)-3,7,11trimethyldodeca-2,6,10-trien-1-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1,2(2H)-dicarboxylate.

added under argon atmosphere. 60 ml of dry toluene was added to the flask under ice bath by maintaining 0 °C. A Solution of farnesyl carbonate (2.63g, 9.42mmol, 1.5equiv.) in 10 ml of dry toluene was added to the same reaction flask dropwise at the same temperature. Then, the reaction was allowed to stir at 0 °C for 16 hours. The reaction was quenched by the addition of distilled water, and the organic phase was extracted using EtOAc and dried over anhydrous sodium sulphate. The required product spot was isolated by column chromatography with a **dr 13.3: 1** using (10% EtOAc/Hexane) solvent mixture. A colorless liquid (2.1g, 4.11 mmol, 67%

yield) formed under reduced pressure. Data: $\begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{D}}^{20} +137.71$ (*c* 0.41, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.06 – 6.99 (m, 1H), 6.95 (dd, J = 7.4, 1.3 Hz, 1H), 6.64 (d, J = 1.0 Hz, 1H), 6.60 (m, 1H), 5.23 – 5.16 (m, 1H), 5.13 (s, 1H), 5.11 - 5.05 (m, 2H), 4.47 (ddd, J = 59.2, 8.8, 1.4 Hz, 1H), 3.15 (3H), 2.43 (m, 4H), 2.13 – 1.92 (m, 8H), 1.67 (s, 3H), 1.59 (s, 6H), 1.55 (s, 3H), 1.46 (9H). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CDCl₃) δ 172.2, 154.1, 149.9, 138.9, 135.1, 131.3, 128.5, 124.3, 124.0, 123.4, 118.7, 118.3, 109.3, 80.9, 80.6, 80.3, 59.6, 59.2, 57.2, 56.2, 51.9, 51.7, 39.9, 39.7, 38.5, 35.3, 28.6, 28.3, 26.7, 26.5, 25.7, 17.7, 16.3, 16.0. HRMS(ESI) m/z: [M + H] + calcd. for C₃₂H₄₇N₂O₄ 523.3531; found 523.3549.

8. methyl (2S,3aR,8aS)-3a-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate.

3.40ml of CAN, TMSI (15.30 mmol, 8 equiv.) was added dropwise to the ice-cold solution of Boc-protected C3farnesyl pyrroloindoline methyl-ester (1g, 1.91 mmol, 1 equiv.) over 5 min. After the reaction, it was quenched by dropwise addition of sodium thiosulphate. DCM was used to extract the organic phase, which was dried over anhydrous sodium sulphate. Column MeOH/DCM) solvent mixture. The compound slightly reddish oily nature (0.5g, 1.18 mmol, 61.84% yield) was obtained under reduced pressure. Data: $[a]_{\mathbf{p}}^{20}$ +90.1 (*c* 0.02, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J = 7.2, 3.6 Hz, 2H), 6.69 (t, J = 7.4 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 5.15 (m, 1H),5.08(m, 2H) 4.81 (s, 1H), 3.87 (dd, J = 7.7, 3.5 Hz, 1H), 3.33 (s, 3H), 2.41 (m, 5H), 1.99 (m, 9H), 1.68 (s, 3H), 1.60 (s, 3H), 1.58 (s, 3H),1.55(s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.5, 149.5, 138.3, 138.2, 135.2, 133.5, 131.4, 128.2, 125.0, 124.4, 124.1, 123.9, 119.8, 119.6, 118.9, 109.6, 82.6, 60.2, 57.8, 52.0, 41.2, 40.3, 40.0, 39.8, 36.5, 26.9, 25.8, 23.5, 17.8, 16.4, 16.1. HRMS(ESI) m/z: [M + H] + calcd. for C₂₇H₃₉N₂O₂ 423.3007; found 423.3011.

9. tert-butyl (2S,3aS,8aS)-2-((2S,3aR,8aR)-2-(methoxycarbonyl)-3a-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-1,2,3,3a,8,8ahexahydropyrrolo[2,3-b]indole-1-carbonyl)-3a-(3-methylbut-2-en-1yl)-1,2,3,3a,8,8a-hexahydro-114-pyrrolo[2,3-b]indole-1-carboxylate.

