Supporting Information

Enantioselective Access to Spirooxindole δ -lactones and Acyclic 3, 3'-Disubstituted Oxindole-Derivatives by N-heterocyclic Carbene Catalysts

Xiaomei Wang^a, Weixing Zeng^a, Shi-Wu Li^{a*}, Jixin Pian^b, Zhifei Zhao^{a*}

a. School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.b. School of Pharmacy, Xinjiang Second Medical College, Karamay, Xinjiang Uygur

AutonomousRegion, 834000, People's Republic of China.

Ι	General Information	S1
II	X-ray crystallographic analysis	S1
III	Experimental Section	S2
IV	General procedure for [3+3] cycloaddition reaction	S5
V	Procedures for derivatizations of products	S5
VI	Reference	S7
VII	Characterizations of new compounds	S7
VIII	NMR Spectrum	S25
IX	Chiral HPLC analysis trace	S67

Table of Contents

I. General Information

Commercially available materials were used as received, unless otherwise noted, all reactions and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk technique. Reactions were checked by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H, ¹³C NMR and ¹⁹F spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 400 MHz, 100 MHz and 376 MHz respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. HPLC analysis of the compounds was done using chiralcel IC column using hexane and isopropanol as eluent, and the column temperature is 40 °C. The Rudolph Autopol V polarimeter was employed to gauge the optical rotation. The melting point was measured by Shanghai Instrument electrooptical SGW X-4A micro melting point instrument. High resolution mass spectra(HRMS) were recorded on Thermo Scientific Q Exactive mass spectrometry equipped with an APCI source. Crystal structure data was collected on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The following abbreviations are used to designate chemical shift multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet.

II. X-ray crystallographic analysis

CCDC 2407944 (**3bc**) suitable for X-ray crystallography was obtained by crystallization via evaporation from its hexane/DCM solution.

Figure 1. X-Ray crystallographic data of 3bc

CCDC 2407944 (**3bc**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Table 1. Crystal data and structure refinement for 3bc

Identification code	3bc
Empirical formula	C ₃₀ H ₂₅ NO ₇
Formula weight	511.51
Temperature	173.0 K
Wavelength	1.54178
Crystal system	Monoclinic

Space group	P21		
Unit cell dimensions	a = 9.0595(3)	a= 90	
	b = 9.2127(3)	b= 102.057(2)	
	c = 15.4455(5)	g = 90	
Volume	1260.68(7) ³		
Z	2		
Density (calculated)	1.347 Mg/m ³		
Absorption coefficient	0.796 mm ⁻¹		
F(000)	536		
Crystal size	$0.14\times0.12\times0.11\ mm^3$		
Theta range for data collection	4.992 to 72.052		
Index ranges	-10<=h<=11, -11<=k<=11, -19<=l<=18		
Reflections collected	16713		
Independent reflections	4871 [R(int) = 0.0426]		
Completeness to theta	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7536 and 0.6778		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	4871 / 1 / 345		
Goodness-of-fit on F ²	1.044		
Final R indices [I>2sigma(I)]	R1 = 0.0344, WR2 = 0.0785		
R indices (all data)	R1 = 0.0387, $wR2 = 0.0811$		
Absolute structure parameter	-0.03(9)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.233 and -0.163 e. ⁻³		

III. Experimental Section

1. General procedure for the synthesis of indole-enal

1.Substrates 1a-1m are nown compounds and were prepared according to the literature

reports.[1-2]

2. Substrates 1a and 1n were synthesized according to the following procedure:

To a solution of isatin 1 (2.0 mmol) in DMF (10 mL) was added potassium carbonate (3.0 mmol) followed by 2 (2.4 mmol). The mixture was stirred for 2 h at room temperature (the progress of the reaction was monitored by TLC). After completion of the reaction the mixture was diluted with cold water (50 mL) followed by EtOAc (50 mL) and stirred for 10 min. The organic layer separated was collected and the aqueous layer was extracted with additional EtOAc (2×50 mL). The organic layers were collected, combined, dried over anhydrous Na₂SO₄, filtered and concentrated under vacuo. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate to afford the desired product **3**.

To a solution of N-protected isatin (1.0 equiv , 10 mmol) in THF (0.5 M) were added DBU (10 mol %) and acetaldehyde (3.0 equiv), and the reaction mixture was kept at -25 °C for 15 h. After completion of the reaction, the mixture was kept at room temperature and a 3:1 mixture of AcOH/H₂O (10 mL) and a few drops of conc. H₂SO₄ were added. This mixture was then refluxed for 30 min in an oil bath. The reaction mixture was diluted with water, extracted with dichloromethane, and washed with water followed by brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was purified by silica column chromatography using petroleum ether/ethyl acetate mixture as eluent (90:10, v/v) to obtain compounds 5.

2. General procedure for the synthesis of ethyl 2,4-ioxo-4-R-butanoate

1. Substrates **2a-2o** are known compounds and were prepared according to the literature reports.^[3]

2. Substrates 2a and 2o were synthesized according to the following procedure:

To sodium hydride (2.0 equiv) in DMF (0.5 M) was added drop wise in ice cold condition under nitrogen atmosphere. Then 1 (1.0 equiv, 10 mmol) was added and stirred for 30 min at room temperature. Finally diethyl oxalate 2 (3.0 equiv) was added and the reaction mixture was again stirred for 3h at room temperature. The completion of the reaction was monitored by TLC and quenched with crushed ice. Then the reaction mixture was extracted with ethyl acetate (2×100 mL), washed with

water (150 mL) and brine solution (150 mL). The organic layer was separated, dried over anhydrous sodium sulphate and evaporation of solvent afforded the expected product 3

IV. General procedure for [3+3] cycloaddition reaction

Compound 1 (0.10 mmol) and compound 2 (0.15 mmol), 'BuOK (50 mol%), NHC precursor (10 mol%), DQ (120 mol%) and were added to 15 mL Schlenk tube, after vacuum replacement of argon, THF (1 mL) was added to this solution at room temperature, and the mixture was stirred for 3 h. Following the completion of the reaction (monitored using TLC), the raw product underwent direct flash column chromatography on silica gel (200-300 mesh, PE/EA v/v = 3:1 as the eluent) to produce the respective products **3**.

Compound **3** (0.1 mmol) was added to 15 ml pressure-resistant tube, MeOH (1 mL) was added to this solution at 80 °C and the mixture was stirred for 15 h. Following the completion of the reaction (monitored using TLC), the raw product underwent direct flash column chromatography on silica gel (200-300 mesh, PE/EA v/v = 4:1 as the eluent) to produce the respective products **4**.

V. Procedures for derivatizations of products

1.

Compound **4aa** (41 mg, 1.0 equiv) was added to 15 mL Schlenk tube, after vacuum replacement of argon, MeOH (1 mL) was added to this solution at 0 °C. NaBH₄ (15.2 mg, 4.0 equiv) is added to the mixed solution of 4aa in MeOH. The mixture was allowed to stir at this temperature for further 2 h, with its progression being observed using TLC. Following the completion of the reaction, saturated solution of H₂O (2 mL) was added and the aqueous phase was extracted with ethyl acetate (5 mL×3). The combined extracts were dried by Na₂SO₄ After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = 3:1) was carried out to give pure product **5a** (colorless oil, 31 mg, 86 % yield , 93 % ee.dr > 20:1).

To a solution of the suitable alcohol, **4bj** (0.1 mmol) in dry DCM (1 mL), and cooled to 0 C, was added, portion-wise and drop-wise, 4-dimethylaminopyridine (0.01 mmol), p-toluenesulfonyl chloride (1.2 mmol) and triethylamine (0.05 mmol). The reaction mixture was stirred at 0 °C until TLC showed complete consumption of starting material. The resulting suspension was diluted with diethyl ether (2 mL), stirred for a further 30 min, and the precipitate removed by filtration. The solution was then washed sequentially with water (3 mL), 10% NaHCO₃ (2 x 3 mL) and a saturated aqueous NaCl solution (2 mL). The combined organic layers were dried over Na2SO4 , filtered, The solution was directly purified by silica gel column chromatography (hexane/ethyl acetate = 3:1) to afford **6a** (white solid, 31 mg, 90% yield, 94% ee).

