Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Total Synthesis of Breviscapin B via Intramolecular Dehydrative Etherification

Kosho Makino,^{*a,b} Chiharu Nogami^{,a} Shunsuke Sueki^{,a,b} and Masahiro Anada^{*a,b}

^{a.} Faculty of Pharmacy, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.

^{b.} Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.

TABLE OF CONTENTS

1.	. Experimental Section	. S2
2.	. Copies of ¹ H and ¹³ C NMR Spectra	S27

2. Experimental Section

General information

Melting points were recorded on a Yamato melting point apparatus model MP-500P and were uncorrected. Optical rotations were measured using a JASCO P1020 digital polarimeter at the sodium D line (589 nm). IR spectra were recorded on a JASCO FT/IR-5300 spectrometer and absorbance bands are reported in wavenumber (cm⁻¹). ¹H NMR spectra were recorded on JEOL ECZ-500 (500 MHz) spectrometer or chemical shifts are reported relative to internal standard (tetramethylsilane; $\delta_{\rm H}$ 0.00, CDCl₃; δ_H 7.26, CD₃OD; δ_H 3.31). Data are presented as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, hept = heptet, m = multiplet, br = broad), coupling constant and integration. ${}^{13}C {}^{1}H$ NMR spectra were recorded on JEOL ECZ-500 (150 MHz) spectrometer. The following internal references were used: CDCl₃ (δ 77.03), CD₃OD (δ 49.00). Infrared (IR) spectra were recorded on a JASCO FT/IR-4100. High-resolution mass spectra (HRMS) were recorded on JEOL AccuTOF and Waters Xevo G2-S QTOF system. Flash column chromatography was performed with YAMAZEN EPCLC-W-Prep 2XY equipped with YAMAZEN Universal Column Premium or CHROMATOREX Q-Pack columns. Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F254 plates with visualization by ultraviolet, anisaldehyde stain solution or phosphomolybdic acid stain solution. All non-aqueous reactions were carried out in flame-dried glassware under argon atmosphere unless otherwise noted. Reagents and solvents were purified by standard means.

The preparation of diols:

1,1-Diphenylbutane-1,4-diol (11a)^[1]: Phenylmagnesium bromide (1.07 M in THF, 14.6 mL, 15.6 mmol) was added to a solution of γ -butyrolactone (448 mg, 5.2 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at the same temperature for 12 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 4:1 \rightarrow 0:1 hexane/EtOAc) to afford **11a** (697 mg, 55%) as a white solid; TLC *R_f* = 0.35 (1:1 hexane/EtOAc); mp 93.3–96.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.5 Hz, 4H), 7.31 (dd, *J* = 7.5, 7.5 Hz, 2H), 3.67 (t, *J* = 6.9 Hz, 2H), 3.23 (br s, 1H), 2.43 (t, *J* = 6.9 Hz, 2H), 1.93 (br s, 1H), 1.58 (quint, *J* = 6.9 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 147.2, 128.3, 126.9, 126.2, 78.0, 63.3, 39.1, 27.3.

1,1-Bis(4-methoxyphenyl)butane-1,4-diol (11b)^[1]: 4-Bromoanisole (3.0 mL, 4.5 g, 24.0 mmol) was added to a stirred mixture of magnesium turnings (583 mg, 24.0 mmol) and a few crystals of iodine in THF (80 mL) at 25 °C under argon. The mixture was stirred at 25 °C for 1 h. γ -Butyrolactone (0.762 mL, 861 mg, 10.0 mmol) in THF (20 mL) was added and the mixture was stirred at 25 °C for 15 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) at 0 °C and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 1:1 \rightarrow 0:1 hexane/Et₂O) to afford **11b** (1.61 g, 53%) as a white solid; TLC *R*_f = 0.50 (100% Et₂O); mp 50.9–54.0 °C; ¹H NMR (500 MHz, CDCl₃) δ

7.31 (d, J = 8.6 Hz, 4H), 6.83 (d, J = 8.6 Hz, 4H), 3.78 (s, 6H), 3.66 (t, J = 5.7 Hz, 2H), 2.86 (br s, 1H), 2.37 (t, J = 7.5 Hz, 2H), 1.74 (br s, 1H), 1.61–1.55 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 158.4, 139.7, 127.5, 113.5, 77.6, 63.4, 55.4, 39.3, 27.4.

1,1-Di(thiophen-2-yl)butane-1,4-diol (11c)^[1]: 2-Bromothiophene (2.87 mL, 4.89 g, 30.0 mmol) was added to a stirred mixture of magnesium turnings (802 mg, 33.0 mmol) and a few crystals of iodine in THF (40 mL) at 25 °C under argon. The mixture was stirred at 25 °C for 1 h. γ -Butyrolactone (0.667 mL, 861 mg, 10.0 mmol) in THF (10 mL) was added and the mixture was stirred at 25 °C for 1 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) at 0 °C and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 4:1 → 0:1 hexane/EtOAc) to afford **11c** (1.75 g, 69%) as a white solid; TLC R_f = 0.40 (1:1 hexane/EtOAc); mp 94.2–96.3 °C; ¹H NMR (500 MHz, CD₃OD) δ 7.23 (dd, J = 5.2, 1.2 Hz, 2H), 6.98 (dd, J = 3.4, 1.2 Hz, 2H), 6.93 (dd, J = 5.2, 3.4 Hz, 2H), 3.56 (t, J = 6.9 Hz, 2H), 2.38–2.35 (m, 2H), 1.65–1.59 (m, 2H); ¹³C {¹H} NMR (125 MHz, CD₃OD) δ 154.0, 127.4, 125.2, 124.6, 76.7, 63.1, 42.9, 28.5.

1,1-Bis(4-(trifluoromethyl)phenyl)butane-1,4-diol (11d): 4-Bromobenzotrifluoride (2.76 mL, 4.5 g, 20.0 mmol) was added to a stirred mixture of magnesium turnings (583 mg, 24.0 mmol) and a few crystals of iodine in THF (40 mL) at 25 °C under argon. The mixture was stirred at 25 °C for 1 h. γ -Butyrolactone (0.333 mL, 431 mg, 5.0 mmol) in THF (10 mL) was added and the mixture was stirred

at 25 °C for 2 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) at 0 °C and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 4:1 \rightarrow 0:1 hexane/EtOAc) to afford **11d** (486 mg, 26%) as a yellow solid; TLC R_f = 0.34 (100% EtOAc); mp 122.5–123.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 8H), 4.07 (br s, 1H), 3.74 (t, *J* = 6.3 Hz, 2H), 2.50 (t, *J* = 6.3 Hz, 2H), 1.72 (br s, 1H), 1.63 (quint, *J* = 6.3 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 150.6, 129.4 (q, *J*_{C-F} = 32.6 Hz), 126.5, 125.4, 126.4 (q, *J*_{C-F} = 3.6 Hz), 124.2 (q, *J*_{C-F} = 271.6 Hz), 77.3, 63.0, 39.3, 26.7; IR (ATR): 3344, 2938, 1617, 1411, 1321, 1161, 1119, 1067, 1016 cm⁻¹; HRMS (DART) *m/z*: [M+NH4]⁺ Calcd for C₁₈H₂₀F₆NO₂ 396.1398; found 396.1391.