Boc protected-C3'-prenyl pyrroloindoline methyl acid (0.1g, 0.268 mmol, 1 equiv.) was loaded in a syringe pump for slow addition, over 16hr to a flame-dried RB having amine (Boc deprotected-

C3-farnesyl-methyl-ester) (0.22g, 0.53 mmol, 2 equiv.), Collidine (80 µl,

0.616 mmol, 2.3 equiv.) and BOP-Cl (0.15g, 0.616 mmol, 2.3 equiv.) in 10 ml of dry DCM. After the addition, the reaction mixture was allowed to stir for more than 6 hours. The reaction mixture was quenched by adding sodium bicarbonate solution, extracted using DCM as the organic phase, and dried over anhydrous sodium sulphate. The required product was isolated using (25%-30% EtOAc/Hexane) solvent mixture a colourless oily

compound (0.13g, 0.16 mmol, 65% yield). Data: $[a]_{D}^{20}$ +6.82 (*c* 0.41, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.03 (m, 2H), 7.04 – 6.93 (m, 2H), 6.84 – 6.46 (m, 4H), 5.37 – 5.28 (m, 1H), 5.27 – 5.20 (m, 1H), 5.18 – 5.01 (m, 3H), 4.91 (d, *J* = 8.9 Hz, 1H), 4.32 (d, *J* = 7.8 Hz, 1H), 4.06 (m, 1H) 3.26 – 3.07 (m, 3H), 2.60 (m, 1H), 2.39 (m, 4H), 2.31 (d, *J* = 7.1 Hz, 2H), 2.12 – 1.81 (m, 7H), 1.71 – 1.66 (m, 6H), 1.60 (m, 3H), 1.58 – 1.48 (m, 6H), 1.45 (m, 3H), 1.41 (m, 9H). ¹³C {H} NMR (101 MHz, CDCl₃) δ 172.0, 170.9, 154.9, 153.8,149.7, 148.9, 148.5, 139.2, 135.3, 135.1, 132.9,132.7, 132.0, 131.3, 128.8, 128.3, 124.2, 123.9,123.6, 123.1, 120.2, 118.9, 118.6, 118.1, 110.7, 109.7,109.3, 109.0, 81.8, 81.7, 80.6, 59.0, 58.8, 58.3, 58.0, 56.1, 55.4, 54.6, 52.3, 51.9, 40.2, 39.7, 38.8, 37.7, 36.6, 35.6, 35.7, 35.6, 28.6, 28.4, 26.7, 26.5, 25.9, 25.7, 17.9, 17.7, 16.3, 16.0.

HRMS(ESI) m/z: [M + H] ⁺ calcd. for C₄₈H₆₅N₄O₅ 777.4950; found 777.4963.

10.Griseocazine D2:

A slurry was made up of 0.13g of peptide (0.16 mmol, 1equiv.) with a pinch of 230-400 mesh silica gel in DCM. Then, it was stirred and heated at 170 °C for 30 min. After the reaction (monitored by TLC) the

reaction mixture was directly loaded to column chromatography to separate the required product. The product (94mg, 0.14 mmol, 88% yield) was isolated

by a 25-30% mixture of EtOAc and Hexane as an eluent. Data: $[a]_{D}^{20}$ -51.447 (*c* 0.31, DCM). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.16 (d, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.97 (q, *J* = 7.7 Hz, 2H), 6.65 (d, *J* = 7.5 Hz, 1H), 6.61 (dd, *J* = 7.6, 3.6 Hz, 2H), 6.56 (d, *J* = 7.9 Hz, 1H), 6.49 (d, *J* = 7.8 Hz, 1H), 6.47 (s, 1H), 5.21 (s, 1H), 5.14 (s, 1H), 5.12-4.90 (m, 4H), 4.70 – 4.53 (m, 1H), 4.13 – 4.02 (m, 1H), 2.55 (m, 1H), 2.45 (m, 2H), 2.35 (m, 3H), 2.16 (dd, *J* = 12.8, 11.0 Hz, 1H), 2.02 – 1.76 (m, 9H), 1.63 (s, 6H), 1.56 (s, 3H), 1.54 (s, 3H), 1.49 (d, *J* = 2.4 Hz, 6H). ¹³C {H} NMR (101 MHz, DMSO-*d*₆) δ 167.2, 166.0, 149.6, 148.5, 137.6, 134.4, 133.9, 132.6, 131.3, 130.5, 128.0, 127.8, 124.1, 123.7, 123.0, 122.3, 119.5, 119.2, 117.7, 117.4, 108.7, 79.7, 78.0, 59.9, 58.5, 55.3, 55.2, 37.5, 35.3, 34.1, 26.1, 26.0, 25.7, 25.4, 17.7, 17.5, 16.1. HRMS(ESI) *m*/*z*: [M + H] ⁺ calcd. for C₄₂H₅₃N₄O₂ 645.4164 found; 645.4156.