Methyltriphenylphosphonium bromide (143 mg, 0.4 mmol, 4.0 equiv) was suspended in freshly distilled THF (1 mL) and cooled to -78 °C. n-BuLi (0.4 mmol, 4.0 equiv) was added in batches and the resulting solution was stirred for 1 h. The resulting solution was then stirred while warming to room temperature for 1 h. and then reaction was cooled to -78 °C. **4aa** (0.1 mmol, 1.0 equiv) was added. The resulting solution was then stirred while warming to room temperature for 15 h. The solution was directly purified by silica gel column chromatography (hexane/ethyl acetate = 3:1) to afford **7a** (colorless oil, 36 mg, 90% yield, 92% ee).

VI.Reference:

[1] R.K Kumar; Y. Sreenivas; S. Sandhya; K. Ajit; M. Parimal; B. Rao; P. Manojit. Ultrasound-based approach to spiro-2,3-dihydroquinazolin-4(1H)-ones: their in vitro evaluation against chorismate mutase. *Tetrahedron Letters.*, **2013**, *54*, 495–501.

[2] T. Vivekanand, B.S. Vachan, M. Karuppasamy, I. Muthukrishnan, U. Maheswari, S. Nagarajan, N. Bhuvanesh, V. Sridharan, Diastereoselective ABB' Three-Component Synthesis of Highly Functionalized Spirooxindoles Bearing Five Consecutive Asymmetric Carbons, *J. Org. Chem.*, **2019**, 84, 4009-4016.

[3]. S. Rajendran; B. Govindharasu; K. Maruthan; A. Jayachitra; Padmini, V. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids, *Bioorg. Med. Chem. Lett.*, **2016**, 26, 5624-5630.

VII. Characterizations of new compounds

Ethyl-(*R*)-5'-benzoyl-1-benzyl-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-6'-carboxylate (3aa): Orange solid (38 mg, 79 % yield). Mp: 66.1–71.6 °C. HPLC:

91% ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 30.003 min, tr (minor) = 26.149 min. $[\alpha]_D^{20}$ = +14.3 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) &: 7.72 (d, *J* = 9.7 Hz, 2H), 7.55–7.49 (m, 1H), 7.41–7.32 (m, 3H), 7.25 (d, *J* = 2.0 Hz, 2H), 7.18 (d, *J* = 9.0 Hz, 2H), 7.15–7.10 (m, 3H), 7.01–6.96 (m, 1H), 6.58 (d, *J* = 7.9 Hz, 1H), 4.76 (q, *J* = 15.7 Hz, 2H), 4.02 (dd, *J* = 7.1, 5.3 Hz, 2H), 3.10 (d, *J* = 3.2 Hz, 2H), 1.03 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) &: 190.9, 174.3, 163.2, 159.6, 143.6, 142.3, 136.2, 134.6, 133.7, 129.9, 128.8, 128.6, 127.8, 127.1, 126.5, 124.7, 124.3, 123.5, 110.1, 62.7, 50.3, 44.3, 36.6, 13.4. HRMS (APCI) m/z calcd for C₂₉H₂₄NO₆⁺ (M+H)⁺ 482.1598, found 482.1578.

Ethyl(*R*)-5'-benzoyl-1-methyl-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-6'-carboxylate (3ab): Yellow solid (34 mg, 85 % yield). Mp: 64.7-68.9 °C. HPLC: 93% ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 70.609 min, tr (minor) = 38.824 min. $[\alpha]_D^{20} = +23.6$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.75–7.73 (m, 1H), 7.57–7.49 (m, 1H), 7.43–7.33 (m, 2H), 7.28–7.23 (m, 4H), 7.15–7.06 (m, 2H), 6.96 (d, *J* = 10.0 Hz, 2H), 6.47 (d, *J* = 8.0 Hz, 1H), 4.89–4.61 (m, 2H), 4.18–3.83 (m, 2H), 3.29–2.89 (m, 2H), 2.21 (s, 3H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 191.2, 175.4, 163.4, 159.8, 143.9, 140.6, 136.8, 136.6, 134.0, 133.7, 129.0, 128.9, 128.7, 127.5, 127.4, 125.6, 124.8, 123.7, 122.2, 120.9, 62.8, 50.1, 45.7, 37.3, 18.7, 13.5. HRMS (APCI) m/z calcd for C₂₃H₂₀NO₆⁺ (M+H)⁺ 406.1285, found 406.1240

Ethyl(*R*)-5'-benzoyl-1-ethyl-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-6'carboxylate (3ac): Orange oil (41mg, 98 % yield). HPLC: 93% ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 41.648 min, tr (minor) = 32.954 min. $[\alpha]_D^{20}$ = +145.6 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* = 7.0 Hz, 2H), 7.51–7.46 (m, 1H), 7.38–7.31 (m, 2H), 7.24 (s, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.06–6.99 (m, 1H), 6.71 (d, *J* = 7.9 Hz, 1H), 4.03 (tq, *J* = 7.2, 3.7 Hz, 2H), 3.67–3.49 (m, 2H), 3.04 (s, 2H), 1.05 (dt, *J* = 11.9, 7.2 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ : 191.0, 173.8, 163.5, 143.5, 142.4, 136.3, 133.7, 130.1, 128.8, 128.6, 126.7, 124.7, 123.4, 109.1, 62.8, 50.2, 36.2, 35.3, 13.6, 12.3. HRMS (APCI) m/z calcd for C₂₄H₂₂NO₆⁺ (M+H)⁺ 420.1442, found 420.1444

Ethyl-(*R*)-5'-benzoyl-1-benzyl-7-methyl-2,2'-dioxo-2',3'-dihydrospiro[indoline-3, 4'-pyran]-6'-carboxylate (3ad): Brown soild (45 mg, 92 % yield). Mp 67.8–70.1 °C HPLC: 84 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 26.941 min, tr (minor) = 30.908 min. $[\alpha]_D^{20}$ = +43.6 (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) &: 7.75–7.73 (m, 1H), 7.57–7.49 (m, 1H), 7.43–7.33 (m, 2H), 7.28–7.23 (m, 4H), 7.15–7.06 (m, 2H), 6.96 (d, *J* = 10.0 Hz, 2H), 6.47 (d, *J* = 8.0 Hz, 1H), 4.89–4.61 (m, 2H), 4.18–3.83 (m, 2H), 3.29–2.89 (m, 2H), 2.21 (s, 3H), 1.02 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) &: 191.2, 175.4, 163.4, 159.8, 143.9, 140.6, 136.8, 136.6, 134.0, 133.7, 129.0, 128.9, 128.7, 127.5, 127.4, 125.6, 124.8, 123.7, 122.2, 120.9, 62.8, 50.1, 45.7, 37.3, 18.7, 13.5. HRMS (APCI) m/z calcd for C₃₀H₂₆NO₆⁺ (M+H)⁺ 496.1755, found 496.1720.

Ethyl(*R*)-5'-benzoyl-1-benzyl-5,6-difluoro-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-6'-carboxylate (3ba): Orange soild (49 mg, 96 % yield). Mp 76.4–77.8 °C, HPLC: 82 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 34.268 min, tr (minor) = 31.813 min. $[\alpha]_D^{20}$ = +20.6 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (s, 1H), 7.34 (s, 1H), 7.25 (dd, *J* = 7.0, 3.5 Hz, 4H), 7.18 (d, *J* = 8.1 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.11 (d, *J* = 3.6 Hz, 2H), 7.02–6.95 (m, 1H), 6.58 (d, *J* = 7.9 Hz, 1H), 4.85 (d, *J* = 15.8 Hz, 1H), 4.70 (d, *J* = 15.7 Hz, 1H), 4.03 (dq, *J* = 7.2, 3.5 Hz, 2H), 3.08 (d, *J* = 1.3 Hz, 1H), 3.00 (d, *J* = 13.5 Hz, 1H), 2.37 (s, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 190.4, 174.2, 163.3, 159.7, 144.7, 143.2, 142.3, 134.6, 133.8, 129.9, 129.4, 129.0, 128.9, 128.8, 127.7, 127.1, 126.6, 124.9, 124.4, 123.5, 110.0, 62.6, 50.4, 44.3, 36.7, 21.7, 13.5. HRMS (APCI) m/z calcd for C₂₉H₂₂F₂NO₆⁺(M+H)⁺ 518.1410, found 518.1417.