1,1-Diphenylheptane-1,4-diol (11e): Phenylmagnesium bromide (1.07 M in THF, 20.4 mL, 21.8 mmol) was added to a solution of γ-heptanolactone (0.70 mL, 700 mg, 5.5 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at the same temperature for 3 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 1:0 → 7:3 CH₂Cl₂/EtOAc) to afford **11e** (460 mg, 30%) as a white solid; TLC *R_f* = 0.45 (6:1 CH₂Cl₂/EtOAc); mp 105.3–106.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 8.0 Hz, 4H), 7.30–7.26 (m, 4H), 7.21–7.18 (m, 2H), 3.62–3.57 (m, 2H), 2.42 (t, *J* = 7.5 Hz, 2H), 2.12 (br s, 1H), 1.54–1.49 (m, 1H), 1.42–1.32 (m, 4H), 1.27–1.22 (m, 1H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 147.5, 147.2, 128.2, 182.2, 126.8, 126.8, 126.3, 126.2, 78.0, 72.2, 39.8, 38.1, 31.6, 19.0, 14.1; IR (ATR): 3414, 3294, 3058, 2955, 2929, 2869, 1598, 1492, 1446, 1406, 1323, 1211, 1164, 1122, 1058, 1015 cm⁻¹; HRMS (DART) m/z: [M+NH₄]⁺ Calcd for C₁₉H₂₈NO₂ 302.2120; found 302.2122.

4-Phenylpentane-1,4-diol (11f)^[2]: Phenylmagnesium bromide (1.07 M in THF, 14.0 mL, 15.0 mmol) was added to a solution of 5-hydroxy-2-pentanone (0.511 mL, 511 mg, 5.0 mmol) in THF (20 mL) at 0 °C and the mixture was stirred at the same temperature for 2 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 4:1 → 0:1 hexane/EtOAc) to afford **11f** (509 mg, 56%) as a colorless oil; TLC R_f = 0.35 (1:1 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.33 (dd, *J* = 8.0, 8.0 Hz, 2H), 7.23 (dd, *J* = 8.0, 8.0 Hz, 1H), 3.63–3.55 (m, 2H), 3.00 (br s, 1H), 2.33 (br s, 1H), 2.03–1.97 (m, 1H), 1.91–1.85 (m, 1H), 1.56 (s, 3H), 1.49 (quint, *J* = 6.3 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 148.1, 128.2, 126.5, 125.0, 74.4, 63.0, 41.3, 30.7, 27.3.

1-Phenylbutane-1,4-diol (11g)^[3]: A solution of 3-benzoylpropionic acid (890 mg, 5.0 mmol) in THF (5 mL) was added dropwise to a stirred mixture of lithium aluminium hydride (569 mg, 15.0 mmol) in THF (20 mL) at 0 °C and the mixture was stirred at 25 °C for 2 h. The reaction was quenched by sequential addition of H₂O (0.57 mL), 15% sodium hydroxide solution (0.57 mL) and H₂O (1.14 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 4:1→1:4 hexane/EtOAc) to afford **11g** (538 mg, 65%) as a white solid; TLC R_f = 0.42 (9:1 CH₂Cl₂/MeOH); mp 64.0–65.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.33 (m, 4H), 7.29–7.26 (m, 1H), 4.73 (t, J = 6.3 Hz, 1H), 3.73–3.65 (m, 2H), 2.15 (br s, 2H), 1.87 (q, J = 6.9 Hz, 2H), 1.75–1.62 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 144.8, 128.6, 127.7, 125.9, 74.6, 63.1, 36.3, 29.3.

1-(4-Methoxyphenyl)butane-1,4-diol (11h)^[3]: A solution of 3-(4-methoxybenzoyl)propionic acid (1.04 g, 5.0 mmol) in THF (5 mL) was added dropwise to a stirred mixture of lithium aluminium hydride (569 mg, 15.0 mmol) in THF (20 mL) at 0 °C and the mixture was stirred at 25 °C for 3 h. The reaction was quenched by sequential addition of H₂O (0.57 mL), 15% sodium hydroxide solution (0.57 mL) and H₂O (1.14 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:0→9:1 CH₂Cl₂/ MeOH) to afford **11h** (739 mg, 75%) as a white solid; TLC R_f = 0.40 (9:1 CH₂Cl₂/ MeOH); mp 64.0–65.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.67 (dd, J = 7.5, 5.7 Hz, 1H), 3.80 (s, 3H), 3.71–3.63 (m, 2H), 2.20 (br s, 2H), 1.88–1.80 (m, 2H), 1.73–1.59 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 159.2, 137.0, 127.2, 114.0, 74.2, 63.1, 55.4, 36.2, 29.5.

1-(*p***-Tolyl)butane-1,4-diol (11i)^[3]:** A solution of 4-(4-methylphenyl)-4-oxobutyric acid (1.00 g, 5.2 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (592 mg, 15.6 mmol) in THF (20 mL) at 0 °C and the mixture was stirred at 25 °C for 17 h. The reaction was quenched by sequential addition of H₂O (0.60 mL), 15% sodium hydroxide solution (0.60 mL) and H₂O (1.20 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:1→0:1 hexane/ Et₂O) to afford **11i** (708 mg, 69%) as a colorless oil; TLC R_f = 0.45 (100% Et₂O); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.70 (t, J = 6.9 Hz, 1H), 3.72–3.65 (m, 2H), 2.37 (br s, 1H), 2.34 (s, 3H), 2.01 (br s, 1H), 1.88–1.83 (m, 2H), 1.73–1.63 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 141.8, 137.3, 129.3, 125.9, 74.4, 63.0, 36.3, 29.4, 21.2.

1-[(1,1'-Biphenyl)-yl]butane-1,4-diol (11j)^[4]: A solution of fenbufen (1.00 g, 3.93 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (448 mg, 11.8 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 4 h. The reaction was quenched by sequential addition of H₂O (0.45 mL), 15% sodium hydroxide solution (0.45 mL) and H₂O (0.90 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:1→0:1 hexane/Et₂O) to afford **11j** (823 mg, 86%) as a white solid; TLC R_f = 0.45 (100% Et₂O); mp 78.4–82.0°C; ¹H NMR (500 MHz, CDCl₃) δ 7.60–7.58 (m, 4H), 7.44 (dd, J = 8.0, 8.0 Hz, 4H), 7.35 (dd, J = 8.0, 8.0 Hz, 1H), 4.80 (t, J = 6.3 Hz, 1H), 3.76–3.69 (m, 2H), 2.53 (br s, 1H), 1.95 (br s, 1H), 1.92 (q, J = 6.9 Hz, 2H), 1.80–1.66 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 143.8, 140.9, 140.6, 128.9, 127.4, 127.3, 127.2, 126.3, 74.3, 63.0, 36.3, 29.3.

