Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting information

Hydrogen-Bonding-Controlled Stereospecific Synthesis of Z-Enamides

Xiaoyu Zhang,^a Xiangyu Lu,^a Yajun Zou,^a Jiajia Lang,^a Yingwei Wang^{*b} and Gang Zhao^{*a} ^aSchool of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China; ^bSchool of Chemical Engineering, Sichuan University of Science & Engineering,Zigong, 643000, China;

*Corresponding author email: gzhao@scu.edu.cn; ywwang@suse.edu.cn

Table of Contents

1.	General information	S2
2.	Preparation of starting materials	S2
3.	General Synthetic Procedures	S3
4.	X-Ray Crystallographic Data	S14
5.	¹ H and ¹³ C NMR spectra	S16
6.	¹⁹ F NMR spectra	S38

1. General information

All reagents were purchased from commercial suppliers and used without further purification. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Reactions were monitored by thin-layer chromatography (TLC) using 0.25 mm Merck silica gel precoated plates (60F-254). Visualization was accomplished by irradiation with UV light at 254 nm. Flash column chromatography was performed using Merck silica gel 60 (particle size 0.040–0.063 mm).

¹H and ¹³C NMR spectra were recorded in CDCl₃, on a Bruker Ascend 400 (400 MHz for ¹H and 101 MHz for ¹³C). Chemical shifts were reported in ppm from tetramethylsilane with solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$ ppm). Spectra were reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were collected on commercial instruments (101 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 77.0$). Mass spectra were recorded on a Waters Vion IMS QTof system equipped with an ESI source.

2. Preparation of starting materials

DCM (3 ml) and sat. NaHCO₃ (6 mL) were stirred vigorously and chilled in an ice bath. Acyl chloride (2.6 mmol, 1.3 equiv.) was added, followed immediately by 2aminoacetophenone hydrochloride (2 mmol). Stirring was continued while warming to room temperature over a period of 2 h. The mixture was extracted with DCM (3*5 mL), the combined organic layers washed with sat. NaCl (10 mL) and dried over Na₂SO₄. Filtration and removal of the solvent under reduced pressure produced the crude product that could be purified if necessary by silica gel chromatography or crystallization.

3. General Synthetic Procedures

Table S1. Screening the reaction conditions^a

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $	O Base Solvent	→	
Entry	Base	Solvent	Temp. (°C)	Yield (%)
1	Et ₃ N	DCM	r.t.	87
2	DBU	DCM	r.t.	25
3	pyridine	DCM	r.t.	N.R.
4	DMAP	DCM	r.t.	8
5	DIPEA	DCM	r.t.	N.R.
6	DBACO	DCM	r.t.	67
7	TEMED	DCM	r.t.	51
8	DIPA	DCM	r.t.	34
9	K_2CO_3	DCM	r.t.	N.R.
10	Cs_2CO_3	DCM	r.t.	N.R.
11	NaHCO ₃	DCM	r.t.	N.R.
12	NaOH	DCM	r.t.	N.R.
13	Et ₃ N	DCE	r.t.	93
14	Et ₃ N	CDCl ₃	r.t.	64

15	Et ₃ N	MeCN	r.t.	69
16	Et ₃ N	DMF	r.t.	53
17	Et ₃ N	toluene	r.t.	44
18	Et ₃ N	1,4-Dioxane	r.t.	31
19	Et ₃ N	THF	r.t.	38
20	Et ₃ N	CH ₃ COCH ₃	r.t.	45
21	Et ₃ N	H_2O	r.t.	N.R.
22	Et ₃ N	DCE	10	73
23	Et ₃ N	DCE	40	65
24	Et ₃ N	DCE	55	68
25	Et ₃ N	DCE	70	73
26	Et ₃ N	DCE	83	57

^a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), base (0.2eq.), solvent (2 mL) for 16h.