Ethyl(*R*)-1-benzyl-5'-(4-(tert-butyl)benzoyl)-2,2'-dioxo-2',3'-dihydrospiro[indolin e-3,4'-pyran]-6'-carboxylate (3bb): Red oil (28 mg, 53 % yield). HPLC: 88 % ee

(Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 28.197 min, tr (minor) = 22.209 min. $[\alpha]_D{}^{20}$ = -27.1 (c = 0.2, CH2Cl2). ¹H NMR (400 MHz, CDCl₃) & 7.68 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.25 (d, *J* = 9.4 Hz, 3H), 7.19–7.12 (m, 4H), 6.96 (d, *J* = 6.7 Hz, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 4.77 (s, 2H), 3.98 (dd, *J* = 7.1, 3.0 Hz, 2H), 3.77 (s, 1H), 3.10 (d, *J* = 2.5 Hz, 2H), 1.30 (s, 9H), 0.96 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) & 190.6, 174.4, 163.4, 159.7, 157.6, 143.7, 142.3, 134.7, 133.9, 129.9, 128.8, 128.7, 127.7, 127.1, 126.8, 125.6, 124.7, 124.2, 123.5, 110.1, 62.6, 50.5, 44.3, 36.6, 35.2, 31.0, 13.3. HRMS (APCI) m/z calcd for $C_{33}H_{32}NO_6{}^+(M+H){}+ 538.2224$, found 538.2216.

Ethyl(*R*)-1-benzyl-5'-(4-methoxybenzoyl)-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-pyran]-6'-carboxylate (3bc): Orange soild (48 mg, 94 % yield). Mp 85.7–87.4 °C, HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 71.310 min, tr (minor) = 62.655 min. $[\alpha]_D^{20} = +5.8$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, *J* = 8.9 Hz, 2H), 7.26–7.21 (m, 3H), 7.20 (d, *J* = 6.3 Hz, 1H), 7.17–7.12 (m, 1H), 7.07 (dd, *J* = 6.8, 2.8 Hz, 2H), 7.02–6.96 (m, 1H), 6.83 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 7.9 Hz, 1H), 4.88 (d, *J* = 15.8 Hz, 1H), 4.70 (d, *J* = 15.8 Hz, 1H), 4.10–4.01 (m, 2H), 3.82 (s, 3H), 3.08 (s, 2H), 1.05 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 189.2, 174.3, 164.1, 163.4, 159.7, 142.9, 142.3, 134.6, 131.2, 129.9, 129.3, 128.8, 127.7, 127.0, 126.5, 125.1, 124.5, 123.5, 113.9, 110.0, 62.6, 55.5, 50.4, 44.3, 36.7, 13.5. HRMS (APCI) m/z calcd for C₃₀H₂₆NO₇⁺(M+H)⁺ 512.1704 , found 512.1697.

Ethyl(*R*)-1-benzyl-5'-(2,3-dihydrobenzo[b][1,4]dioxine-6-carbonyl)-2,2'-dioxo-2', 3'-dihydrospiro[indoline-3,4'-pyran]-6'-carboxylate (3bd): Orange soild (53 mg, 98 % yield). Mp 60.3–63.4 °C, HPLC: 87 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 59.493 min, tr (minor) = 53.766 min. $[\alpha]_D^{20} = -91.0$ (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ : 7.33–7.26 (m, 3H), 7.25 (s, 2H), 7.20–7.09 (m, 4H), 7.02–6.96 (m, 1H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.59 (d, *J* = 7.8 Hz, 1H), 4.92 (d, *J* = 15.8 Hz, 1H), 4.71 (d, *J* = 15.8 Hz, 1H), 4.30–4.17 (m, 4H), 4.13–4.02 (m, 2H), 3.16–2.98 (m, 2H), 1.08 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 189.2, 174.3, 163.5, 159.8, 148.8, 143.6, 143.1, 142.4, 134.8, 130.2, 130.0, 128.9, 127.8, 127.2, 126.7, 125.0, 124.5, 123.6, 123.3, 118.2, 117.5, 110.2, 64.8, 64.0, 62.7, 50.5, 44.4, 36.8, 13.7. HRMS (APCI) m/z calcd for $C_{31}H_{26}INO_8^+(M+H)^+$ 540.1653 , found 540.1644.

Ethyl(*R*)-1-benzyl-5'-(3,4-dichlorobenzoyl)-2,2'-dioxo-2',3'-dihydrospiro[indoline -3,4'-pyran]-6'-carboxylate (3be): Yellow soild (36 mg, 66 % yield). Mp 57.9–59.0 °C. HPLC: 90 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 90:10, flow rate 0.3 mL/min, tr (major) = 242.538 min, tr (minor) = 234.514 min. $[\alpha]_D^{20} = +4.8$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) &: 7.79 (d, J = 2.0 Hz, 1H), 7.54 (dd, J = 8.4, 2.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 6.4 Hz, 3H), 7.19 (d, J = 6.1 Hz, 2H), 7.12–7.08 (m, 2H), 7.06–6.99 (m, 1H), 6.66 (d, J = 8.1 Hz, 1H), 4.89 (d, J = 33.6 Hz, 1H), 4.70 (d, J = 15.7 Hz, 1H), 4.12 (t, J = 7.2 Hz, 2H), 3.10 (d, J = 8.2 Hz, 1H), 3.00 (d, J = 14.0 Hz, 1H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) &: 188.6, 173.9, 162.9, 159.5, 143.5, 142.2, 138.2, 135.6, 134.4, 133.4, 130.7, 130.2, 128.8, 127.9, 127.8, 127.1, 126.1, 124.4, 124.2, 123.7, 110.1, 62.9, 50.3, 44.3, 36.4, 13.6. HRMS (APCI) m/z calcd for C₂₉H₂₁Cl₂NO₆⁺ (M+H)⁺ 550.0819, found 550.0823.

Ethyl(*R*)-5'-(2-naphthoyl)-1-benzyl-2,2'-dioxo-2',3'-dihydrospiro[indoline-3,4'-py ran]-6'-carboxylate (3bf): Orange soild (36 mg, 66 % yield). Mp 69.1–75.1 °C. HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 33.1038 min, tr (minor) = 29.683 min. $[\alpha]_D^{20} = +23.7$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 8.26 (s, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 5.4 Hz, 1H), 7.60 (d, *J* = 8.1 Hz, 1H), 7.56–7.50 (m, 2H), 7.24 (d, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.08–7.04 (m, 2H), 7.01–6.96 (m, 3H), 6.51 (d, *J* = 7.8 Hz, 1H), 4.77–4.61 (m, 2H), 4.05–3.95 (m, 2H), 3.00 (d, *J* = 13.3 Hz, 3H), 0.99 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 190.7, 174.3, 163.3, 159.7, 143.7, 142.3, 135.8, 134.5, 133.6, 132.3, 131.3, 129.9, 129.8, 129.0, 128.8, 128.7, 128.7, 127.8, 127.7, 127.0, 126.9, 126.4, 125.0, 124.5, 123.7, 123.6, 110.1, 62.7, 62.0, 50.4, 44.3, 37.1, 36.7, 34.1, 14.0, 13.5, 13.6. HRMS (APCI) m/z calcd for C₃₃H₂₆NO₆⁺ (M+H)⁺ 532.1755, found 532.1749.

Methyl(*R*)-2-(1-benzyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetate (4aa): White solid (40 mg, 98 % yield). Mp: 63.2–65.3 °C. HPLC: 92% ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 15.043 min, tr (minor) = 10.932 min. $[\alpha]_D^{20} = +19.5$ (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, *J* = 7.1 Hz, 2H), 7.56–7.50 (m, 1H), 7.45 (d, *J* = 6.8 Hz, 2H), 7.44–7.39 (m, 2H), 7.38–7.30 (m, 3H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.17–7.11 (m, 1H), 6.96–6.90 (m, 1H), 6.74 (d, *J* = 8.6 Hz, 1H), 5.14–4.84 (m, 2H), 4.11 (d, *J* = 17.8 Hz, 1H), 3.61 (d, *J* = 17.8 Hz, 1H), 3.54 (s, 3H), 3.16 (d, *J* = 15.8 Hz, 1H), 2.84 (d, *J* = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.8, 179.1, 170.3, 143.5, 136.46, 136.1, 133.3, 130.6, 128.7, 128.5, 128.3, 128.0, 127.4, 127.4, 123.6, 122.3, 109.3, 51.7, 47.1, 44.3, 41.1. HRMS (APCI) m/z calcd forC₂₆H₂₄NO₄⁺ (M+H)⁺ 414.1700, found 414.1692.