1-(4-Fluorophenyl)butane-1,4-diol (11k)^[5]: A solution of 3-(4-fluorobenzoyl)propionic acid (981 mg, 5.0 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (569 mg, 15.0 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 2 h. The reaction was quenched by sequential addition of H₂O (0.57 mL), 15% sodium hydroxide solution (0.57 mL) and H₂O (1.14 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:1→0:1 hexane/EtOAc) to afford **11k** (666 mg, 72%) as a pale yellow oil; TLC R_f = 0.35 (1:4 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.23 (dd, J = 8.6, 5.7 Hz, 2H), 6.97 (dd, J = 8.6, 8.6 Hz, 2H), 4.57 (t, J = 6.3 Hz, 1H), 4.35 (br s, 1H), 3.79 (br s, 1H), 3.58–3.48 (m, 2H), 1.73 (q, J = 6.9 Hz, 2H), 1.61–1.50 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 162.1 (d, J_{C-F} = 245.1 Hz), 140.5 (d, J_{C-F} = 2.4 Hz), 127.5 (d, J_{C-F} = 8.5 Hz), 115.2 (d, J_{C-F} = 21.7 Hz), 73.5, 62.5, 36.5, 29.0.

1-(4-Chlorophenyl)butane-1,4-diol (111)^[3]: A solution of 3-(4-chlorobenzoyl)propionic acid (1.00 g, 4.7 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (535 mg, 14.1 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 3 h. The reaction was quenched by sequential addition of H₂O (0.54 mL), 15% sodium hydroxide solution (0.54 mL) and H₂O (1.08 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:1→0:1 hexane/EtOAc) to afford 111 (854 mg, 85%) as a pale yellow oil; TLC R_f = 0.25 (1:3 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, *J* = 8.6 Hz, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 4.66 (dd, *J* = 7.5, 5.2 Hz, 1H), 3.69–3.59 (m, 2H), 3.37 (br s, 1H), 2.79 (br s, 1H), 1.84–1.76 (m, 2H), 1.69–1.59 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 143.3, 133.1, 128.6, 127.3, 73.7, 62.8, 36.6, 29.1.

1,1-Diphenylpentane-1,5-diol (11m): Phenylmagnesium bromide (1.07 M in THF, 20.7 mL, 22.2 mmol) was added to a solution of δ -valerolactone (0.50 mL, 555 mg, 5.5 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 12 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 1:0 → 95:5 CH₂Cl₂/ MeOH) to afford **11m** (664 mg, 47%) as a white solid; TLC *R_f* = 0.45 (14:1 CH₂Cl₂/ MeOH); mp 78.4–81.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.5 Hz, 4H), 7.30 (dd, *J* = 7.5, 7.5 Hz, 4H), 7.22 (dd, *J* = 7.5, 7.5 Hz, 2H), 3.60 (t, *J* = 6.3 Hz, 2H), 2.30 (t, *J* = 8.0 Hz, 2H), 1.58 (quint, *J* = 7.5 Hz, 2H), 1.39–1.32 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 147.1, 128.3, 127.0, 126.1, 78.4, 62.8, 41.6, 33.0, 20.2; IR (ATR): 3366, 3056, 2940, 1597, 1491, 1446, 1216, 1059, 1030 cm⁻¹; HRMS (DART) *m/z*: [M+NH₄]⁺ Calcd for C₁₇H₂₄NO₂ 274.1807; found 274.1807.

1,1-Diphenyloctane-1,5-diol (11n): Phenylmagnesium bromide (1.07 M in THF, 18.7 mL, 20.0 mmol) was added to a solution of δ -octanolactone (0.711 mL, 711 mg, 5.0 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 24 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 7:3 CH₂Cl₂/ EtOAc) to afford **11n** (897 mg, 60%) as a white solid; TLC *R_f* = 0.38 (14:1 CH₂Cl₂/ EtOAc); mp 88.0–91.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 7.5 Hz, 4H), 7.31 (dd, *J* = 7.5, 7.5 Hz, 4H), 7.22 (dd, *J* = 7.5, 7.5 Hz, 2H), 3.60–3.55 (m, 1H), 2.35–2.25 (m, 3H), 1.50–1.28 (m, 7H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ . 147.2, 128.3, 126.9, 126.1, 78.4, 71.6, 41.8, 39.8, 37.7, 20.1, 18.9, 14.2; IR (ATR): 3374, 3057, 2929, 2869, 1598, 1491, 1446, 1376, 1178, 1126, 1061, 1030 cm⁻¹; HRMS (DART) *m/z*: [M+NH₄]⁺ Calcd for C₂₀H₃₀NO₂ 316.2277; found 316.2282.

1-Phenylpentane-1,5-diol (110)^[4]: A solution of 4-benzoylbutyric acid (961 mg, 5.0 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (569 mg, 15.0 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 5 h. The reaction was quenched by sequential addition of H₂O (0.57 mL), 15% sodium hydroxide solution (0.57 mL) and H₂O (1.14 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:1→0:1 hexane/Et₂O) to afford **110** (772 mg, 86%) as a colorless oil; TLC R_f = 0.45 (100% Et₂O); ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.33 (m, 4H), 7.29–7.26 (m, 1H), 4.67 (dd, J = 7.5, 5.2 Hz, 1H), 3.62 (t, J = 6.3 Hz, 2H), 1.86–1.79 (m, 1H), 1.76–1.69 (m, 1H), 1.60–1.46 (m, 3H), 1.41–1.32 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 144.9, 128.6, 127.7, 126.0, 74.6, 62.8, 38.8, 32.6, 22.1.

1-(4-Methoxyphenyl)pentane-1,5-diol (11p)^[4]: A solution of alumimiun chloride (2.57 g, 19.3 mmol) in CH2Cl2 (5 mL) was added dropwise to a mixture of glutaric anhydride (1.0 g, 8.8 mmol) and anisole (1.04 mL, 1.0 g, 9.7 mmol) in CH₂Cl₂ (25 mL) at 0 °C under argon and the mixture was stirred at 25 °C for 4 h. The reaction was quenched with 2 M potassium hydroxide solution (15 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3×10 mL). The aqueous was acidified to pH 1-2 with aq. 2 M HCl and the whole mixture was extracted with EtOAc (3 \times 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 \times 10 mL), dried over Na₂SO₄, filtered and concentrated and the crude material was used directly in the next step. A solution of crude compound in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (1.23 g, 32.4 mmol) in THF (30 mL) at 0 °C and the mixture was stirred at 25 °C for 4 h. The reaction was quenched by sequential addition of H_2O (1.23 mL), 15% sodium hydroxide solution (1.23 mL) and H₂O (2.46 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 \times 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, $1:0\rightarrow 4:1$ CH₂Cl₂/MeOH) to afford 11p (1.04 g, 57%) as a colorless oil; TLC $R_f = 0.50$ (12:1 CH₂Cl₂/MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.62 (t, J = 6.3 Hz, 1H), 3.80 (s, 3H), 3.62 (t, J = 6.3 Hz, 2H), 1.85-1.79 (m, 1H), 1.74-1.69 (m, 1H), 1.62-1.56 (m, 2H), 1.52–1.43 (m, 1H), 1.38–1.29 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 159.2, 137.0, 127.3, 114.0, 74.3, 62.8, 55.4, 38.7, 32.6, 22.2.

