Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

## **Supplementary information**

## **Convenient One-Step Construction of Fused- or Zwitterionic Indanes**

## from Tetraynes

Chencheng Liu, Yao Tong, Fenhua Wang\*, Qinghai Li\* (School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000 Anhui, P. R. China.)

| 1. Crystallographic data of <b>2k</b> and <b>3e</b>                            | 2 |
|--------------------------------------------------------------------------------|---|
| 2. <sup>1</sup> H NMR and <sup>13</sup> C NMR of <b>2a-2o</b> and <b>3a-3o</b> | 3 |

## 1. Crystallographic data of $\mathbf{2k}$ and $\mathbf{3e}$

| Crystal data                                                        | 2k                   | 3e                                                                      |
|---------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|
| Empirical formula                                                   | $C_{90}H_{78}N_2O_8$ | $\mathrm{C}_{29}\mathrm{H}_{24}\mathrm{O}_{6}\mathrm{Cl}_{2}\mathrm{S}$ |
| Formula weight                                                      | 1315.54              | 571.44                                                                  |
| Temperature/K                                                       | 273.15               | 273.15                                                                  |
| Crystal system                                                      | monoclinic           | monoclinic                                                              |
| Space group                                                         | $P2_1/n$             | $P2_1/c$                                                                |
| a (Å)                                                               | 22.9592(9)           | 20.9343(11)                                                             |
| b (Å)                                                               | 9.5176(4)            | 15.0713(8)                                                              |
| c (Å)                                                               | 33.7688(13)          | 9.1726(5)                                                               |
| $\alpha$ (deg)                                                      | 90                   | 90                                                                      |
| $\beta$ (deg)                                                       | 100.575(2)           | 93.192(2)                                                               |
| $\gamma$ (deg)                                                      | 90                   | 90                                                                      |
| Volume/Å <sup>3</sup>                                               | 7253.7(5)            | 2889.5(3)                                                               |
| Ζ                                                                   | 4                    | 4                                                                       |
| $ ho_{ m calc}~( m mg/m^3)$                                         | 1.205                | 1.314                                                                   |
| $\mu(\text{mm}^{-1})$                                               | 0.602                | 3.031                                                                   |
| F(000)                                                              | 2784.0               | 1184.0                                                                  |
| $\theta$ range (°)                                                  | 4.312 - 136.83       | 11.306 - 136.988                                                        |
| Reflections collected                                               | 95633                | 42479                                                                   |
| Independent reflections                                             | 13154                | 5279                                                                    |
| $R_{ m int}$                                                        | 0.0781               | 0.0537                                                                  |
| Data/restraints/parameters                                          | 13154/0/910          | 5279/0/350                                                              |
| Goodness of fit on $F^2$                                            | 1.013                | 1.043                                                                   |
| $R_1, wR_2[I > 2\sigma(I)]$                                         | 0.0656, 0.1279       | 0.0567, 0.1717                                                          |
| $R_1$ , $wR_2$ (all data)                                           | 0.1322, 0.1518       | 0.0663, 0.1786                                                          |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}  ({\rm e. \AA^{-3}})$ | 0.21 and -0.16       | 0.50 and -0.45                                                          |

Table 1 Crystal data and structure refinement of  $\mathbf{2k}$  and  $\mathbf{3e}$ 

2. <sup>1</sup>H NMR and <sup>13</sup>C NMR of **2a-2o** and **3a-3o** 



Figure 2 <sup>13</sup>C NMR spectrum of **2a** (125 MHz, CDCl<sub>3</sub>).



Figure 4 <sup>13</sup>C NMR spectrum of **2b** (125 MHz, CDCl<sub>3</sub>).



Figure 6<sup>13</sup>C NMR spectrum of **2c** (125 MHz, CDCl<sub>3</sub>).







Figure 8 <sup>13</sup>C NMR spectrum of 2d (125 MHz, CDCl<sub>3</sub>).







Figure 11 <sup>1</sup>H NMR spectrum of **2f** (500 MHz, CDCl<sub>3</sub>).



Figure 12 <sup>13</sup>C NMR spectrum of **2f** (125 MHz, CDCl<sub>3</sub>).







Figure 14 <sup>13</sup>C NMR spectrum of **2g** (125 MHz, CDCl<sub>3</sub>).

















100 90 f1 (ppm) 

Figure 22 <sup>13</sup>C NMR spectrum of **2k** (125 MHz, CDCl<sub>3</sub>).



Figure 23 <sup>1</sup>H NMR spectrum of **2l** (500 MHz, CDCl<sub>3</sub>).



Figure 24  $^{13}$ C NMR spectrum of **2l** (125 MHz, CDCl<sub>3</sub>).



Figure 26 <sup>13</sup>C NMR spectrum of **2m** (125 MHz, CDCl<sub>3</sub>).





Figure 28 <sup>13</sup>C NMR spectrum of **2n** (125 MHz, CDCl<sub>3</sub>).



Figure 30<sup>13</sup>C NMR spectrum of **20** (125 MHz, CDCl<sub>3</sub>).





Figure 32 <sup>13</sup>C NMR spectrum of **3a** (125 MHz, CDCl<sub>3</sub>).



Figure 34 <sup>13</sup>C NMR spectrum of **3b** (125 MHz, CDCl<sub>3</sub>).



Figure 36 <sup>13</sup>C NMR spectrum of **3c** (125 MHz, CDCl<sub>3</sub>).



Figure 37 <sup>1</sup>H NMR spectrum of **3d** (500 MHz, CDCl<sub>3</sub>).











80 70 60 50 40

30 20 10 0

190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)





Figure 42 <sup>13</sup>C NMR spectrum of **3f** (125 MHz, CDCl<sub>3</sub>).





Figure 44 <sup>13</sup>C NMR spectrum of **3g** (125 MHz, CDCl<sub>3</sub>).





Figure 46 <sup>13</sup>C NMR spectrum of **3h** (125 MHz, CDCl<sub>3</sub>).



Figure 48 <sup>13</sup>C NMR spectrum of **3i** (125 MHz, CDCl<sub>3</sub>).



Figure 50 <sup>13</sup>C NMR spectrum of **3j** (125 MHz, CDCl<sub>3</sub>).





Figure 52 <sup>13</sup>C NMR spectrum of **3k** (125 MHz, CDCl<sub>3</sub>).



Figure 54 <sup>13</sup>C NMR spectrum of **3l** (125 MHz, CDCl<sub>3</sub>).





Figure 56 <sup>13</sup>C NMR spectrum of **3m** (125 MHz, CDCl<sub>3</sub>).







Figure 60<sup>13</sup>C NMR spectrum of **30** (125 MHz, CDCl<sub>3</sub>).