Methyl(*R*)-2-(1-methyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetate. Brown oil (37 mg, 98 % yield). HPLC: 93% ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 16.774 min, tr (minor) = 14.502 min. $[\alpha]_D^{20} = +14.2$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (d, J = 7.0 Hz, 2H), 7.54–7.49 (m, 1H), 7.42–7.37 (m, 2H), 7.32 (d, J = 8.7 Hz, 1H), 7.27 (d, J = 11.1 Hz, 1H), 6.99–6.94 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 4.05 (d, J = 17.9 Hz, 1H), 3.56–3.51 (m, 4H), 3.31 (s, 3H), 3.12 (d, J = 16.0 Hz, 1H), 2.79 (d, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.0, 179.1, 170.5, 144.5, 136.5, 133.38, 130.73, 128.6, 128.5, 128.0, 123.6, 122.3, 108.3, 51.8, 47.1, 44.4, 40.9, 26.69. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₄⁺ (M+H)⁺ 428.1856, found 428.1848.

Methyl(*R*)-2-(1-methyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetate (4ac): Brown oil (33 mg, 95 % yield). HPLC: 93% ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 69.544 min, tr (minor)

= 67.201 min. $[\alpha]_D^{20}$ = +27.3 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (d, *J* = 7.0 Hz, 2H), 7.54–7.49 (m, 1H), 7.43–7.35 (m, 2H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 6.98–6.93 (m, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 4.03 (d, *J* = 17.8 Hz, 1H), 3.85 (q, *J* = 7.2 Hz, 2H), 3.52 (d, *J* = 16.6 Hz, 4H), 3.12 (d, *J* = 15.9 Hz, 1H), 2.79 (d, *J* = 15.8 Hz, 1H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.9, 178.6, 170.5, 143.6, 136.6, 133.3, 130.9, 128.6, 128.4, 128.1, 123.9, 122.1, 108.4, 51.7, 47.1, 44.4, 41.0, 35.0, 12.3. HRMS (APCI) m/z calcd for C₂₁H₂₂NO₄⁺ (M+H)⁺ 352.1543, found 352.1539.

Methyl(*R*)-2-(1-allyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetate (4ad): Brown oil (34 mg, 94 % yield). HPLC: 94 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 12.238 min, tr (minor) = 10.921 min. $[\alpha]_D^{20} = +12.3$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) &: 7.84 (d, *J* = 8.3 Hz, 2H), 7.55–7.47 (m, 1H), 7.43–7.37 (m, 2H), 7.32 (d, *J* = 7.4 Hz, 1H), 7.26–7.20 (m, 1H), 6.99–6.92 (m, 1H), 6.89 (d, *J* = 7.7 Hz, 1H), 5.95 (ddd, *J* = 22.5, 10.4, 5.3 Hz, 1H), 5.43 (d, *J* = 17.2 Hz, 1H), 5.28 (d, *J* = 10.4 Hz, 1H), 4.44 (s, 2H), 4.07 (d, *J* = 17.9 Hz, 1H), 3.62–3.52 (m, 4H), 3.13 (d, *J* = 15.9 Hz, 1H), 2.80 (d, *J* = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) &: 195.8, 178.7, 170.3, 143.6, 136.4, 133.2, 131.7, 130.6, 128.5, 128.3, 128.0, 123.5, 122.2, 117.6, 109.1, 51.7, 47.0, 44.4, 42.81, 41.0. HRMS (APCI) m/z calcd for C₂₂H₂₂NO₄⁺ (M+H)⁺ 364.1543, found 364.1537.

Methyl(*R*)-2-(2-oxo-3-(2-oxo-2-phenylethyl)-1-(prop-2-yn-1-yl)indolin-3-yl)acetat e (4ae): Brown oil (33 mg, 92 % yield). HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 14.419 min, tr (minor) = 11.351 min. $[\alpha]_D^{20} = +31.3$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (d, *J* = 7.1 Hz, 2H), 7.56–7.45 (m, 1H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.33–7.27 (m, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.04–6.97 (m, 1H), 4.72 (d, *J* = 20.3 Hz, 1H), 4.51 (d, *J* = 20.2 Hz, 1H), 4.06 (d, *J* = 17.9 Hz, 1H), 3.55 (d, *J* = 17.9 Hz, 4H), 3.14 (d, *J* = 15.9 Hz, 1H), 2.83 (d, *J* = 15.9 Hz, 1H), 2.29 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.9, 178.2, 170.4, 142.7, 136.4, 133.4, 130.5, 128.6, 128.6, 128.1, 123.8, 122.8, 109.3, 72.3, 51.9, 47.1, 44.5, 41.0, 29.8. 41.0. HRMS (APCI) m/z calcd for C₂₂H₂₀NO₄⁺ (M+H)⁺ 362.1387, found 362.1380.

Methyl(*R*)-2-(1-benzyl-7-methyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetat e (4af): Brown oil (40 mg, 94 % yield). HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 14.502 min, tr (minor) = 16.774 min. $[\alpha]_D^{20} = +15.3$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, J = 7.1 Hz, 2H), 7.56–7.51 (m, 1H), 7.43 (q, J = 7.7 Hz, 4H), 7.37–7.33 (m, 2H), 7.28 (d, J = 7.3 Hz, 1H), 7.13 (s, 1H), 6.93 (d, J = 7.9 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 5.07–4.94 (m, 2H), 4.09 (d, J = 17.9 Hz, 1H), 3.63 (s, 1H), 3.55 (s, 3H), 3.14 (d, J = 15.8 Hz, 1H), 2.84 (d, J = 15.8 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.9, 179.1, 170.5, 141.2, 136.6, 136.3, 133.3, 131.8, 130.8, 128.8, 128.7, 128.7, 128.6, 128.2, 127.5, 124.5, 109.1, 51.8, 47.3, 44.4, 41.2, 21.2. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₄⁺ (M+H)⁺ 428.1856, found 428.1848.

Methyl(*R*)-2-(1-benzyl-5,7-dimethyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)ac etate (4ag): Brown oil (43 mg, 97 % yield). HPLC: 91 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 30.006 min, tr (minor) = 13.907 min. [α]_D²⁰ = +26.3 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.89 (d, *J* = 9.8 Hz, 2H), 7.58–7.49 (m, 1H), 7.46–7.30 (m, 6H), 7.30–7.23 (m, 1H), 6.95 (s, 1H), 6.73 (s, 1H), 5.23 (s, 2H), 4.09 (d, *J* = 17.8 Hz, 1H), 3.64 (d, *J* = 32.4 Hz, 4H), 3.08 (d, *J* = 15.6 Hz, 1H), 2.83 (d, *J* = 15.6 Hz, 1H), 2.21 (d, *J* = 19.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.9, 179.9, 170.4, 139.2, 138.4, 136.5, 133.2, 132.9, 131.7, 131.6, 128.7, 128.5, 128.1, 126.9, 126.0, 121.8, 119.4, 51.7, 46.6, 45.6, 44.5, 41.7, 20.8, 18.7. HRMS (APCI) m/z calcd for C₂₈H₂₈NO₄⁺ (M+H)⁺ 442.2013, found 442.2006.

Methyl(*R*)-2-(1-benzyl-5-methoxy-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acet ate (4ah): Brown oil (43 mg, 98 % yield). HPLC: 94 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 18.126 min, tr (minor) = 13.642 min. $[\alpha]_D^{20} = +27.8$ (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, *J* = 8.2 Hz, 1H), 7.58–7.50 (m, 1H), 7.42 (q, *J* = 7.6, 7.1 Hz, 3H), 7.38–7.31 (m, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 8.2 Hz, 1H), 7.10–6.99 (m, 1H), 6.97 (d,

J = 2.4 Hz, 1H), 6.93 (s, 1H), 6.65–6.62 (m, 1H), 5.08–4.92 (m, 2H), 4.10 (d, J = 17.9 Hz, 1H), 3.76 (d, J = 2.8 Hz, 1H), 3.65 (d, J = 24.1 Hz, 3H), 3.57 (d, J = 4.6 Hz, 3H), 3.16 (d, J = 16.0 Hz, 1H), 2.83 (d, J = 16.0 Hz, 1H) ; ¹³C NMR (100 MHz, CDCl₃) δ : 195.8, 178.7, 170.3, 155.6, 136.4, 136.1, 133.3, 128.7, 128.5, 128.0, 127.4, 127.4, 112.3, 111.4, 109.5, 56.0, 55.6, 51.7, 47.5, 44.4, 44.3, 41.0. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₅⁺ (M+H)⁺ 444.1805, found 444.1798.