1-(4-Fluorophenyl)pentane-1,5-diol (11q)^[4]: A solution of 4-(4-fluorobenzoyl)butyric acid (1.0 g, 4.8 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (542 mg, 14.3 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 3 h. The reaction was quenched by sequential addition of H₂O (0.55 mL), 15% sodium hydroxide solution (0.55 mL) and H₂O (1.10 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed

by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 1:1→0:1 hexane/EtOAc) to afford **11q** (832 mg, 88%) as a white solid; TLC R_f = 0.28 (2:3 hexane/EtOAc); mp 70.8–72.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.30 (m, 2H), 7.03 (dd, J = 8.6 Hz, 2H), 4.68 (t, J = 6.9 Hz, 1H), 3.64 (t, J = 6.3 Hz, 2H), 1.88 (br s, 1H), 1.86–1.79 (m, 1H), 1.73–1.69 (m, 1H), 1.61–1.56 (m, 2H), 1.53–1.45 (m, 1H), 1.40–1.34 (m, 1H), 1.28 (br s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 162.3 (d, J_{C-F} = 246.3 Hz), 140.6 (d, J_{C-F} = 3.6 Hz), 127.6 (d, J_{C-F} = 7.2 Hz), 115.4 (d, J_{C-F} = 21.7 Hz), 74.0, 62.8, 38.9, 32.5, 22.1.

[2-(Hydroxymethyl)phenyl](phenyl)methanol (11r)^[6]: A solution of methyl 2-benzoylbenzoate (1.0 g, 4.2 mmol) in THF (5 mL) was added dropwise to a mixture of lithium aluminium hydride (474 g, 12.5 mmol) in THF (10 mL) at 0 °C and the mixture was stirred at 25 °C for 4 h. The reaction was quenched by sequential addition of H₂O (0.48 mL), 15% sodium hydroxide solution (0.48 mL) and H₂O (0.96 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 4:1→4:6 hexane/EtOAc) to afford **11r** (859 mg, 96%) as a colorless oil; TLC R_f = 0.50 (1:1 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 4.6 Hz, 4H), 7.30–7.26 (m, 4H), 7.23–7.21 (m, 1H), 6.02 (s, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 3.86 (br s, 1H), 2.98 (br s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 142.7, 142.4, 138.6, 130.4, 129.0, 128.5, 128.4, 127.5, 126.6, 74.4, 63.9.

1-[2-Hydroxymethyl)phenyl]pentan-1-ol (11s): A solution of butylphthalide (0.533 mL, 571 mg, 3.0 mmol) in THF (10 mL) was added dropwise to a mixture of lithium aluminium hydride (171 mg, 4.5

mmol) in THF (20 mL) at 0 °C and the mixture was stirred at 25 °C for 2 h. The reaction was quenched by sequential addition of H₂O (0.17 mL), 15% sodium hydroxide solution (0.17 mL) and H₂O (0.34 mL) at 0 °C. The whole was filtered through a Celite pad and the precipitate was washed by EtOAc (3 × 10 mL). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 4:1→1:1 hexane/EtOAc) to afford **11s** (537 mg, 92%) as a colorless oil; TLC R_f = 0.45 (1:1 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.5 Hz, 1H), 7.35–7.33 (m, 2H), 7.29 (d, *J* = 7.5 Hz, 1H), 4.94 (t, *J* = 6.9 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 2.60 (br s, 2H), 1.95–1.88 (m, 1H), 1.86–1.79 (m, 1H), 1.52–1.45 (m, 1H), 1.40–1.28 (m, 3H), 0.91 (t, *J* = 7.5 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 142.8, 138.3, 129.9, 128.6, 127.9, 126.7, 71.8, 63.8, 36.9, 28.6, 22.8, 14.2; IR (ATR): 3327, 2934, 1616, 1411, 1322, 1161, 1119, 1068 cm⁻¹; HRMS (DART) *m/z*: [M+NH₄]⁺ Calcd for C₁₂H₂₂NO₂ 212.1651; found 212.1653.

2-(3-Hydroxy-3-phenylpropyl)phenol (11t)^[7]: Sodium borohydride (506 mg, 13.4 mmol) was added to a solution of (*E*)-2-hydroxychalcone (1.00 g, 4.5 mmol) in THF (20 mL) at 0 °C and the mixture was stirred at 25 °C for 24 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) at 0 °C and the whole mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H₂O (10 mL) and brine (2 × 10 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 CH₂Cl₂/EtOAc) to afford **11t** (703 mg, 70%) as a pale yellow solid; TLC *R_f* = 0.35 (8:1 CH₂Cl₂/ EtOAc); mp 91.9–93.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.25 (m, 5H), 7.13–7.09 (m, 2H), 6.88–6.83 (m, 2H), 4.60 (dd, *J* = 10.3, 3.4 Hz, 1H), 2.97–2.91 (m, 1H), 2.75–2.70 (m, 1H), 2.13–2.06 (m, 1H), 1.97–1.90 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 154.7, 144.0, 130.7, 128.7, 128.0, 127.8, 127.3, 125.9, 120.9, 116.4, 73.1, 39.5, 26.1.

Representative procedure for the intramolecular dehydrative etherification of diols:

Brønsted Acid-Catalyzed Intramolecular Dehydrative Etherification of 1,1-Diphenylbutane-1,4diol (11a) (Entry 1 in Table 1).

2,2-Diphenyltetrahydrofuran (**12a**)^[8]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 1,1,1,3,3,3-hexafluoropropan-2-ol (0.1 mL) was added to a stirred solution of **11a** (48.5 mg, 0.20 mmol) in 1,1,1,3,3,3-hexafluoropropan-2-ol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.25 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 0:1 hexane/ CH₂Cl₂) to afford **12a** (42 mg, 94%) as a white solid and **13a** (2.2 mg, 5%); TLC *R*_f = 0.20 (4:1 hexane/ CH₂Cl₂); mp 72.0–73.0 °C;¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.5 Hz, 4H), 7.28 (dd, *J* = 7.5 Hz, 2H), 7.20–7.17 (m, 2H), 4.05 (t, *J* = 7.5 Hz, 2H), 2.56 (t, *J* = 7.5 Hz, 2H), 1.94 (quint, *J* = 7.5 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 146.5, 128.3, 126.8, 126.0, 88.2, 67.5, 38.7, 25.6.