Discussion of Non-reactive Substrates

To provide additional insights into the substrate scope and limitations of this methodology, we replaced the substrate N-phenacylbenzamide with the three compounds shown in the **Figure S1** under standard reaction conditions. In all cases, the target product was not obtained. Specifically, when using phenylacetone (**Figure S1**, 1) or when a phenyl group was introduced at the β -position (**Figure S1**, 3), no reaction occurred. When a methoxy group was introduced at the β -position (**Figure S1**, 2), the reaction system became too complex to identify the main product. Comprehensive analysis confirms that the highly reactive amino group is critically important for both this reaction and our primary research objective - the synthesis of *Z*-enamides.

Figure S1: β-position substrates exploration

Next, We have explore the reactivity of butynes with one ester group constant and the other EWG varied, as well as butynes with both EWGs replaced by groups other than ester. However, despite our efforts, these attempts did not yield the desired products under the current reaction conditions (as shown in **Figure S2**). When one ester group was replaced with another EWG (e.g., trifluoromethyl group, methyl propiolate), the reaction did not proceed as expected, and the target product was not obtained. Similarly, when both ester groups were replaced with other EWGs (e.g., benzoyl group), the reaction failed to generate the anticipated products. We believe that these results may be attributed to the unique electronic and steric properties of the ester group, which play a crucial role in facilitating the reaction.

Figure S2: Butynes having different EWGs

General procedure for the preparation of products

In a dried test tube equipped with a magnetic stirrer, N-phenacylbenzamide (0.2 mmol, 1 eq) and 2 mL of 1,2-dichloroethane were added, followed by dimethyl butynedioate (0.3 mmol, 1.5 eq) and triethylamine (0.04 mmol, 0.2 eq). The mixture was stirred at room temperature in air for 16 hours. After completion, the reaction was monitored by TLC, and the reaction mixture was concentrated under vacuum. The desired products 3a-3q were obtained through column chromatography (petroleum ether (PE)/ethyl acetate (EA) = 8:1).

Dimethyl (Z)-2-(1-benzamido-2-oxo-2-phenylethylidene) succinate (3a) White powder (70.90 mg, yield: 93%). PE/EA = 8:1. ¹H NMR (400 MHz, CDCl₃) δ 12.48 (s, 1H), 8.01 – 7.97 (m, 2H), 7.93 – 7.88 (m, 2H), 7.59 – 7.53 (m, 2H), 7.50 – 7.43 (m, 4H), 3.85 (s, 3H), 3.54 (s, 3H), 3.16 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.73, 171.10, 169.84, 163.95, 149.26, 135.70, 133.95, 133.23, 131.44, 129.05, 128.98, 128.85, 128.08, 102.72, 52.69, 52.13, 32.64. HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₉NO₆Na⁺: 404.1105; found: 404.1113

Dimethyl (Z)-2-(1-(3-fluorobenzamido)-2-oxo-2-phenylethylidene) succinate (3b) White powder (65.50 mg, yield: 82%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.71 – 7.66 (m, 1H), 7.62 – 7.54 (m, 2H), 7.50 – 7.42 (m, 3H), 7.30 – 7.22 (m, 1H), 3.85 (d, J = 1.0 Hz, 3H), 3.55 (d, J = 1.0 Hz, 3H), 3.16 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 190.54, 170.98, 169.81, 162.75 (d, $J_{C-F} = 2.3$ Hz), 161.69, 148.91, 135.59, 134.08, 133.80 (d, $J_{C-F} = 7.1$ Hz), 130.76 (d, $J_{C-F} = 7.7$ Hz), 128.94 (d, $J_{C-F} = 16.7$ Hz), 123.40, 120.30 (d, $J_{C-F} = 21.2$ Hz), 115.50 (d, $J_{C-F} = 23.3$ Hz), 103.35, 52.79, 52.16, 32.62.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -110.67 – -110.80 (m).