Methyl-(*R***)-2-(1-benzyl-5-fluoro-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetat e (4ai):** Brown oil (42 mg, 97 % yield). HPLC: 91 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 10.721 min, tr (minor) = 8.186 min. [α]_D²⁰ = +13.1 (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ: 7.89 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 14.8 Hz, 1H), 7.44 (d, J = 7.6 Hz, 4H), 7.40–7.33 (m, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.15 (dd, J = 8.2, 2.6 Hz, 1H), 6.88–6.78 (m, 1H), 6.64 (dd, J = 8.6, 4.2 Hz, 1H), 5.01 (q, J = 15.9 Hz, 2H), 4.13 (d, J = 18.0 Hz, 1H), 3.60 (d, J = 18.1 Hz, 4H), 3.19 (d, J = 16.2 Hz, 1H), 2.83 (d, J = 16.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 195.7, 179.0, 170.3, 160.2, 157.8, 139.6, 139.6, 136.3, 135.9, 133.5, 132.5, 132.4, 128.9, 128.7, 128.1, 127.7, 127.4, 114.7, 114.4, 112.4, 112.1, 109.8, 109.8, 51.9, 47.6, 47.6, 44.5, 44.4, 40.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.64. HRMS (APCI) m/z calcd for C₂₆H₂₃FNO₄⁺ (M+H)⁺ 432.1606, found 432.1600.

Methyl(*R*)-2-(1-benzyl-5-chloro-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetat e (4aj) : Brown oil (43 mg, 97 % yield). HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 9.806 min, tr (minor) = 7.722 min. $[\alpha]_D^{20}$ = -15.9 (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ: 7.89 (d, *J* = 8.2 Hz, 2H), 7.58–7.52 (m, 1H), 7.46–7.40 (m, 4H), 7.35 (d, *J* = 7.0 Hz, 3H), 7.31 (s, 1H), 7.11 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.65 (d, *J* = 8.3 Hz, 1H), 5.07–4.95 (m, 2H), 4.12 (d, *J* = 18.1 Hz, 1H), 3.61 (d, *J* = 21.1 Hz, 4H), 3.16 (d, *J* = 16.2 Hz, 1H), 2.82 (d, *J* = 16.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 195.6, 178.8, 170.2, 142.4, 136.2, 135.7, 133.6, 132.6, 128.9, 128.7, 128.3, 128.1, 127.8, 127.7, 127.4, 124.3, 110.3, 51.9, 47.3, 44.5, 44.5, 41.0. HRMS (APCI) m/z calcd for C₂₆H₂₃ClNO4⁺ (M+H)⁺ 448.1310, found 448.1304.

Methyl(*R*)-2-(1-benzyl-5-bromo-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetat e (4ak): Brown oil (48 mg, 98 % yield). HPLC: 87 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 9.931 min, tr (minor) = 7.822 min. $[\alpha]_D^{20} = +17.4$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, J = 7.2 Hz, 2H), 7.58–7.53 (m, 1H), 7.47–7.42 (m, 4H), 7.37 (d, J = 7.3 Hz, 2H), 7.30 (d, J = 7.2 Hz, 3H), 6.60 (d, J = 8.3 Hz, 1H), 5.06–4.95 (m, 2H), 4.11 (d, J= 18.1 Hz, 1H), 3.61 (d, J = 20.3 Hz, 4H), 3.15 (d, J = 16.2 Hz, 1H), 2.81 (d, J = 16.2Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.6, 178.7, 170.2, 142.9, 136.2, 135.7, 133.6, 133.0, 131.3, 128.9, 128.7, 128.2, 127.7, 127.4, 127.0, 115.2, 110.8, 52.0, 47.3, 44.5, 41.1. HRMS (APCI) m/z calcd for C₂₆H₂₃BrNO₄⁺ (M+H)⁺ 492.0805, found 492.0797.

Methyl(*R*)-2-(1-benzyl-7-bromo-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetat e (4al): Brown oil (45 mg, 93 % yield). HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 17.729 min, tr (minor) = 8.951 min. $[\alpha]_D^{20}$ = -19.4 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, *J* = 7.1 Hz, 2H), 7.58–7.52 (m, 1H), 7.47–7.39 (m, 4H), 7.37–7.32 (m, 3H), 7.27 (d, *J* = 8.6 Hz, 2H), 6.86–6.79 (m, 1H), 5.47 (d, *J* = 5.4 Hz, 2H), 4.10 (d, *J* = 15.0 Hz, 1H), 3.65 (d, *J* = 17.9 Hz, 1H), 3.59 (s, 3H), 3.11 (d, *J* = 15.9 Hz, 1H), 2.83 (d, *J* = 15.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.6, 180.0, 170.2, 141.3, 138.2, 136.3, 134.5, 134.2, 133.6, 128.7, 128.5, 128.1, 126.9, 126.7, 126.4, 123.6, 122.5, 102.6, 51.9, 46.8, 45.3, 44.6, 41.5. HRMS (APCI) m/z calcd for C₂₆H₂₃BrNO₄⁺ (M+H)⁺ 492.0805, found 492.0796.

Methyl(*R*)-2-(1-benzyl-6-chloro-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetat e (4am): Brown oil (44 mg, 98 % yield). HPLC: 91 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 9.946 min, tr (minor) = 7.787 min. $[\alpha]_D^{20} = +13.5$ (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ : 7.89 (d, J = 8.3 Hz, 2H), 7.58–7.53 (m, 1H), 7.47–7.41 (m, 4H), 7.38–7.34 (m, 3H), 7.30 (d, J = 7.2 Hz, 1H), 7.11 (dd, J = 8.3, 2.2 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.07–4.95 (m, 2H), 4.12 (d, J = 18.0 Hz, 1H), 3.61 (d, J = 21.2 Hz, 4H), 3.16 (d, J =16.2 Hz, 1H), 2.82 (d, J = 16.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.6, 178.8, 170.2, 142.4, 136.2, 135.7, 133.6, 132.6, 128.9, 128.7, 128.3, 128.1, 127.8, 127.7, 127.4, 124.3, 110.3, 51.9, 47.3, 44.5, 44.5, 41.0. HRMS (APCI) m/z calcd for C₂₆H₂₃ClNO₄⁺ (M+H)⁺ 448.1310, found 448.1304.

Methyl(*R*)-2-(1-benzyl-2-oxo-3-(2-oxo-2-phenylethyl)indolin-3-yl)acetate (4an): Brown oil (40 mg, 97 % yield). HPLC: 80 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 7.851 min, tr (minor) = 6.671 min. [α]_D²⁰ = +19.4 (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ: 7.88 (d, J = 7.5 Hz, 2H), 7.55 (d, J = 6.4 Hz, 1H), 7.46–7.35 (m, 6H), 7.30 (d, J = 9.1 Hz, 2H), 6.57–6.51 (m, 1H), 4.97 (q, J = 15.8 Hz, 2H), 4.10 (d, J = 18.0 Hz, 1H), 3.57 (d, J = 19.8 Hz, 4H), 3.18 (d, J = 16.4 Hz, 1H), 2.80 (d, J = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 195.7, 179.1, 170.2, 136.2, 135.4, 133.7, 129.0, 128.8, 128.1, 127.9, 127.5, 114.1, 113.9, 99.7, 99.5, 52.0, 47.2, 44.7, 44.4, 40.9. ¹⁹F NMR (376 MHz, CDCl₃) δ: -136.6, -145.9. HRMS (APCI) m/z calcd for C₂₆H₂₂F₂NO₄⁺ (M+H)⁺ 450.1511, found 450.1505.