4,4-Diphenylbut-3-en-1-ol (13a)^[9]: TLC $R_f = 0.25$ (100% CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.36 (m, 2H), 7.33–7.22 (m, 6H), 7.21–7.18 (m, 2H), 6.12 (t, J = 7.5 Hz, 1H), 3.79 (br s, 2H), 2.41 (q, J = 7.5 Hz, 2H), 1.32 (br s, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 144.5, 142.5, 140.0, 130.0, 128.4, 128.3, 127.4, 127.3, 127.2, 125.3, 62.8, 33.5.

2,2-Bis(4-methoxyphenyl)tetrahydrofuran (12b)^[10]: A solution of p-TsOH·H₂O (0.38 mg, 0.002

mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11b** (61.7 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.25 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:1 \rightarrow 0:1 hexane/ Et₂O) to afford **12b** (43 mg, 97%) as a white solid; TLC R_f = 0.45 (100% Et₂O); mp 64.6–66.0 °C;¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 9.2 Hz, 4H), 6.82 (d, *J* = 9.2 Hz, 4H), 4.02 (t, *J* = 7.5 Hz, 2H), 3.77 (s, 6H), 2.49 (t, *J* = 6.9 Hz, 2H), 1.94 (quint, *J* = 6.9 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 158.4, 138.9, 127.2, 113.6, 87.6, 67.4, 55.4, 38.9, 25.7.

2,2-Di(thiophen-2-yl)tetrahydrofuran (12c)^[11]: A solution of *p*-TsOH·H₂O (0.40 mg, 0.0021 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11c** (53.5 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.25 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 2:1 hexane/ EtOAc) to afford **12c** (47 mg, 95%) as a white solid; TLC *R*_f= 0.55 (4:1 hexane/ EtOAc); mp 55.8–58.2 °C;¹H NMR (500 MHz, CDCl₃) δ 7.21 (dd, *J* = 5.2, 1.7 Hz, 2H), 6.93–6.91 (m, 4H), 4.12 (t, *J* = 6.9 H, 2H), 2.61 (t, *J* = 6.9 H, 2H), 2.08 (quint, *J* = 6.9 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 150.8, 126.7, 124.8, 124.1, 84.7, 68.5, 42.6, 26.3.

2,2-Bis(4-(trifluoromethyl)phenyl)tetrahydrofuran (12d): A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11d** (77.0 mg, 0.20 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 2 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 1:1 hexane/ CH₂Cl₂) to afford **12d** (15.7 mg, 21%) as a colorless oil; TLC R_f = 0.35 (4:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 8H), 4.07 (t, *J* = 7.2 Hz, 2H), 2.59 (t, *J* = 7.2 Hz, 2H), 1.98 (quint, *J* = 7.2 Hz, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ

149.7, 129.4 (q, J_{C-F} = 32.6 Hz), 126.2, 125.5 (q, J_{C-F} = 3.6 Hz), 124.2 (q, J_{C-F} = 271.6 Hz), 87.5 67.9, 38.7, 25.5; IR (ATR): 2931, 1617, 1411, 1321, 1161, 1115, 1066, 1015 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₅F₆O 361.1027; found 361.1031.

2,2-Diphenyl-5-propyltetrahydrofuran (12e): A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11e** (57.0 mg, 0.20 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ EtOAc) to afford **12e** (42.2 mg, 93%) as a colorless oil; TLC R_f = 0.50 (4:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 7.5 Hz, 2H), 7.30–7.24 (m, 4H), 7.19–7.14 (m, 2H), 4.10 (quint, J = 6.9 Hz, 1H), 2.67–2.61 (m, 1H), 2.52–2.47 (m, 1H), 2.01–1.95 (m, 1H), 1.77–1.71 (m, 1H), 1.65–1.57 (m, 1H), 1.52–1.46 (m, 2H), 1.43–1.37 (m, 1H), 0.96 (t, J = 6.9 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 147.6, 146.9, 128.2, 128.1, 126.6, 126.7, 126.0, 125.9, 87.8, 79.0, 39.1, 38.6, 31.5, 19.6, 14.4; IR (ATR): 2956, 2870, 1598, 1489, 1446, 1377, 1226, 1182, 1024 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ Calcd for C₁₉H₂₃O 267.1749; found 267.1751.

2-Methyl-2-phenyltetrahydrofuran (12f)^[12]: A solution of *p*-TsOH·H₂O (0.41 mg, 0.0022 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11f** (38.9 mg, 0.22 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ EtOAc) to afford **12f** (30.8 mg, 88%) as a colorless oil; TLC R_f = 0.50 (4:1 hexane/ EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.30 (dd, *J* = 8.0, 8.0 Hz, 2H), 7.21 (dd, *J* = 8.0, 8.0Hz, 1H), 4.01 (q, *J* = 7.5 Hz, 1H), 3.93–3.89 (m, 1H), 2.23–2.19 (m, 1H), 2.04–1.95 (m, 2H), 1.83–1.78 (m, 1H), 1.53 (s, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 148.3, 128.2,

126.5, 124.8, 84.4, 67.7, 39.6, 29.8, 25.9.

2-Phenyltetrahydrofuran (12g)^[13]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2trifluoroethanol (0.1 mL) was added to a stirred solution of **11g** (33.3 mg, 0.20 mmol) in 2,2,2trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 12 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 1:2 hexane/ CH₂Cl₂) to afford **12g** (28.7 mg, 97%) as a colorless oil; TLC R_f = 0.45 (1:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.32 (m, 4H), 7.26–7.23 (m, 1H), 4.89 (t, *J* = 6.9 Hz, 1H), 4.10 (q, *J* = 6.9 Hz, 1H), 3.93 (q, *J* = 6.9 Hz, 1H), 2.32 (sext, *J* = 6.9 Hz, 1H), 2.04–1.97 (m, 2H), 1.84–1.77 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 143.6, 128.4, 127.2, 125.8, 80.8, 68.8, 34.7, 26.2.

2-(4-Methoxyphenyl)tetrahydrofuran (12h)^[3]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11h** (40.3 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.25 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:1 \rightarrow 0:1 hexane/ CH₂Cl₂) to afford **12h** (35.9 mg, 98%) as a colorless oil; TLC *R*_f = 0.45 (100% CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.82 (t, *J* = 6.9 Hz, 1H), 4.07 (q, *J* = 6.9 Hz, 1H), 3.90 (q, *J* = 6.9 Hz, 1H), 3.79 (s, 3H), 2.27 (sext, *J* = 6.9 Hz, 1H), 2.06–1.94 (m, 2H), 1.82–1.75 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 158.9, 135.5, 127.1, 113.8, 80.6, 68.6, 55.4, 34.6, 26.2.