HRMS (ESI) m/z: [M+K]⁺: Calcd for C₂₁H₁₈FNO₆K⁺: 438.0750; found: 438.0717

Dimethyl (Z)-2-(1-(4-fluorobenzamido)-2-oxo-2-phenylethylidene) succinate (3c) White powder (68.70 mg, yield: 86%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 12.48 (s, 1H), 8.01 – 7.96 (m, 2H), 7.95 – 7.89 (m, 2H), 7.56 (d, J = 7.2 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.17 – 7.10 (m, 2H), 3.84 (d, J = 0.7 Hz, 3H), 3.54 (d, J = 0.7 Hz, 3H), 3.15 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 190.63, 171.02, 169.92, 165.78 (d, $J_{C-F} = 254.9$ Hz), 162.85, 149.19, 135.63, 134.02, 130.64 (d, $J_{C-F} = 9.4$ Hz), 128.93 (d, $J_{C-F} = 16.4$ Hz), 127.72 (d, $J_{C-F} = 3.0$ Hz), 116.25 (d, $J_{C-F} = 22.1$ Hz), 102.86, 52.74, 52.14, 32.60.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -104.81 – -104.94 (m).

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₈FNO₆Na⁺: 422.1010; found: 422.1020

Dimethyl (Z)-2-(1-(4-chlorobenzamido)-2-oxo-2-phenylethylidene) succinate (3d) White powder (55.80 mg, yield: 67%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 12.49 (s, 1H), 8.01 – 7.94 (m, 2H), 7.86 – 7.81 (m, 2H), 7.57 (s, 1H), 7.51 – 7.40 (m, 4H), 3.85 (d, J = 0.7 Hz, 3H), 3.54 (d, J = 0.7 Hz, 3H), 3.16 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.56, 170.98, 169.87, 162.92, 149.02, 139.66, 135.60, 134.06, 129.89, 129.51, 129.45, 129.36, 129.26, 129.02, 128.84, 128.07, 103.10, 82.82, 53.00, 52.77, 52.15, 50.81, 32.60.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₈ClNO₆Na⁺: 438.0715; found: 438.0724

Dimethyl (Z)-2-(1-(4-bromobenzamido)-2-oxo-2-phenylethylidene) succinate (3e) White powder (66.30 mg, yield: 72%). PE/EA = 6:1. ¹H NMR (400 MHz, CDCl₃) δ 12.49 (s, 1H), 8.00 – 7.94 (m, 2H), 7.78 – 7.73 (m, 2H), 7.62 – 7.53 (m, 3H), 7.47 (t, J = 6.8 Hz, 2H), 3.84 (s, 3H), 3.54 (s, 3H), 3.15 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.57, 170.99, 169.87, 163.08, 149.01, 135.59, 134.07, 132.35, 130.35, 129.57, 129.03, 128.85, 128.32, 103.14, 52.78, 52.16, 32.61, 29.80. HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₈BrNO₆Na⁺: 482.0210; found: 482.0219

Dimethyl (Z)-2-(1-(3-bromobenzamido)-2-oxo-2-phenylethylidene) succinate (3f) Colorless oil (75.20 mg, yield: 82%). PE/EA = 5:1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (t, J = 1.9 Hz, 1H), 7.99 – 7.94 (m, 2H), 7.80 (ddd, J = 7.9, 1.8, 1.0 Hz, 1H), 7.67 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.49 – 7.43 (m, 2H), 7.34 (t, J = 7.9 Hz, 1H), 3.85 (s, 3H), 3.54 (s, 3H), 3.16 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.45, 170.94, 169.76, 162.58, 148.82, 136.11, 135.60, 134.04, 133.45, 131.56, 130.50, 129.01, 128.82, 126.13, 123.31, 103.50, 52.80, 52.14, 32.63. HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₈BrNO₆Na⁺: 482.0210; found: 482.0215

Dimethyl (Z)-2-(1-(4-methylbenzamido)-2-oxo-2-phenylethylidene) succinate (3g) White powder (63.20 mg, yield: 80%). PE/EA = 4:1.