Methyl (*R*)-2-(1-benzyl-2-oxo-3-(2-oxo-2-(p-tolyl)ethyl)indolin-3-yl)acetate (4ba): Brown oil (42 mg, 98 % yield). HPLC: 90 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 17.838 min, tr (minor) = 12.811 min. $[\alpha]_D^{20} = +12.4$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.77 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.34 (q, *J* = 7.4 Hz, 3H), 7.28 (d, *J* = 7.0 Hz, 1H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.16–7.10 (m, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.17–4.83 (m, 2H), 4.07 (d, *J* = 17.7 Hz, 1H), 3.56 (d, *J* = 24.0 Hz, 4H), 3.16 (d, *J* = 15.8 Hz, 1H), 2.84 (d, *J* = 15.8 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 179.3, 170.5, 144.2, 143.7, 136.3, 134.1, 130.8, 129.3, 128.8, 128.4, 128.3, 127.5, 123.7, 122.4, 109.4, 51.8, 47.3, 44.4, 44.3, 41.2, 21.7. HRMS (APCI) m/z calcd for C₃₀H₂₆NO₇⁺ (M+H)⁺ 496.1755, found 496.1767.

Methyl(*R*)-2-(1-benzyl-3-(2-(4-(tert-butyl)phenyl)-2-oxoethyl)-2-oxoindolin-3-yl)a cetate (4bb): Brown oil (46 mg, 93 % yield). HPLC: 88 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 15.511 min, tr (minor) = 10.143 min. $[\alpha]_D^{20} = +17.2$ (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ : 7.73 (d, J = 8.5 Hz, 2H), 7.35 (dd, J = 12.0, 8.0 Hz, 4H), 7.28–7.22 (m, 3H), 7.19 (d, J = 7.3 Hz, 1H), 7.07–7.00 (m, 1H), 6.86–6.79 (m, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.01–4.83 (m, 2H), 3.99 (d, J = 17.8 Hz, 1H), 3.47 (d, J = 31.6 Hz, 4H), 3.09 (d, J = 15.8 Hz, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 179.2, 170.4, 157.1, 143.6, 136.2, 134.0, 130.8, 128.8, 128.3, 128.1, 127.5, 127.5, 125.5, 123.6, 122.3, 109.3, 51.7, 47.2, 44.4, 41.2, 35.1, 31.1. HRMS (APCI) m/z calcd for C₃₀H₃₂NO₄⁺ (M+H)⁺ 470.2326, found 470.2319.

Methyl(*R*)-2-(1-benzyl-3-(2-(4-methoxyphenyl)-2-oxoethyl)-2-oxoindolin-3-yl)ace tate (4bc): Brown oil (42 mg, 96 % yield). HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 26.717 min, tr (minor) = 17.829 min. $[\alpha]_D{}^{20}$ = +20.6 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.85 (d, *J* = 8.9 Hz, 2H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.39–7.30 (m, 3H), 7.28 (d, *J* = 8.5 Hz, 1H), 7.17–7.09 (m, 1H), 6.96–6.90 (m, 1H), 6.88 (d, *J* = 8.9 Hz, 2H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.22–4.8 5 (m, 2H), 4.04 (d, *J* = 17.5 Hz, 1H), 3.84 (s, 3H), 3.53 (s, 3H), 3.19–2.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 194.3, 179.3, 170.5, 163.7, 143.7, 136.3, 130.9, 130.5, 129.7, 128.9, 128.8, 128.4, 127.5, 127.5, 123.7, 122.3, 113.8, 109.4, 55.6, 51.8, 47.3, 44.4, 44.1, 41.2. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₅⁺ (M+H)⁺444.1805, found 444.1802.

Methyl(*R*)-2-(1-benzyl-3-(2-(2-methoxyphenyl)-2-oxoethyl)-2-oxoindolin-3-yl)ace tate (4bd): Brown oil (41 mg, 92 % yield). HPLC: 94 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 22.445 min, tr (minor) = 19.155 min. $[\alpha]_D^{20} = +12.4$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃)

δ: 7.52–7.46 (m, 2H), 7.45–7.38 (m, 1H), 7.34 (d, J = 7.6 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.19–7.06 (m, 2H), 6.97–6.87 (m, 3H), 6.71 (d, J = 7.8 Hz, 1H), 5.09–4.92 (m, 2H), 4.04 (d, J = 18.1 Hz, 1H), 3.89 (s, 3H), 3.61 (d, J = 18.1 Hz, 1H), 3.49 (s, 3H), 3.17–2.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 197.8, 179.4, 170.4, 158.7, 143.8, 136.4, 133.9, 131.0, 130.5, 128.8, 128.2, 127.7, 127.6, 127.5, 123.6, 122.2, 120.7, 111.6, 109.2, 55.6, 51.7, 49.8, 47.6, 44.4, 41.3. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₅⁺ (M+H)⁺ 444.1805 , found 444.1802.

Methyl(*R*)-2-(1-benzyl-3-(2-(3-methoxyphenyl)-2-oxoethyl)-2-oxoindolin-3-yl)ace tate (4be): Brown oil (42 mg, 94 % yield). HPLC: 88 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 19.184 min, tr (minor) = 13.412 min. $[\alpha]_D^{20} = +19.3$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (dd, J = 13.6, 7.8 Hz, 3H), 7.36 (d, J = 9.4 Hz, 3H), 7.32 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.3 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 7.08 (dd, J = 8.2, 3.6 Hz, 1H), 6.96–6.90 (m, 1H), 6.75 (d, J = 7.8 Hz, 1H), 5.13–4.91 (m, 2H), 4.09 (d, J = 17.8 Hz, 1H), 3.80 (s, 3H), 3.60 (d, J = 17.8 Hz, 1H), 3.53 (s, 3H), 3.15 (d, J = 15.8 Hz, 1H), 2.84 (d, J = 15.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.8, 179.2, 170.4, 159.8, 143.7, 137.9, 136.2, 130.7, 129.6, 128.8, 128.4, 127.6, 127.5, 123.7, 122.4, 120.9, 120.1, 112.1, 109.4, 55.5, 51.8, 47.3, 44.6, 44.4, 41.3. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₅⁺ (M+H)⁺ 444.1805, found 444.1802.

Methyl(*R*)-2-(1-benzyl-3-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-oxoethyl)-2-o xoindolin-3-yl)acetate (4bf): Brown oil (46 mg, 97 % yield). HPLC: 88 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 34.989 min, tr (minor) = 24.496 min. $[\alpha]_D^{20}$ = -83.2 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) & 7.45 (d, *J* = 5.3 Hz, 2H), 7.43–7.35 (m, 3H), 7.32 (d, *J* = 4.4 Hz, 1H), 7.31–7.27 (m, 2H), 7.12 (d, *J* = 7.8 Hz, 1H), 6.95–6.89 (m, 1H), 6.85 (d, *J* = 9.1 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.02 (q, *J* = 15.8 Hz, 2H), 4.30–4.27 (m, 2H), 4.26–4.23 (m, 2H), 4.01 (d, *J* = 17.7 Hz, 1H), 3.52 (s, 4H), 3.15 (d, *J* = 15.9 Hz, 1H), 2.83 (d, *J* = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) &: 194.1, 179.2, 170.3, 148.1, 143.5, 143.2, 136.1, 130.7, 130.3, 128.8, 128.7, 128.2, 127.4, 127.4, 123.5, 122.2, 117.6, 117.1, 109.2, 64.6, 64.0, 51.6, 47.2, 44.3, 44.0, 41.1. HRMS (APCI) m/z

calcd for C₂₈H₂₆NO₆⁺ (M+H)⁺ 472.1755, found 472.1748.

Methyl(*R*)-2-(1-benzyl-3-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxoindolin-3-yl)acetat e (4bg): Brown oil (44 mg, 98 % yield). HPLC: 80 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 13.907 min, tr (minor) = 9.754 min. $[\alpha]_D^{20} = +6.7$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.81 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 6.7 Hz, 2H), 7.40–7.35 (m, 3H), 7.31 (dd, *J* = 12.3, 3.6 Hz, 3H), 7.14 (d, *J* = 7.7 Hz, 1H), 6.94 (s, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 5.01 (q, *J* = 15.8 Hz, 2H), 4.10 (d, *J* = 17.8 Hz, 1H), 3.58 (d, *J* = 24.9 Hz, 4H), 3.12 (d, *J* = 15.9 Hz, 1H), 2.82 (d, *J* = 15.8 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃) δ :194.7, 179.0, 170.4, 143.6, 139.9, 136.1, 134.8, 130.6, 129.6, 129.6, 128.9, 128.9, 128.8, 128.5, 127.6, 127.5, 123.6, 122.4, 109.4, 51.8, 47.2, 44.4, 44.2, 41.2. HRMS (APCI) m/z calcd for C₂₃H₂₃ClNO₂⁺ (M+H)⁺448.1310, found 448.1304.