11.1-(tert-butyl) 2-methyl (28,3a8,8a8)-3a-((2E,6E)-3,7,11trimethyldodeca-2,6,10-trien-1-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1,2(2H)-dicarboxylate:

L-Trp-OMe-NHBoc (2g, 6.28mmol, 1equiv.) was taken in 250ml RB with 60ml of dry toluene. Into the RB Rligand (0.16g, 0.314 mmol, 0.05equiv.), [Pd(prenyl)Cl]₂

(0.11g, 0.314mmol, 0.05equiv.) were added under argon atmosphere. Solution of farnesyl carbonate (2.63g, 9.42mmol, 1.5equiv.) in 10 ml of dry toluene was then added to the same reaction flask dropwise in an ice bath. Then, the reaction was allowed to stir for 16 hr at 0 °C. Then, the reaction was quenched by the addition of distilled water. The resulting residue was dissolved in EtOAc, washed with brine, and dried over anhydrous sodium sulphate. The required product spot was isolated by column chromatography using (10% EtOAc/ hexane) solvent mixture. On concentration of organic phase under reduced pressure, a colorless oil of (2.5g, 4.78mmol, 76.2% yield) with a trace quantity of another product

formed (dr > 19:1). Data: ${}^{[\alpha]}{}^{20}_{D}$ -213.82 (c 0.62, DCM). ¹H NMR (400 MHz, CDCl₃) δ 6.95 (ddd, J = 7.4, 4.3, 2.8 Hz, 2H), 6.62 (td, J = 7.5, 4.9 Hz, 1H), 6.53 - 6.46 (m, 1H), 5.12 (d, J = 21.4 Hz, 1H), 5.08 - 5.04 (m, 1H), 5.03 - 4.97 (m, 2H), 4.01 - 3.87 (m, 1H), 3.62 (s, 3H), 2.44 (td, J = 2.44 (td, J

12.8, 7.5 Hz, 1H), 2.27 (dq, J = 14.5, 7.3 Hz, 2H), 2.08 (ddd, J = 12.0, 8.7, 3.1 Hz, 1H), 1.92 (m, 8H), 1.57 (s, 3H), 1.50 (s, 6H), 1.43 (3H), 1.33 (9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.3, 152.4, 147.4, 137.6, 133.1, 130.9, 130.0, 127.3, 123.3, 123.0, 122.1, 117.8, 117.5, 108.5, 80.2, 79.5, 76.5, 76.2, 75.9, 58.3, 56.0, 55.0, 50.8, 38.7, 38.0, 34.3, 27.4, 27.0, 25.7, 25.5, 24.6, 16.6, 15.1, 14.9. HRMS(ESI) m/z: [M + H] + calcd. for C₃₂H₄₇N₂O₄ 523.3531; found 523.3548.

12.methyl (2S,3aS,8aR)-3a-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate:

To an ice-cold solution of the above compound (0.5g, 0.95mmol, 1equiv.) in 30 ml of dry ACN, TMSI (1.08ml, 7.6mmol, 8equiv.) was added dropwise, then the reaction was allowed to stir at 0 °C for 30min. After

fully converting the starting material, the reaction was quenched by adding sodium thiosulphate solution. DCM solvent was used as an extracting solvent, washed with brine dried over anhydrous sodium sulphate, and loaded into a column. The product was isolated by using (5% MeOH/DCM) solvent mixture. Slightly red color oily nature compound (0.285g, 0.674mmol, 70% yield) formed under reduced pressure. Data: $[\alpha]_{D}^{20}$ -69.231 (*c* 0.15, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.04 (t, *J* = 7.4 Hz, 2H), 6.72 (t, 1H), 6.57 (d, 3H), 5.16 – 5.03 (m, 2H), 4.91 (s, 1H), 3.71 (s, 4H), 2.45 (d, *J* = 7.3 Hz, 2H), 2.39 (dd, *J* = 12.0, 5.7 Hz, 1H), 2.09 – 2.01 (m, 11H), 1.68 (s, 3H), 1.59 (m, 6H), 1.55 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.2, 149.9, 138.2, 135.2, 135.1, 132.9, 131.5, 131.3, 128.1, 124.8, 124.3, 123.6, 119.7, 119.5, 109.0, 82.3,59.6, 59.4, 52.1, 44.2, 39.9, 36.8, 32.0, 26.7, 25.7, 23.4, 17.7, 16.3, 16.0. HRMS(ESI) *m*/*z*: [M + H] ⁺ calcd. for C₂₇H₃₉N₂O₂ 423.3007; found 423.3009.