¹**H** NMR (400 MHz, CDCl₃) δ 12.42 (s, 1H), 8.01 – 7.95 (m, 2H), 7.82 – 7.76 (m, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.28 – 7.23 (m, 3H), 3.84 (s, 3H), 3.54 (s, 3H), 3.15 (s, 2H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.75, 171.12, 169.83, 163.89, 149.41, 144.05, 135.75, 133.86, 129.71, 128.94, 128.81, 128.62, 128.12, 102.33, 52.62, 52.08, 32.63, 21.74.
HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₂H₂₁NO₆Na⁺: 418.1262; found: 418.1267

Dimethyl (Z)-2-(1-(4-(chloromethyl) benzamido)-2-oxo-2-phenylethylidene) succinate (3h)

White powder (75.60 mg, yield: 88%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.95 (m, 2H), 7.90 – 7.85 (m, 2H), 7.54 (d, J = 7.4 Hz, 1H), 7.49 – 7.43 (m, 4H), 4.57 (s, 2H), 3.84 (s, 3H), 3.53 (s, 3H), 3.16 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.62, 171.03, 169.84, 163.35, 149.10, 142.60, 135.66, 134.00, 131.39, 129.13, 129.00, 128.84, 128.59, 128.51, 103.01, 52.73, 52.13, 45.26, 32.62. HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₂H₂₀ClNO₆Na⁺: 452.0871; found: 452.0881

Dimethyl (Z)-2-(2-oxo-2-phenyl-1-(thiophene-2-carboxamido) ethylidene) succinate (3i) White powder (71.30 mg, yield: 92%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 12.36 (s, 1H), 8.00 – 7.95 (m, 2H), 7.73 (d, J = 1.1 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.47 (t, J = 7.0 Hz, 2H), 7.14 – 7.10 (m, 1H), 3.84 (s, 3H), 3.54 (s, 3H), 3.14 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.42, 171.04, 169.77, 158.70, 148.94, 136.59, 135.61, 134.01, 133.18, 130.84, 128.98, 128.93, 128.32, 102.36, 52.68, 52.11, 32.59.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₁₉H₁₇NO₆SNa⁺: 410.0669; found: 410.0676

Dimethyl (Z)-2-(1-(furan-2-carboxamido)-2-oxo-2-phenylethylidene) succinate (3j) White powder (63.80 mg, yield: 86%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 12.32 (s, 1H), 8.00 – 7.94 (m, 2H), 7.61 – 7.52 (m, 2H), 7.47 (d, J = 7.9 Hz, 2H), 7.14 (s, 1H), 6.51 (dd, J = 3.6, 1.7 Hz, 1H), 3.85 (d, J = 0.7 Hz, 3H), 3.54 (d, J = 0.6 Hz, 3H), 3.15 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.48, 171.02, 169.37, 154.92, 148.15, 146.07, 135.64, 133.98, 128.97, 128.87, 117.86, 112.94, 102.97, 52.66, 52.10, 32.66.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₁₉H₁₇NO₇Na⁺: 394.0897; found: 394.0902

Dimethyl (Z)-2-(1-(cyclobutanecarboxamido)-2-oxo-2-phenylethylidene) succinate (3k) White powder (28.50 mg, yield: 40%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 11.32 (s, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 3.79 (s, 3H), 3.52 (s, 3H), 3.19 - 3.12 (m, 1H), 3.09 (s, 2H), 2.28 - 2.14 (m, 4H), 1.94 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.68, 172.67, 171.09, 169.37, 148.88, 135.69, 133.75, 128.85, 128.82, 128.71, 101.95, 52.40, 51.98, 39.62, 32.53, 25.07, 18.08.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₁₉H₂₁NO₆Na⁺: 382.1262; found: 382.1270