2-(*p***-Tolyl)tetrahydrofuran (12i)**^[3]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11i** (41.5 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 4:1 \rightarrow 1:1 hexane/ CH₂Cl₂) to afford **12i** (25.2 mg, 74%) as a colorless oil; TLC *R_f* = 0.40 (1:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 4.85 (t, *J* = 7.5 Hz, 1H), 4.08 (q, *J* = 7.5 Hz, 1H), 3.91 (q, *J* = 7.5 Hz, 1H), 2.33 (s, 3H), 2.29 (sext, *J* = 7.5 Hz, 1H), 2.04–1.95 (m, 2H), 1.82–1.75 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 140.5, 136.8, 129.1, 125.7, 80.7, 68.7, 34.7, 26.2, 21.2.

2-[(1,1'-Biphenyl)-4-yl]tetrahydrofuran (12j)^[14]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11j** (51.2 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 1 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 → 1:1 hexane/ CH₂Cl₂) to afford **12j** (43.2 mg, 91%) as a colorless oil; TLC R_f = 0.20 (4:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.58–7.55 (m, 4H), 7.44–7.40 (m, 4H), 7.32 (dd, *J* = 7.5, 7.5 Hz, 1H), 4.93 (t, *J* = 7.5 Hz, 1H), 4.11 (q, *J* = 7.5 Hz, 1H), 3.95 (q, *J* = 7.5 Hz, 1H), 2.33 (sext, *J* = 7.5 Hz, 1H), 2.07–1.97 (m, 2H), 1.88–1.80 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 142.7, 141.1, 140.2, 128.8, 127.3, 127.2, 127.2, 126.2, 80.6, 68.8, 34.7, 26.2.

2-(4-Fluorophenyl)tetrahydrofuran (12k)^[13]: A solution of p-TsOH·H₂O (0.38 mg, 0.002 mmol) in

2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11k** (37.2 mg, 0.20 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 7 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 4:1 \rightarrow 1:4 hexane/ CH₂Cl₂) to afford **12k** (27.8 mg, 83%) as a colorless oil; TLC R_f = 0.40 (1:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (dd, J = 8.6, 5.7 Hz, 2H), 7.01 (dd, J = 8.6, 8.6 Hz, 2H), 4.85 (t, J = 7.5 Hz, 1H), 4.09 (q, J = 7.5 Hz, 1H), 3.92 (q, J = 7.5 Hz, 1H), 2.30 (sext, J = 7.5 Hz, 1H), 2.05–1.97 (m, 2H), 1.80–1.72 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 162.1 (d, J_{C-F} = 245.1 Hz), 139.2 (d, J_{C-F} = 3.6 Hz), 127.4 (d, J_{C-F} = 8.5 Hz), 115.2 (d, J_{C-F} = 21.7 Hz), 80.3, 68.8, 34.8, 26.1.

2-(4-Chlorophenyl)tetrahydrofuran (121)^[3]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **111** (41.2 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 6 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 2:1 hexane/ CH₂Cl₂) to afford **121** (31.7 mg, 85%) as a colorless oil; TLC *R_f* = 0.35 (4:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.25 (m, 4H), 4.86 (t, *J* = 7.5 Hz, 1H), 4.08 (q, *J* = 7.5 Hz, 1H), 3.93 (q, *J* = 7.5 Hz, 1H), 2.31 (sext, *J* = 7.5 Hz, 1H), 2.00 (quint, *J* = 7.5 Hz, 2H), 1.78–1.71 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 142.2, 132.9, 128.5, 127.1, 80.1, 68.9, 34.8, 26.1.

2,2-Diphenyltetrahydro-2*H***-pyran (12m):** A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11m** (51.8 mg, 0.200 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ EtOAc) to afford **12m** (45.4 mg, 94%) as a yellow solid; TLC $R_f = 0.50$ (9:1

hexane/ EtOAc); mp 44.0–44.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 4H), 7.30 (dd, J = 7.5, 7.5 Hz, 4H), 7.18 (dd, J = 7.5, 7.5 Hz, 2H), 3.17 (t, J = 5.2 Hz, 2H), 2.30 (t, J = 6.0 Hz, 2H), 1.75–1.71 (m, 2H), 1.63–1.58 (m, 2H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 146.2, 128.4, 126.6, 126.5, 79.9, 63.1, 35.7, 26.1, 20.7; IR (ATR): 2935, 2861, 1596, 1489, 1446, 1376, 1290, 1213, 1181, 1162, 1078, 1057, 1037, 1020 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₉O 239.1436; found 239.1431.

2,2-Diphenyl-6-propyltetrahydro-2*H***-pyran (12n):** A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11n** (61.5 mg, 0.21 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 4 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 9:1 hexane/ CH₂Cl₂) to afford **12n** (44.6 mg, 77%) as a colorless oil; TLC *R*_f = 0.70 (9:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.6 Hz, 2H), 7.37–7.32 (m, 4H), 7.23–7.19 (m, 3H), 7.10 (dd, *J* = 6.9, 6.9 Hz, 1H), 3.44–3.40 (m, 1H), 2.73–2.70 (m, 1H), 1.80–1.60 (m, 5H), 1.48–1.29 (m, 4H), 0.93 (t, *J* = 6.9 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 149.9, 143.8, 128.6, 128.0, 127.7, 126.7, 126.2, 125.0, 79.7, 71.1, 39.3, 35.2, 31.7, 21.0, 18.9, 14.5; IR (ATR): 2932, 2864, 1597, 1490, 1446, 1378, 1273, 1213, 1180, 1119, 1087, 1043 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₅O 281.1905; found 281.1905.

2-Phenyltetrahydro-2*H***-pyran (120)^[13]:** A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2trifluoroethanol (0.1 mL) was added to a stirred solution of **110** (39.1 mg, 0.22 mmol) in 2,2,2trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 12 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ EtOAc) to afford **120** (33.7 mg, 96%) as a colorless oil; TLC R_f = 0.40 (4:1 hexane/ EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.31 (m, 4H), 7.27–7.23 (m, 1H), 4.32 (dd, *J* =

11.5, 2.3 Hz, 1H), 4.16–4.13 (m, 1H), 3.62 (ddd, J = 11.5, 11.5, 2.3 Hz, 1H), 1.96–1.93 (m, 1H), 1.85–1.82 (m, 1H), 1.72–1.59 (m, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 143.5, 128.4, 127.4, 126.0, 80.3, 69.2, 34.2, 26.0, 24.2.