13.tert-butyl (2S,3aS,8aS)-2-((2S,3aS,8aS)-2-(methoxycarbonyl)-3a-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-1,2,3,3a,8,8ahexahydropyrrolo[2,3-b]indole-1-carbonyl)-3a-(3-methylbut-2-en-1yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate:

taken under argon atmosphere. To this RB 10ml dry DCM was added. In separate dried pear-shaped RB, acid (100mg, 0.268, 1equiv.) was taken and dissolved with 5ml dry DCM; then the acid solution was added to the RB containing amine dropwise by syringe pump over 14hr. The reaction mixture was again allowed to stir at room temperature for an extra 6hr after the reaction was quenched by the addition of NaHCO₃ solution and extracted through DCM, dried over anhydrous sodium sulphate. The required product spot was isolated through silica-gel chromatography by using (20% EtOAc/Hexane) solvent system. Colorless oily products (0.14g, 0.180 mmol, 67.1% yield) formed under reduced pressure. Data: $[a]_{D}^{20}$ -256.410 (*c* 0.15, DCM). ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 6.98 (m, 4H), 6.76 (m, 2H), 6.63 (m, 2H), 6.52 – 6.46 (m, 1H), 5.32 – 5.25 (m, 1H), 5.21 (s, 1H), 5.17 – 5.03 (m, 4H), 4.92 (s, 1H), 4.50 – 4.36 (m, 1H), 4.13 (m, 1H), 3.73 (d, *J* = 19.1 Hz, 3H), 2.60 (m, 2H), 2.51 – 2.32 (m, 4H), 2.37 (m, 1H), 2.26 (m, 1H), 2.06 – 1.94 (m,8H), 1.68 (d, *J* = 5.2 Hz, 6H), 1.63 (s, 6H), 1.59 (m, 3H), 1.51(s, 9H), 1.46 (s, 3H), 1.34 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 172.6, 172.1, 154.2, 149.8, 148.1, 147.5, 138.9, 135.2, 1349, 132.7, 131.2, 128.6, 128.4, 124.3, 124.0, 123.5, 122.9, 119.1,

118.7, 110.3, 109.3, 81.5, 81.4, 81.2, 59.8, 58.4, 58.2,
57.4, 55.9, 52.1, 40.0, 39.7, 39.4, 36.0, 35.8, 28.7,
26.8, 25.9, 25.7, 17.9, 17.7, 16.5, 16.4, 16.0.
HRMS(ESI) *m/z*: [M + H] ⁺ calcd. for C₄₈H₆₅N₄O₅
777.4950; found 777.4957.

14.Griseocazine D3:

The slurry of peptide (50mg, 0.064 mmol, 1equiv.) was made by using 230-400 mesh silica in 5ml of dry DCM in a 50ml of oven-dried RB and then magnetically

stirred in 170 °C for 30min. (formed powder). After that, directly loaded to silica gel chromatography, the product was isolated by (25% EtOAc/Hexane) solvent mixture. A colorless oil product (37mg, 0.057 mmol, 90.5 % yield) was formed

 $\begin{bmatrix} a \end{bmatrix}^{20}_{\mathbf{D}} -495.667 (c \ 0.6, \text{DCM}). \ ^{1}\text{H NMR} (400 \text{ MHz}, \text{DMSO-}d_{6}) \ \delta \ 7.10 (m, 2\text{H}), \ 6.94 (m, 2\text{H}), \ 6.58 (m, 2\text{H}), \ 6.50 (m, 2\text{H}), \ 6.36 (m, 2\text{H}), \ 5.25 - 5.15 (m, 2\text{H}), \ 5.08 (m, 4\text{H}), \ 3.99 (dd, J = 10.8, \ 6.4 \text{ Hz}, 2\text{H}), \ 2.46 (dt, J = 12.6, \ 6.6 \text{ Hz}, 2\text{H}), \ 2.34 (m, 4\text{H}), \ 2.18 (m, 2\text{H}), \ 2.06 - 1.87 (m, 8\text{H}), \ 1.64 (s, 6\text{H}), \ 1.56 (s, \ 6\text{H}), \ 1.49 (s, \ 6\text{H}). \ ^{13}\text{C} \{\text{H}\} \text{ NMR} (101 \text{ MHz}, \ \text{DMSO-}d_{6}) \ \delta \ 165.5, \ 149.8, \ 137.4, \ 134.3, \ 133.8, \ 131.2, \ 131.1, \ 130.6, \ 128.0, \ 124.1, \ 123.9, \ 122.9, \ 119.2, \ 119.1, \ 117.6, \ 117.5, \ 108.5, \ 78.5, \ 78.3, \ 59.4, \ 59.3, \ 55.0, \ 54.9, \ 39.2, \ 38.3, \ 38.2, \ 35.8, \ 35.6, \ 26.2, \ 26.0, \ 25.7, \ 25.4, \ 17.7, \ 17.5, \ 16.0, \ 15.7.\text{HRMS(ESI)} \ m/z: \ [\text{M} + \text{H}]^+ \text{ calcd. for } C_{42}\text{H}_{53}\text{N}_4\text{O}_2 \ 645.4164 \ found; \ 645.4156.}$

Spectrum-1. ¹H NMR of L-Trp-OMe hydrochloride salt.