Methyl(*R*)-2-(1-benzyl-3-(2-(3-chlorophenyl)-2-oxoethyl)-2-oxoindolin-3-yl)acetat e (4bh): Brown oil (42 mg, 94 % yield). HPLC: 94 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 22.629 min, tr (minor) = 9.137 min. [α]_D²⁰ = +9.7 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ :7.81 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 6.7 Hz, 2H), 7.40–7.35 (m, 3H), 7.31 (dd, *J* = 12.3, 3.6 Hz, 3H), 7.14 (d, *J* = 7.7 Hz, 1H), 6.94 (s, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 5.01 (q, *J* = 15.8 Hz, 2H), 4.10 (d, *J* = 17.8 Hz, 1H), 3.58 (d, *J* = 24.9 Hz, 4H), 3.12 (d, *J* = 15.9 Hz, 1H), 2.82 (d, *J* = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.7, 179.0, 170.4, 143.6, 139.9, 136.1, 134.8, 130.6, 129.6, 129.6, 128.9, 128.9, 128.8, 128.5, 127.6, 127.5, 123.6, 122.4, 109.4, 51.8, 47.2, 44.4, 44.2, 41.2.. HRMS (APCI) m/z calcd for C₂₃H₂₃ClNO₂⁺ (M+H)⁺448.1310, found 448.1304.

Methyl(R)-2-(1-benzyl-3-(2-(2-iodophenyl)-2-oxoethyl)-2-oxoindolin-3-yl)acetate

(4bi): Brown oil (48 mg, 90 % yield). HPLC: 91 % ee (Chiralpak IC column, 254 nm, hexae/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 15.064 min, tr (minor) = 10.944 min. $[\alpha]_D{}^{20}$ = -8.5 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) & 7.87 (d, J = 9.7 Hz, 2H), 7.52 (d, J = 6.1 Hz, 1H), 7.44 (d, J = 5.0 Hz, 2H), 7.41 (s, 1H), 7.37–7.31 (m, 3H), 7.28 (d, J = 5.8 Hz, 1H), 7.17–7.11 (m, 1H), 6.96–6.90 (m, 1H), 6.74 (d, J = 7.8 Hz, 1H), 5.11–4.94 (m, 2H), 4.11 (d, J = 17.8 Hz, 1H), 3.61 (d, J = 17.9 Hz, 1H), 3.54 (s, 3H), 3.16 (d, J = 15.9 Hz, 1H), 2.84 (d, J = 15.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) &: 195.8, 179.1, 170.3, 143.5, 136.4, 136.1, 133.3, 130.6, 128.7, 128.5, 128.3, 128.0, 127.4, 127.4, 123.6, 122.3, 109.3, 51.7, 47.1, 44.3, 41.1. HRMS (APCI) m/z calcd for C₂₆H₂₃INO₄⁺ (M+H)⁺ 540.0666, found 540.0661.

Methyl(*R*)-2-(1-benzyl-3-(2-(5-chloro-2-hydroxyphenyl)-2-oxoethyl)-2-oxoethyl)-2-oxoindolin -3-yl)acetate (4bj): Brown oil (43 mg, 92 % yield). HPLC: 86 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 31.288 min, tr (minor) = 26.050 min. $[\alpha]_D^{20} = +17.2$ (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 11.58 (s, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.51 (dd, J = 8.9, 2.4 Hz, 1H), 7.43 (d, J = 9.7 Hz, 2H), 7.38–7.27 (m, 6H), 7.21–7.15 (m, 2H), 6.99–6.93 (m, 1H), 6.81 (d, J = 8.9 Hz, 2H), 5.00 (d, J = 2.9 Hz, 2H), 4.18 (d, J = 18.0 Hz, 1H), 3.63 (d, J = 38.8 Hz, 4H), 3.06 (d, J = 15.9 Hz, 1H), 2.79 (d, J = 15.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl3) δ: 201.1, 178.7, 170.3, 161.3, 143.6, 139.4, 135.9, 132.1, 130.2, 128.8, 128.7, 127.7, 127.7, 127.4, 123.5, 122.5, 120.7, 120.3, 110.7, 109.5, 51.9, 47.0, 44.4, 43.7, 41.5.; HRMS (APCI) m/z calcd for C₂₆H₂₃ClNO₅⁺ (M+H)⁺ 464.1259, found 464.1071.

Methyl(*R*)-2-(1-benzyl-3-(2-(5-bromo-2-hydroxyphenyl)-2-oxoethyl)-2-oxoindolin -3-yl)acetate (4bk): Brown oil (47 mg, 93 % yield). HPLC: 92 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 30.289 min, tr (minor) = 26.471 min. [α]_D²⁰ = +23.7 (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ : 11.58 (s, 1H), 7.86 (d, *J* = 2.4 Hz, 1H), 7.51 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.43 (d, *J* = 6.9 Hz, 2H), 7.34 (s, 2H), 7.29 (dd, *J* = 6.7, 3.8 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 1H), 6.99–6.93 (m, 1H), 6.83–6.77 (m, 2H), 5.00 (d, *J* = 2.9 Hz, 2H), 4.18 (d, *J* = 18.0 Hz, 1H), 3.65 (d, *J* = 18.0 Hz, 1H), 3.58 (s, 3H), 3.06 (d, *J* = 15.9 Hz, 1H), 2.79 (d, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 201.0, 178.5, 170.1, 161.2, 143.5, 139.3, 135.8, 132.0, 130.1, 128.7, 128.5, 127.6, 127.6, 123.4, 122.4, 120.6; 120.2, 110.5, 109.4, 51.8, 46.8, 44.3, 43.6, 41.3. HRMS (APCI) m/z calcd for C₂₆H₂₃BrNO₅⁺ (M+H)⁺ 508.0754, found 508.0750.

4bl

Methyl(*R*)-2-(1-benzyl-3-(2-(3,4-dichlorophenyl)-2-oxoethyl)-2-oxoindolin-3-yl)ac etate (4bl): Brown oil (47 mg, 98 % yield). HPLC: 85 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 13.817 min, tr (minor) = 9.785 min. $[\alpha]_D^{20}$ = +6.3 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.94 (d, *J* = 2.0 Hz, 1H), 7.69 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.47–7.40 (m, 2H), 7.39–7.32 (m, 2H), 7.32–7.27 (m, 2H), 7.19–7.11 (m, 1H), 6.94 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 5.12–4.92 (m, 2H), 4.09 (d, *J* = 17.9 Hz, 1H), 3.58 (d, *J* = 14.4 Hz, 4H), 3.09 (d, *J* = 15.9 Hz, 1H), 2.81 (d, *J* = 15.9 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃) δ : 193.8, 178.8, 170.4, 143.6, 138.1, 136.0, 136.0, 133.4, 130.8, 130.4, 130.2, 128.9, 128.6, 127.7, 127.5, 127.2, 123.6, 122.5, 109.5, 51.9, 47.2, 44.4, 44.2, 41.2. HRMS (APCI) m/z calcd for C₂₆H₂₁Cl₂NO₄⁺ (M+H)⁺ 482.0920, found 482.0914.

Methyl(*R*)-2-(1-benzyl-3-(2-(naphthalen-2-yl)-2-oxoethyl)-2-oxoindolin-3-yl)aceta te (4bm): Orange oil (41 mg, 90 % yield). HPLC: 89 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 18.221 min, tr (minor) = 13.396 min. $[\alpha]_D^{20} = +19.4$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 8.43 (s, 1H), 7.91 (d, J = 8.6 Hz, 2H), 7.87–7.82 (m, 2H), 7.61–7.53 (m, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.41–7.32 (m, 3H), 7.29 (d, J = 8.6 Hz, 1H), 7.18–7.11 (m, 1H), 6.98–6.89 (m, 1H), 6.76 (d, J = 7.8 Hz, 1H), 5.04 (d, J = 24.9 Hz, 2H), 4.26 (d, J =17.7 Hz, 1H), 3.74 (d, J = 17.7 Hz, 1H), 3.56 (s, 3H), 3.22 (d, J = 15.8 Hz, 1H), 2.89 (d, J = 15.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.8, 179.3, 170.5, 143.7, 136.2, 135.7, 133.9, 132.5, 130.8, 130.0, 129.7, 128.8, 128.7, 128.5, 128.5, 127.8, 127.6, 127.5, 126.9, 123.8, 123.7, 122.4, 109.4, 51.8, 47.4, 44.5, 44.5, 41.3. HRMS (APCI) m/z calcd for C₃₀H₂₆NO₄⁺ (M+H)⁺ 464.1856 , found 464.1851.