2-(4-Methoxyphenyl)tetrahydro-2*H***-pyran (12p)^[15]:** A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11p** (42.3 mg, 0.20 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 4 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ EtOAc) to afford **12p** (36.3 mg, 94%) as a colorless oil; TLC *R*_f = 0.35 (4:1 hexane/ EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.28 (d, *J* = 10.9 Hz, 1H), 4.13–4.11 (m, 1H), 3.79 (s, 3H), 3.60 (dd, *J* = 11.5, 11.5 Hz, 1H), 1.94–1.92 (m, 1H), 1.81–1.78 (m, 1H), 1.71–1.56 (m, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 158.9, 135.8, 127.3, 113.8, 79.9, 69.2, 55.4, 33.9, 26.0, 24.2.

2-(4-Fluorophenyl)tetrahydro-2*H***-pyran (12q)^[16]:** A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11q** (39.7 mg, 0.20 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 4 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 → 3:7 hexane/ CH₂Cl₂) to afford **12q** (7.7 mg, 21%) as a colorless oil; TLC R_f = 0.60 (4:1 hexane/ EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, *J* = 8.6, 5.2 Hz, 2H), 7.01 (dd, *J* = 8.6, 8.6 Hz, 2H), 4.30 (dd, *J* = 10.9, 1.7 Hz, 1H), 4.14–4.12 (m, 1H), 3.61 (ddd, *J* = 11.5, 11.5, 2.3 Hz, 1H), 1.96–1.93 (m, 1H), 1.82–1.80 (m, 1H), 1.71–1.52 (m, 4H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 162.2 (d, *J*_{C-F} = 245.1 Hz), 139.3 (d, *J*_{C-F} = 2.4 Hz), 127.6 (d, *J*_{C-F} = 8.5 Hz), 115.2 (d, *J*_{C-F} = 21.7 Hz), 79.6, 69.2, 34.2, 26.0, 24.1.

1-Phenyl-1,3-dihydroisobenzofuran (12r)^[17]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11r** (46.0 mg, 0.20 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 4:1 \rightarrow 1:1 hexane/ CH₂Cl₂) to afford **12r** (35.5 mg, 84%) as a yellow oil; TLC *R_f* = 0.30 (3:1 hexane/ EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.32 (m, 4H), 7.30–7.27 (m, 3H), 7.23–7.21 (m, 1H), 7.03 (d, *J* = 7.5 Hz, 1H), 6.16 (s, 1H), 5.34 (d, *J* = 12.0 Hz, 1H), 5.20 (d, *J* = 12.0 Hz, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 142.3, 142.1, 139.2, 128.7, 128.2, 127.7, 127.6, 127.1, 122.4, 121.0, 86.3, 73.4.

1-Butyl-1,3-dihydroisobenzofuran (12s)^[18]: A solution of *p*-TsOH·H₂O (0.41 mg, 0.0022 mmol) in 2,2,2-trifluoroethanol (0.1 mL) was added to a stirred solution of **11s** (41.7 mg, 0.22 mmol) in 2,2,2-trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred under reflux for 1.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ EtOAc) to afford **12s** (33.5 mg, 88%) as a colorless oil; TLC R_f = 0.55 (4:1 hexane/ EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.25 (m, 2H), 7.23–7.21 (m, 1H), 7.19–7.16 (m, 1H), 5.24–5.23 (m, 1H), 5.12 (dd, *J* = 12.0, 2.3 Hz, 1H), 5.06 (dd, *J* = 12.0 Hz, 1H), 1.90–1.84 (m, 1H), 1.74–1.67 (m, 1H), 1.49–1.33 (m, 4H), 0.91 (t, *J* = 7.5 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 142.4, 139.6, 127.4, 127.3, 121.2, 121.1, 84.1, 72.6, 36.2, 27.5, 22.9, 14.2.

2-phenylchromane (12t) ^[19]: A solution of *p*-TsOH·H₂O (0.38 mg, 0.002 mmol) in 2,2,2trifluoroethanol (0.1 mL) was added to a stirred solution of **11t** (45.3 mg, 0.20 mmol) in 2,2,2trifluoroethanol (2.0 mL) at 25 °C. The mixture was stirred at the same temperature for 0.5 h and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 1:0 \rightarrow 4:1 hexane/ CH₂Cl₂) to afford **12t** (35.1 mg, 83%) as a colorless oil; TLC $R_f = 0.30$ (9:1 hexane/ CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.36 (m, 4H), 7.31 (dd, J = 7.5, 7.5 Hz, 1H), 7.12 (dd, J = 7.5, 7.5 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 6.87 (dd, J = 7.5, 7.5 Hz, 1H), 5.05 (dd, J = 9.7, 2.3 Hz, 1H), 3.02–2.95 (m, 1H), 2.81–2.76 (m, 1H), 2.23–2.18 (m, 1H), 2.12–2.04 (m, 1H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 155.2, 141.9, 129.7, 128.6, 128.0, 127.5, 126.1, 122.0, 120.4, 117.1, 77.9, 30.1, 25.2.

References

[1] L. Miao, S. C. DiMaggio, M. L. Trudell, Synthesis, 2010, 91-97.

[2] N. Tsuji, J. L. Kennemur, T. Buyck, S. Lee, S. Prévost, P. S. J. Kaib, D. Bykov, C. Farès, B. List, *Science*, 2018, **359**, 1501–1505.

[3] S. Asai, M. Kato, Y. Monguchi, H. Sajiki, Y. Sawama, Chem. Commun., 2017, 53, 4787-4790.

[4] M. Zhang, Z. Liu, W. Zhao, Angew. Chem. Int. Ed., 2023, 62, e202215455.

[5] I. Čorić, S. Müller, B. List, J. Am. Chem. Soc., 2010, 132, 17370-17373.

- [6] K. Hirano, H. Yorimitsu, K. Oshima, Org. Lett., 2006, 8, 483-485.
- [7] V. Lepechkin-Zilbermintz, D. Bareket, V. Gonnord, A. Steffen, C. Morice, M. Michaut, A. Munder,

E. E. Korshin, J.-M. Contreras, E. Cerasi, S. Sasson, A. Gruzman, *Bioorg. Med. Chem.*, 2023, 87, 117303.

[8] P. H. Huy, A. M. P. Koskinen, Org. Lett., 2013, 15, 5178-5181.

[9] C. Alamillo-Ferrer, J. M. Curle, S. C. Davidson, S. C. C. Lucas, S. J. Atkinson, M. Campbell, A.

R. Kennedy, N. C. O. Tomkinson, J. Org. Chem., 2018, 83, 6728-6740.

[10] V. Mallardo, R. Rizzi, F. C. Sassone, R. Mansueto, F. M. Perna, A. Salomone, V. Capriati, *Chem. Commun.*, 2014, 50, 8655–8658.

[11] L. Minuti, A. Barattucci, P. M. Bonaccorsi, M. L. Di Gioia, A. Leggio, C. Siciliano, A. Temperini, Org. Lett., 2013, 15, 3906–3909.