Spectrum-2. ¹³C NMR of L-Trp-OMe hydrochloride salt.

Spectrum-3. ¹H NMR of Boc-protected-L-Trp-Methyl-ester.

Spectrum-4. ¹³C NMR of Boc-protected-L-Trp-Methyl-ester.

`

Spectrum-5. ¹H NMR of Prenyl methyl carbonate.

Spectrum-6. ¹³C NMR of Prenyl methyl carbonate.

Spectrum-7. ¹H NMR of Farnesyl methyl carbonate.

Spectrum-8. ¹³C NMR of Farnesyl methyl carbonate.

Spectrum-9. ¹H NMR of 01: Boc protected C3-Prenyl -L-Trp-pyrroloindoline-methyl-ester.

Spectrum-10. ¹³C NMR of 01: Boc protected C3-Prenyl -L-Trp-pyrroloindoline-methyl-ester.

Spectrum-11. ¹H NMR of 02: C3-Prenyl -L-Trp-pyrroloindoline acid.

Spectrum-12. ¹³C NMR of 02: C3-Prenyl -L-Trp-pyrroloindoline acid.

Spectrum-13. ¹H NMR of 03: Boc protected-endo- C3'-farnesyl -L-Trp pyrroloindoline methyl-ester.

Spectrum-14. ¹³C NMR of 03: Boc protected-endo- C3'-farnesyl -L-Trp pyrroloindoline methyl-ester.

Spectrum-15. ¹H NMR of 04: endo-C3'-farnesyl -L-Trp pyrroloindoline methyl-ester.

Spectrum-16. ¹³C NMR of 04: endo-C3'-farnesyl -L-Trp pyrroloindoline methyl-ester.

RV-SP-S-PEP.10.1.1r

Spectrum-17. ¹H NMR of 05: endo- C3'-farnesyl-exo-C3-prenyl -L-Trp-L-Trp pyrroloindoline Peptide.

Spectrum-18. ¹³C NMR of 05: endo-C3'-farnesyl-exo-C3-prenyl -L-Trp-L-Trp pyrroloindoline Peptide.

Spectrum-19. ¹H NMR of 06: Griseocazine D2.

Spectrum-20. ¹³C NMR of 06: Griseocazine D2.

Spectrum-21. NOESY Spectrum of 06: Griseocazine D2

1

Spectrum-22. COSY Spectrum of 06: Griseocazine D2

Spectrum-23. HSQC Spectrum of 06: Griseocazine D2

Spectrum-24. ¹H NMR of 07: Boc protected-exo-C3'-farnesyl -L-Trp-pyrroloindoline.

Spectrum-25. ¹³C NMR of 07: Boc protected-exo-C3'-farnesyl -L-Trp-pyrroloindoline methyl-ester.

Spectrum-26. ¹H NMR of 08: exo-C3'-farnesyl -L-Trp-pyrroloindoline methyl-ester.

Spectrum-27. ¹³C NMR of 08: exo-C3'-farnesyl -L-Trp-pyrroloindoline methyl-ester. (solvent peak at δ 77.0 ppm)

Spectrum-28. ¹H NMR of 09: exo-C3'-farnesyl-exo-C3-prenyl -L-Trp-L-Trp-pyrroloindoline Peptide.

Spectrum-29. ¹³C NMR of 09: exo-C3'-farnesyl-exo-C3-prenyl -L-Trp-L-Trp pyrroloindoline Peptide.