Dimethyl (Z)-2-(1-(cyclohexanecarboxamido)-2-oxo-2-phenylethylidene) succinate (3l) White powder (34.90 mg, yield: 45%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 11.46 (s, 1H), 7.90 – 7.85 (m, 2H), 7.51 (d, J = 7.4 Hz, 1H), 7.42 (t, J = 6.9 Hz, 2H), 3.78 (s, 3H), 3.51 (s, 3H), 3.09 (s, 2H), 2.23 (s, 1H), 1.94 – 1.81 (m, 2H), 1.78 – 1.70 (m, 2H), 1.66 – 1.58 (m, 1H), 1.35 (dd, J = 12.1, 3.1 Hz, 2H), 1.28 – 1.20 (m, 2H), 1.17 (d, J = 15.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.61, 173.61, 171.12, 169.49, 149.03, 135.72, 133.65, 128.79, 128.64, 102.03, 52.41, 51.96, 44.88, 32.50, 29.10, 25.59, 25.50.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₂₅NO₆Na⁺: 410.1575; found: 410.1578

Dimethyl (Z)-2-(1-decanamido-2-oxo-2-phenylethylidene) succinate (3m)

Yellow oil (48.40 mg, yield: 56%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 11.37 (s, 1H), 7.91 – 7.84 (m, 2H), 7.59 – 7.37 (m, 3H), 3.78 (s, 3H), 3.50 (s, 3H), 3.09 (s, 2H), 2.33 – 2.26 (m, 2H), 1.21 (d, J = 4.7 Hz, 14H), 0.84 (t, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.58, 171.09, 170.87, 169.36, 148.79, 135.75, 133.70, 128.81, 128.70, 101.98, 52.39, 51.97, 36.39, 32.49, 31.89, 29.38, 29.26, 29.23, 29.03, 24.92,

22.70, 14.14. **HRMS** (ESI) m/z: [M+Na]⁺: Calcd for C₂₄H₃₃NO₆Na⁺: 454.2201; found: 454.2210

Dimethyl (Z)-2-(1-(3-methyl-3-phenylureido)-2-oxo-2-phenylethylidene) succinate (3n) Yellow oil (36.10 mg, yield: 44%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 10.59 (s, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.58 – 7.41 (m, 6H), 7.31 (d, J = 7.7 Hz, 2H), 3.53 (s, 3H), 3.46 (s, 3H), 3.19 (d, J = 1.0 Hz, 3H), 2.98 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.21, 171.42, 168.83, 152.57, 149.89, 141.67, 136.10, 133.57, 130.42, 128.83, 128.79, 128.61, 127.46, 98.72, 51.92, 51.87, 37.84, 32.68. HRMS (ESI) m/z: $[M+Na]^+$: Calcd for C₂₁H₁₈NO₆Na⁺: 433.1370; found: 433.1377

Dimethyl (Z)-2-(1-benzamido-2-(3-nitrophenyl)-2-oxoethylidene) succinate (30) Yellow oil (59.20 mg, yield: 69%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 12.49 (s, 1H), 8.80 – 8.75 (m, 1H), 8.40 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 8.33 (ddd, J = 7.8, 1.7, 1.1 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.68 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 7.4 Hz, 1H), 7.52 – 7.44 (m, 2H), 3.88 (s, 3H), 3.56 (s, 3H), 3.19 (s, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 182.80, 171.12, 169.78, 163.85, 148.46, 142.82, 135.22, 134.21, 133.15, 131.69, 129.03, 128.35, 128.01, 103.12, 52.67, 52.09, 32.73. HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₈N₂O₈Na⁺: 449.0955; found: 449.0966

Dimethyl (Z)-2-(1-benzamido-2-(4-nitrophenyl)-2-oxoethylidene) succinate (3p) White powder (66.30 mg, yield: 78%). PE/EA = 8:1.

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.6 Hz, 2H), 8.15 (d, J = 8.7 Hz, 2H), 7.87 (d, J = 7.4 Hz, 2H), 7.58 (s, 1H), 7.47 (s, 2H), 3.87 (s, 3H), 3.57 (s, 3H), 3.19 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 188.77, 170.93, 169.54, 164.31, 150.50, 147.86, 140.39,

133.58, 130.79, 129.59, 129.16, 128.05, 124.17, 103.88, 52.94, 52.30, 32.44. **HRMS** (ESI) m/z: [M+Na]⁺: Calcd for C₂₁H₁₈N₂O₈Na⁺: 449.0955; found: 449.0964