Methyl(*R*)-2-(1-benzyl-2-oxo-3-(2-oxo-2-(thiophen-2-yl)ethyl)indolin-3-yl)acetate (4bn): Orange oil (40 mg, 96 % yield). HPLC: 92 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 19.681 min, tr (minor) = 16.439 min. $[\alpha]_D^{20} = +36.9$ (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, J = 3.9 Hz, 1H), 7.52 (d, J = 5.0 Hz, 1H), 7.34 (d, J = 7.5 Hz, 2H), 7.28 (d, J = 7.5 Hz, 2H), 7.20 (d, J = 10.0 Hz, 2H), 7.07 (d, J = 7.7 Hz, 1H), 7.03–6.98 (m, 1H), 6.90–6.83 (m, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.04–4.82 (m, 2H), 3.88 (d, J = 17.1 Hz, 1H), 3.45 (s, 3H), 3.11 (d, J = 16.0 Hz, 1H), 2.93 (d, J = 13.0 Hz, 2H), 2.81 (d, J = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 188.8, 178.9, 170.3, 143.8, 143.6, 136.1, 134.1, 132.4, 130.4, 128.8, 128.5, 128.2, 127.6, 127.5, 123.9, 122.4, 109.4, 62.1, 51.8, 47.4, 44.9, 44.4, 40.9, 37.2, 34.2, 14.1. HRMS (APCI) m/z calcd for C₂₄H₂₂NO4S⁺ (M+H)⁺ 420.1264, found 420.1258.

(*3R*, *6'R*)-1-benzyl-6'-phenyl-5',6'-dihydrospiro[indoline-3,4'-pyran]-2,2'(3'H)-dio ne (5a): Yellow oil (31 mg, 86 % yield). dr>20:1. HPLC: 93 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 13.245 min, tr (minor) = 10.958 min. [α]_D²⁰ = +49.3 (c = 0.2, CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ: 7.29 (d, J = 3.9 Hz, 6H), 7.25–7.13 (m, 6H), 7.08–7.01 (m, 1H), 6.72 (d, J = 7.8 Hz, 1H), 4.86 (d, J = 15.7 Hz, 2H), 4.63 (d, J = 15.6 Hz, 1H), 3.52 (d, J = 6.2 Hz, 1H), 3.42 (d, J = 6.6 Hz, 1H), 2.49 (dt, J = 13.9, 7.0 Hz, 1H), 2.30 (dd, J = 14.6, 3.8 Hz, 1H), 2.26 – 2.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 181.3, 144.0, 142.4, 135.7, 132.0, 128.9, 128.4, 128.3, 127.8, 127.7, 127.4, 126.0, 123.3, 123.1, 109.7, 71.3, 58.9, 50.0, 46.6, 44.1, 39.6. HRMS (APCI) m/z calcd for C₂₅H₂₂NO₃⁺ (M+H)⁺ 384.1594, found 384.1590.

Methyl(*R*)-2-(1-benzyl-3-(2-(5-chloro-2-(tosyloxy)phenyl)-2-oxoethyl)-2-oxoindoli n-3-yl)acetate (6a): White soild (31 mg, 90 % yield). Mp 72.1-73.9 °C. HPLC: 94 %

ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 14.902 min, tr (minor) = 10.833 min. $[\alpha]_D^{20}$ = +45.2 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) & 7.58 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.36–7.32 (m, 3H), 7.31–7.26 (m, 3H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.17–7.11 (m, 2H), 6.92 (td, *J* = 7.6, 1.1 Hz, 1H), 6.72 (d, *J* = 7.8 Hz, 1H), 5.03–4.93 (m, 2H), 4.09 (d, *J* = 6.7 Hz, 1H), 3.91 (d, *J* = 17.9 Hz, 1H), 3.51 (s, 3H), 2.98 (d, *J* = 15.8 Hz, 1H), 2.81 (d, *J* = 15.8 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 195.0, 170.0, 145.1, 136.1, 133.1, 132.7, 130.2, 130.1, 129.9, 128.8, 128.7, 128.5, 127.5, 124.7, 123.7, 122.4, 109.3, 51.8, 48.5, 47.3, 44.4, 41.3, 21.9, 19.3. HRMS (APCI) m/z calcd for C_{33H29}ClNO7S⁺ (M+H)⁺ 618.1348, found 618.1350.

Methyl(*R*)-2-(1-benzyl-2-oxo-3-(2-phenylallyl)indolin-3-yl)acetate (7a): Orange oil (36 mg, 90 % yield). HPLC: 92 % ee (Chiralpak IC column, 254 nm, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, tr (major) = 35.729 min, tr (minor) = 13.132 min. $[\alpha]_D^{20}$ = +38.5 (c = 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) & 7.87 (d, *J* = 8.2 Hz, 2H), 7.57–7.50 (m, 1H), 7.49–7.38 (m, 4H), 7.38–7.31 (m, 3H), 7.29 (d, *J* = 8.7 Hz, 1H), 7.177.09 (m, 1H), 6.97–6.89 (m, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.10–4.94 (m, 2H), 4.11 (d, *J* = 17.8 Hz, 1H), 4.00 (dd, *J* = 7.1, 5.5 Hz, 2H), 3.61 (d, *J* = 17.8 Hz, 1H), 3.14 (d, *J* = 15.7 Hz, 1H), 2.83 (d, *J* = 15.7 Hz, 1H), 1.08 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) &: 195.9, 179.2, 169.9, 143.7, 136.6, 136.2, 133.4, 130.8, 128.8, 128.6, 128.4, 128.1, 127.6, 127.5, 123.7, 122.3, 109.4, 60.8, 47.3, 44.5, 44.4, 41.5, 14.1. HRMS (APCI) m/z calcd for C₂₇H₂₆NO₃⁺ (M+H)⁺ 412.1907, found 412.1904.

VIII.NMR Spectrum

¹H NMR-**3bd** (400 MHz, CDCl₃)

¹H NMR-**3bf** (400 MHz, CDCl₃)

110 100 f1 (ppm) -10 210 200 190 170 160 150 140 130

¹⁹F NMR-4ai (376 MHz, CDCl₃)

wxm-m-4g.4.fid

F N Bn

4ai

¹³C NMR-4aj (100 MHz, CDCl₃)

¹³C NMR-4bh (100 MHz, CDCl₃)

—194.76		—170.42		—77.16 CD	-51.86 47.23 44.44 -41.27
---------	--	---------	--	-----------	------------------------------------

¹H NMR-4bj (400 MHz, CDCl₃)

¹³C NMR-4bj (100 MHz, CDCl₃)

¹³C NMR-4bl (100 MHz, CDCl₃)

¹H NMR-4bm(400 MHz, CDCl₃)

¹³C NMR-4bm (100 MHz, CDCl₃)

¹³C NMR-4bn (100 MHz, CDCl₃)

¹³C NMR-6a (100 MHz, CDCl₃)

¹H NMR-7a (400 MHz, CDCl₃)

IX.Chiral HPLC analysis trace

racemic-3aa

racemic-3ab

racemic-3ad

chiral-3ba

50-

25-

0-

racemic-3bf

chiral-3bf

racemic-3be

chiral-3be

racemic-3bf

chiral-3bf

chiral-4ac

12.5

13.0 min

0-

10.0

10.5

racemic-4ag

chiral-4ah

racemic-4ak

racemic-4al

chiral-4al

Area% 95.606 4.394 100.000

Peak Table

2 Total

chiral-4ba

racemic-4bb

chiral-4bb

chiral-4bc

racemic-4bf

chiral-4bf

chiral-4bh

chiral-4bj

racemic-4bl

racemic-7a

chiral-7a