Spectrum-30. ¹H NMR of 10: Griseocazine D3

Spectrum-31. ¹³C NMR of 10: Griseocazine D3

Spectrum-33. COSY Spectrum of 10: Griseocazine D3

Spectrum-34. HSQC Spectrum of 10: Griseocazine D3

Comparison of ¹H-NMR for isolated and synthetic Griseocazine D2

S.No.	Carbon No.	Reported (Isolation by Malit	Observed (Synthetic)	
		et al.)	This work	
		DMSO- <i>d</i> ₆ , (800 MHz)	DMSO- <i>d</i> ₆ , (400 MHz)	
		(53-proton)	(52- proton)	
1	N-1	6.46 (s, 1H)	6.47 (s, 1H)	
	N-1′	6.60 (d, 1H)	6.61 (dd, 1H)	
2	C2 (CH)	5.13 (s, 1H)	5.13 (s, 1H)	
	C2' (CH)	5.22 (d, 1H)	5.21 (s, 1H)	
3	C3 (C)	-	-	
	C3′ (C)	-	-	
	C3a (C)	-	-	
	C3a' (C)	-	-	
4	C4 (CH)	7.16 (d, 1H)	7.16 (d, 1H)	
	C4' (CH)	7.07 (d, 1H)	7.08 (d, 1H)	
5	C5 (CH)	6.63 (td, 1H)	6.65 (m, 1H)	
	C5' (CH)	6.58 (td, 1H)	6.61 (m, 1H)	
6	C6 (CH)	6.97 ^a (m, 1H)	6.97 (m, 2H)	
	C6' (CH)	6.95 (m, 1H)		
7	C7 (CH)	6.55 (d, 1H)	6.56 (d, 1H)	
	C7′ (CH)	6.48 (d, 1H)	6.49 (d, 1H)	
	C7a (C)	-	-	
	C7a′ (C)	-	_	
8	C8 (CH ₂)	2.53 (dd, 2H), 2.15 (dd, 1H)	2.55 (m, 1H), 2.16 (dd, 1H)	
	C8' (CH ₂)	2.34^{a} (m, 1H), 1.94^{a} (m, 1H)	2.35 ^a (m, 1H), 2.02 ^a -1.76 ^a (m,	
			1H)	

0	CO(CII)	4.07(111.111)			
9	C9 (CH)	4.07 (ddd, 1H)	4.13-4.02 (m, 1H)		
	C9′ (CH)	4.57 (ddd, 1H)	4.70-4.53 (m, 1H)		
10	C10 (C)	-	-		
	C10′ (C)	-	-		
11	N-11	-	-		
	N-11′	-	_		
12	C12 (CH ₂)	2.34 ^a (m, 2H)	2.35ª (m, 2H)		
	C12′ (CH ₂)	2.44 (m, 2H)	2.45 (m, 2H)		
13	C13 (CH)	5.08 (t, 1H)	5.12-4.90 ^a (m, 2H)		
	C13′ (CH)	5.04 ^a (m, 1H)			
14	C14 (C)	-	-		
	C14′ (C)	-	_		
15	C15 (CH ₃)	1.48 ^a (m, 3H)	1.49 ^a (d, 3H)		
	C15′ (CH ₃)	1.55 (s, 3H)	1.56 (s, 3H)		
16	C16 (CH ₃)	1.63 (s, 3H)	1.63 (s, 3H)		
	C16′ (CH ₂)	1.92 ^a (m, 2H)	2.02 ^a -1.76 ^a (m, 2H)		
17	C17′ (CH ₂)	1.97 ^a (m, 2H)	2.02 ^a -1.76 ^a (m, 2H)		
18	C18′ (CH)	4.99 (t, 1H)	5.12-4.90 ^a (m, 1H)		
19	C19' (C)	-	-		
20	C20' (CH ₃)	1.48 ^a (m, 3H)	1.49 ^a (d, 3H)		
21	C21′ (CH ₂)	1.87 (m, 2H)	2.02 ^a -1.76 ^a (m, 2H)		
22	C22' (CH ₂)	$1.97^{a}(m, 2H)$	2.02 ^a -1.76 ^a (m, 2H)		
23	C23' (CH)	5.03 ^a (m, 1H)	5.12-4.90 ^a (m, 1H)		
24	C24′ (C)	-	-		
25	C25' (CH ₃)	1.53 (s, 3H)	1.54 (s, 3H)		
26	C26' (CH ₃)	1.63 (s, 3H)	1.63 (s, 3H)		
Tab	Table S2 . Comparison of chemical shifts (δ) of ¹ H-NMR between synthesized and				
isolated and synthetic Griseocazine D2. ^a Signal overlapping with each other.					

Comparison of ¹³C{H}-NMR for isolated and synthetic Griseocazine D2

S.No.	Carbon No.	Reported	Observed	Change in
		(Isolation by	(Synthetic)	chemical
		Malit <i>et al.)</i>	This work	shift
		DMSO- <i>d</i> ₆ , (800	DMSO-d ₆ , (400	Δδ
		MHz)	MHz)	(in ppm)
1	N-1	-	-	-
	N-1′	-	-	
2	C2 (CH)	78.1	78.0	0.1
	C2' (CH)	79.7	79.7	-
3	C3 (C)	55.3	55.2	0.1
	C3′ (C)	55.4	55.3	0.1
	C3a (C)	131.3	131.3	-
	C3a' (C)	132.6	132.6	-
4	C4 (CH)	123.0	123.0	-
	C4' (CH)	122.3	122.3	-
5	C5 (CH)	117.7	117.7	-
	C5' (CH)	117.5	117.4	0.1