Dimethyl (Z)-2-(1-benzamido-2-(4-cyanophenyl)-2-oxoethylidene) succinate (3q) Yellow oil (51.80 mg, yield: 64%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 3.86 (d, J = 0.6 Hz, 3H), 3.56 (s, 3H), 3.17 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 189.02, 170.91, 169.55, 164.27, 147.95, 138.96, 133.50, 132.75, 130.93, 129.13, 128.99, 128.04, 117.98, 116.76, 103.77, 52.84, 52.21, 32.43, 29.76. HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₂H₁₈N₂O₆Na⁺: 429.1057; found: 429.1065

Dimethyl (Z)-2-(1-benzamido-2-(naphthalen-2-yl)-2-oxoethylidene) succinate (3r) White powder (71.50 mg, yield: 83%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 9.31 (d, J = 8.6 Hz, 1H), 8.07 – 7.98 (m, 2H), 7.91 – 7.84 (m, 3H), 7.73 (s, 1H), 7.55 (d, J = 21.7 Hz, 2H), 7.48 – 7.38 (m, 3H), 3.87 (s, 3H), 3.56 (s, 3H), 3.30 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 191.90, 171.41, 169.99, 164.23, 150.01, 134.81, 134.23, 133.03, 131.95, 131.72, 131.62, 130.90, 129.07, 128.93, 128.49, 128.03, 126.87, 126.59, 124.31, 103.36, 52.62, 52.03, 32.68.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₅H₂₁NO₆Na⁺: 454.1261; found: 454.1269

Dimethyl (Z)-2-(1-benzamido-2-(4-methoxyphenyl)-2-oxoethylidene)succinate (3s) White powder (71.60 mg, yield: 87%). PE/EA = 8:1. ¹**H NMR** (400 MHz, CDCl₃) δ 12.47 (s, 1H), 7.96 (d, J = 8.8 Hz, 2H), 7.94 – 7.89 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 3.84 (d, J = 1.0 Hz, 6H), 3.56 (s, 3H), 3.17 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 189.40, 171.21, 169.89, 164.21, 163.79, 149.60, 133.11, 131.64, 131.29, 129.00, 128.84, 128.06, 127.34, 114.28, 102.34, 55.64, 52.61, 52.11, 32.68.
HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₂H₂₁NO₇Na⁺: 434.1210; found: 434.1220

Dimethyl (Z)-2-(1-benzamido-2-oxo-2-(thiophen-2-yl) ethylidene) succinate (3t) White powder (43.30 mg, yield: 56%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 12.39 (s, 1H), 7.94 – 7.87 (m, 2H), 7.71 – 7.65 (m, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.07 (dd, J = 4.9, 3.9 Hz, 1H), 3.83 (s, 3H), 3.56 (s, 3H), 3.24 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 182.80, 171.12, 169.78, 163.85, 148.46, 142.82, 135.22, 134.21, 133.15, 131.69, 129.03, 128.35, 128.01, 103.12, 52.67, 52.09, 32.73.

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₁₉H₁₇NO₆SNa⁺: 410.0669; found: 410.0678

Diethyl (Z)-2-(1-benzamido-2-oxo-2-phenylethylidene) succinate (3u)

White powder (71.20 mg, yield: 87%). PE/EA = 6:1.

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 7.97 (m, 2H), 7.92 – 7.86 (m, 2H), 7.58 – 7.50 (m, 2H), 7.48 – 7.41 (m, 4H), 4.30 (d, J = 7.1 Hz, 2H), 3.99 (d, J = 7.1 Hz, 2H), 3.14 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.86, 170.67, 169.37, 163.91, 148.87, 135.78, 133.91, 133.17, 131.49, 129.02, 128.96, 128.88, 128.05, 103.30, 61.65, 60.94, 33.05, 14.21, 14.19.
HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₃H₂₃NO₆Na⁺: 432.1418; found: 432.1429

Dimethyl (E)-2-(1-(2-fluorobenzamido)-2-oxo-2-phenylethylidene) succinate (3E) White powder (63.10 mg, yield: 79%). PE/EA = 8:1.