[12] S. Fujita, M. Abe, M. Shibuya, Y. Yamamoto, Org. Lett., 2015, 17, 3822-3825.

[13] J. J. Loman, E. R. Carnaghan, T. A. Hamlin, J. M. Ovian, C. B. Kelly, M. A. Mercadante, N. E. Leadbeater, Org. Biomol. Chem., 2016, 14, 3883–3888.

[14] H. A. Maashi, A. H. Husayni, K. M, M. E. Reid, J. Harnedy, E. C. Herneman, M. Pera-Titus, L.
C. Morrill, Org. Lett., 2024, 26, 9051–9055.

[15] W. Li, C. Yang, G.-L. Gao, W. Xia, Synlett, 2016, 27, 1391–1396.

[16] H. Im, D. Kang, S. Choi, S. Shin, S. Hong, Org. Lett., 2018, 20, 7437-7441.

[17] K. M. Arendt, A. G. Doyle, Angew. Chem. Int. Ed., 2015, 54, 9876-9880.

[18] H. Huang, X. Jing, J. Deng, C. Meng, C. Duan, J. Am. Chem. Soc., 2023, 145, 2170-2182.

[19] W. Jia, Q. Xi, T. Liu, M. Yang, Y. Chen, D. Yin, X. Wang, J. Org. Chem., 2019, 84, 5141-5149.

2. Copies of ¹H and ¹³C NMR Spectra

¹H NMR (CDCl₃, 500 MHz) of 11a

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of **11a**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11b

¹H NMR (CD₃OD, 500 MHz) of **11c**

¹³C{¹H} NMR (CD₃OD, 125 MHz) of **11c**

¹H NMR (CDCl₃, 500 MHz) of 11d

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11d

¹H NMR (CDCl₃, 500 MHz) of 11e

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of **11e**

¹H NMR (CDCl₃, 500 MHz) of **11f**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11f

¹H NMR (CDCl₃, 500 MHz) of 11g

¹H NMR (CDCl₃, 500 MHz) of **11i**

¹H NMR (CDCl₃, 500 MHz) of 11j

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **11j**

¹H NMR (CDCl₃, 500 MHz) of **11k**

¹H NMR (CDCl₃, 500 MHz) of **111**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **111**

¹H NMR (CDCl₃, 500 MHz) of **11m**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11n

¹H NMR (CDCl₃, 500 MHz) of **110**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **110**

¹H NMR (CDCl₃, 500 MHz) of 11p

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11p

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11q

¹H NMR (CDCl₃, 500 MHz) of **11r**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **11r**

¹H NMR (CDCl₃, 500 MHz) of 11s

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **11s**

¹H NMR (CDCl₃, 500 MHz) of 11t

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 11t

¹H NMR (CDCl₃, 500 MHz) of 12a

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **12a**

¹H NMR (CDCl₃, 500 MHz) of 13a

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 13a

¹H NMR (CDCl₃, 500 MHz) of **12b**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12b

¹H NMR (CDCl₃, 500 MHz) of **12c**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12c

¹H NMR (CDCl₃, 500 MHz) of **12d**

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12d

¹H NMR (CDCl₃, 500 MHz) of **12e**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12e

¹H NMR (CDCl₃, 500 MHz) of **12f**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12f

¹H NMR (CDCl₃, 500 MHz) of 12g

 $^{13}C\{^{1}H\}$ NMR (CDCl₃, 125 MHz) of 12g

¹H NMR (CDCl₃, 500 MHz) of **12h**

¹H NMR (CDCl₃, 500 MHz) of **12i**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **12i**

¹H NMR (CDCl₃, 500 MHz) of 12j

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **12j**

¹H NMR (CDCl₃, 500 MHz) of **12k**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12k

¹H NMR (CDCl₃, 500 MHz) of **12l**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **12**I

¹H NMR (CDCl₃, 500 MHz) of **12m**

$^{13}C\{^{1}H\}$ NMR (CDCl₃, 125 MHz) of 12m

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **12n**

¹H NMR (CDCl₃, 500 MHz) of **120**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12o

¹H NMR (CDCl₃, 500 MHz) of 12p

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12p

 $^1\mathrm{H}$ NMR (CDCl₃, 500 MHz) of 12q

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12q

¹H NMR (CDCl₃, 500 MHz) of **12r**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12r

¹H NMR (CDCl₃, 500 MHz) of 12s

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12s

¹H NMR (CDCl₃, 500 MHz) of **12t**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125 MHz) of 12t

¹H NMR (CDCl₃, 500 MHz) of **5**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of **5**

¹H NMR (CDCl₃, 500 MHz) of 6

¹³C{¹H} NMR (CDCl₃, 125 MHz) of 6

¹H NMR (CDCl₃, 500 MHz) of 4

¹H NMR (CDCl₃, 500 MHz) of **14**

¹³C{¹H} NMR (CDCl₃, 125 MHz) of 14

¹H NMR (CD₃OD, 500 MHz) of (-)-Breviscapin B (1)

¹³C{¹H} NMR (CD₃OD, 125 MHz) of (-)-Breviscapin B (1)

breviscapin B (1)

	Synthetic Breviscapin B		Natural Breviscapin B	
position	$\delta_{\rm C}$	$\delta_{\rm H}$ (J in Hz)	δ _c	$\delta_{\rm H}$ (J in Hz)
1	66.3	3.54 (dd, 11.5, 5.2) 3.62 (dd, 11.5, 5.7)	66.3	3.52 (dd, 11.2, 5.1) 3.58 (dd, 11.2, 5.9)
2	80.4	4.16-4.11 (m)	80.4	4.11 (m)
3	29.0	1.78-1.72 (m) 1.97-1.90 (m)	29.0	1.74 (m), 1.90 (m)
4	39.5	2.38-2.33 (m) 2.54-2.49 (m)	39.4	2.32 (m), 2.48 (m)
5	89.8		89.8	
1'	140.1		140.1	
2'	114.8	6.84 (d, 2.3)	114.8	6.81 (d, 2.1)
3'	145.6		145.5	
4'	145.8		145.8	
5'	115.6	6.65 (d, 8.6)	115.6	6.61 (d, 8.3)
6'	118.7	6.71 (dd, 8.6, 2.3)	118.7	6.67 (overlap)
1"	139.3		139.3	
2"	115.1	6.83 (d, 2.3)	115.1	6.79 (d, 2.1)
3"	144.9		144.88	
4"	144.9		144.90	
5"	115.7	6.69 (d, 8.0)	115.7	6.66 (d, 8.3)
6"	118.6	6.73 (dd, 8.0, 2.3)	118.5	6.68 (overlap)
Optical rotation	-7.07 (c 0.52, MeOH)		-7.1 (c 0.22, MeOH).	

N. Li, C.-C. Zhu, K.-J. Wang, J.-M. Hu, Z. Naturforsch., 2010, 65b, 79-82.