6	C6 (CH)	128.1	128.0	0.1	
	C6' (CH)	127.8	127.8	-	
7	C7 (CH)	108.8	108.7ª	0.1	
	C7′ (CH)	108.7	108.7ª	-	
	C7a (C)	149.7	149.6	0.1	
	C7a' (C)	148.5	148.5	-	
8	C8 (CH ₂)	37.6	37.5	0.1	
	C8 (CH ₂)	39.1	Merged with	-	
			solvent residual		
			peak		
9	C9 (CH)	59.9	59.9	-	
	C9′ (CH)	58.5	58.5	-	
10	C10 (C)	167.2	167.2	-	
	C10′ (C)	166.1	166.0	0.1	
11	N-11	-	-	-	
	N-11′	-	-	-	
12	C12 (CH ₂)	35.4	35.3	0.1	
	C12′ (CH ₂)	34.2	34.1	0.1	
13	C13 (CH)	119.3	119.2	0.1	
	C13′ (CH)	119.6	119.5	0.1	
14	C14 (C)	134.0	133.9	0.1	
	C14′ (C)	137.7	137.6	0.1	
15	C15 (CH ₃)	17.7	17.7	-	
	C15′ (CH ₃)	16.2	16.1	0.1	
16	C16 (CH ₃)	25.8	25.7	0.1	
	C16′ (CH ₂)	39.3	Merged with	-	
			solvent residual		
			peak		
17	C17′ (CH ₂)	26.1	26.1	-	
18	C18′ (CH)	123.7	123.7	-	
19	C19' (C)	134.5	134.4	0.1	
20	C20' (CH ₃)	17.5	17.5	0.1	
21	C21′ (CH ₂)	39.2	Merged with	-	
			solvent residual		
			peak		
22	C22' (CH ₂)	26.2	26.1	0.1	
23	C23' (CH)	124.1	124.1	-	
24	C24′ (C)	130.6	130.5	0.1	
25	C25' (CH ₃)	17.5	17.5	-	
26	C26' (CH ₃)	25.4	25.4	-	
Table	S3 . Compariso	on of $13C(H)$ NMR	chemical shifts (δ) a	nd difference	
in ch	emical shift (Δ	δ) between isolated	and synthetic Griseod	cazine D2. ^a	
Signal overlapping with each other.					

S.No.	Carbon No.	Reported (Isolation by	Observed (Synthetic)
		Malit <i>et al.</i>)	This work
		DMSO- <i>d</i> ₆ , (800 MHz)	DMSO-d ₆ , (400 MHz)
		(52-Proton)	(52-Proton)
1	N-1	6.38 ^a (m, 1H)	6.36 (m, 2H)
	N-1′	6.37 ^a (m, 1H)	
2	C2 (CH)	5.17 ^a (m, 1H)	5.25-5.15 (m, 2H)
	C2' (CH)	5.19 ^a (m, 1H)	
3	C3 (C)	-	-
	C3′ (C)	-	-
	C3a (C)	-	-
	C3a' (C)	-	-
4	C4 (CH)	7.11 ^a (m, 1H)	7.10 (m, 2H)
	C4' (CH)	7.10 ^a (m, 1H)	
5	C5 (CH)	6.59 ^a (m, 1H)	6.58 (m, 2H)
	C5' (CH)	6.57 ^a (m, 1H)	
6	C6 (CH)	6.93 ^a (m, 1H)	6.94 (m, 2H)
	C6' (CH)	6.93 ^a (m, 1H)	
7	C7 (CH)	6.49 ^a (d, 1H)	6.50 (m, 2H)
	C7′ (CH)	6.49 ^a (d, 1H)	
	C7a (C)	-	-
	C7a′ (C)	-	-
8	C8 (CH ₂)	2.45^{a} (m, 1H), 2.16^{a} (m,	2.46 ^a (m, 1H), 2.18 ^a (m, 1H)
		<u>1H)</u>	
	C8' (CH ₂)	2.44^{a} (m, 1H), 2.17^{a} (m,	$2.46^{a}(m, 1H), 2.18^{a}(m, 1H)$
		1H)	
9	C9 (CH)	4.01 ^a (m, 1H)	3.99 (m, 2H)
	C9′ (CH)	4.00^{a} (m, 1H)	
10	C10 (C)	_	-
	C10′ (C)	_	-
11	N-11	_	-
	N-11′	-	-
12	C12 (CH ₂)	2.34 ^a (m, 2H)	2.34 (m, 4H)
	C12′ (CH ₂)	2.34 ^a (m, 2H)	
13	C13 (CH)	5.07 ^a (m, 1H)	5.08 ^a (m, 2H)
	C13′ (CH)	5.10 ^a (m, 1H)	
14	C14 (C)	-	-
	C14′ (C)	-	-
15	C15 (CH ₃)	1.49^{a} (m, 3H)	1.49 (s, 6H)
	C15′ (CH ₃)	1.48^{a} (m, 3H)	
16	C16 (CH ₃)	1.64 ^a (m, 3H)	1.64 (s, 3H)
	C16′ (CH ₂)	1.94 ^a (m, 2H)	2.06 ^a -1.87 ^a (m, 2H)
17	C17' (CH ₂)	2.00 ^a (m, 2H)	2.06 ^a -1.87 ^a (m, 2H)
18	C18′ (CH)	5.05 ^a (m, 1H)	5.08 ^a (m, 1H)
19	C19' (C)	-	-
20	C20' (CH ₃)	1.55 (s, 3H)	1.56 (s, 3H)
21	C21' (CH ₂)	1.92^{a} (m, $2H$)	2.06 ^a -1.87 ^a (m, 2H)