¹**H NMR** (400 MHz, CDCl₃) δ 12.40 (s, 1H), 7.98 (s, 2H), 7.46 (s, 5H), 7.20 (d, J = 7.7 Hz, 2H), 3.84 (s, 3H), 3.53 (s, 3H), 3.16 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 190.43, 170.99, 168.76, 162.27, 160.83 (d, J_{C-F} = 3.2 Hz), 159.78, 148.14, 135.74, 135.18 (d, J_{C-F} = 9.4 Hz), 133.84, 132.70, 128.89 (d, J_{C-F} = 13.5 Hz), 125.07 (d, J_{C-F} = 3.2 Hz), 118.98 (d, J_{C-F} = 11.0 Hz), 116.56 (d, J_{C-F} = 24.1 Hz), 104.06, 52.65, 52.09, 32.89.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -110.88 (q, J = 8.8 Hz).

HRMS (ESI) m/z: [M+Na]⁺: Calcd for C₂₂H₁₈FNO₆Na⁺: 422.1010; found: 422.1019

4. X-Ray Crystallographic Data

Crystal structure details for 3a (CCDC 2402097). Thermal ellipsoids are shown at 50 % probability level (two molecules in each unit). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of CH_2Cl_2 solution of **3a**.

Table 1 Crystal data and structure refinement for 3a.

Empirical formula	C ₂₁ H ₁₉ NO ₆
Formula weight	381.37
Temperature/K	213.0
Crystal system	triclinic
Space group	P-1
a/Å	5.6083(15)
b/Å	12.004(4)
c/Å	14.983(5)
$\alpha/^{\circ}$	78.692(11)
β/°	84.933(10)
$\gamma/^{\circ}$	79.177(10)
Volume/Å ³	970.1(5)
Z	2
$ ho_{calc}g/cm^3$	1.306
μ/mm^{-1}	0.096
F(000)	400.0
Crystal size/mm ³	$0.31 \times 0.07 \times 0.03$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.862 to 49.986
Index ranges	$-5 \le h \le 6, -14 \le k \le 14, -17 \le l \le 17$
Reflections collected	11298
Independent reflections	3413 [$R_{int} = 0.1003$, $R_{sigma} = 0.0940$]
Data/restraints/parameters	3413/24/276
Goodness-of-fit on F2	1.014
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0637, wR_2 = 0.1497$
Final R indexes [all data]	$R_1 = 0.1213, wR_2 = 0.1904$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.17

Crystal structure details for 3E (CCDC 2402098). Thermal ellipsoids are shown at 50 % probability level (two molecules in each unit). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of CH_2Cl_2 solution of 3E.

Table 2 Crystal data and structure refinement for 3E.

Empirical formula	$C_{21}H_{18}FNO_6$
Formula weight	399.36
Temperature/K	303.0
Crystal system	triclinic
Space group	P-1
a/Å	9.242(3)
b/Å	10.902(4)
c/Å	11.076(4)
α / $_{\circ}$	98.407(9)
β/°	109.822(8)
$\gamma/^{\circ}$	107.406(9)
Volume/Å ³	963.0(5)
Z	2
$ ho_{calc}g/cm^3$	1.377
µ/mm ⁻¹	0.108
F(000)	416.0
Crystal size/mm ³	$0.23\times0.18\times0.11$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.066 to 55.08
Index ranges	-11≤h≤11, -14≤k≤14, -14≤l≤14
Reflections collected	18300
Independent reflections	$4317 \left[R_{int} = 0.0784, R_{sigma} = 0.0725\right]$
Data/restraints/parameters	4317/0/264
Goodness-of-fit on F2	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0699, wR_2 = 0.1831$
Final R indexes [all data]	$R_1 = 0.1299, wR_2 = 0.2267$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.25

5. ¹H and ¹³C NMR spectra

6. ¹⁹F NMR spectra