Comparison of ¹H-NMR for natural and synthetic Griseocazine D3

22	C22' (CH ₂)	2.01 ^a (m, 2H)	2.06 ^a -1.87 ^a (m, 2H)	
23	C23' (CH)	5.06^{a} (m, 1H)	5.08^{a} (m, 1H)	
24	C24′ (C)	-	-	
25	C25′ (CH ₃)	1.56 (s, 3H)	1.56 (s, 3H)	
26	C26' (CH ₃)	1.63 ^a (m, 3H)	1.64 (s, 3H)	
Table S4 . Comparison of chemical shifts (δ) of ¹ H-NMR between synthesized				
and isolated and synthetic Griseocazine D3. ^a Signal overlapping with each other.				

Comparison of ¹³C{H}-NMR for natural and synthetic Griseocazine D3

S.No.	Carbon No.	Reported	Observed	Change in
		(Isolation by	(Synthetic)	chemical
		Malit <i>et al.</i>)	This work	shift
		DMSO- <i>d</i> ₆ , (800	DMSO-d ₆ , (400	Δδ
		MHz)	MHz)	(in ppm)
1	N-1	-	-	-
	N-1′	-	-	-
2	C2 (CH)	78.4	78.3	0.1
	C2' (CH)	78.6	78.5	0.1
3	C3 (C)	55.0	54.9	0.1
	C3′ (C)	55.1	55.0	0.1
	C3a (C)	131.3	131.2	0.1
	C3a' (C)	131.2	131.1	0.1
4	C4 (CH)	123.0	122.9	0.1
	C4' (CH)	123.0	122.9	0.1
5	C5 (CH)	117.6	117.6	-
	C5' (CH)	117.5	117.5	-
6	C6 (CH)	128.0ª	128.0ª	-
	C6' (CH)	128.0ª	128.0ª	-
7	C7 (CH)	108.6ª	108.5ª	0.1
	C7′ (CH)	108.6ª	108.5ª	0.1
	C7a (C)	149.8	149.8	-
	C7a' (C)	149.8	149.8	-
8	C8 (CH ₂)	38.4	38.3	0.1
	C8 (CH ₂)	38.3	38.2	0.1
9	C9 (CH)	59.4	59.3	0.1
	C9' (CH)	59,4	59.4	-
10	C10 (C)	165.6	165.5	0.1
	C10′ (C)	165.5	165.5	-
11	N-11	-	-	-
	N-11′	-	-	-
12	C12 (CH ₂)	35.9	35.8	0.1
	C12' (CH ₂)	35.7	35.6	0.1
13	C13 (CH)	119.3	119.2	0.1
	C13' (CH)	119.2	119.1	0.1

14	C14 (C)	133.9	133.8	0.1
	C14′ (C)	137.5	137.4	0.1
15	C15 (CH ₃)	17.8	17.7	0.1
	C15′ (CH ₃)	17.6	17.5	0.1
16	C16 (CH ₃)	25.8	25.7	0.1
	C16′ (CH ₂)	39.4	Merged with	-
			solvent residual	
			peak	
17	C17′ (CH ₂)	26.0	26.0	-
18	C18′ (CH)	123.9	123.9	-
19	C19' (C)	134.4	134.4	-
20	C20' (CH ₃)	15.8	15.7	0.1
21	C21′ (CH ₂)	39.3	39.2	0.1
22	C22' (CH ₂)	26.2	26.2	-
23	C23' (CH)	124.1	124.1	-
24	C24′ (C)	130.7	130.6	0.1
25	C25' (CH ₃)	17.6	17.5	0.1
26	C26' (CH ₃)	25.5	25.4	-
Table S5 . Comparison of $13C\{H\}$ NMR chemical shifts (δ) and difference				
in chemical shift ($\Delta\delta$) between isolated and synthetic Griseocazine D3. ^a				
Signal overlapping with each other.				