Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting information

for

Pd(II)-catalyzed synthesis of aryl ketones in water

Arzu Almin,^a Doli Bora,^a Utpal Bora*^a

^aDepartment of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India

E-mail: utbora@yahoo.co.in, ubora@tezu.ernet.in

Contents		
Section		Page No.
1	General information	\$3
2	¹ H and ¹³ C NMR spectral analysis of the aryl ketones	S3-S15
3	References	S15-S16
4	¹ H and ¹³ C NMR spectra of the aryl ketones	\$17-\$57
5	Mass spectra of 3q , 3r , 4l and 4m	S58-S61

1. General information

All the chemicals and reagents including starting materials used for the reactions were purchased from commercial suppliers like Sigma Aldrich, TCI, SRL, BLD Pharm, Spectrochem, etc. and used without further purification. The progress of the reaction was monitored through thin layer chromatography on Merck Kieselgel silica gel 60 F254 plates using short wave UV light ($\lambda = 254$ nm). The products were purified by column chromatography using silica gel (60-120 mesh). The identification of the purified products was carried out by NMR (¹H and ¹³C) spectroscopy. The NMR spectra were recorded on a 400 MHz JEOL ECZ NMR spectrophotometer (400 MHz for ¹H and 100 MHz for ¹³C NMR spectroscopy) or on Bruker Avance III 500 MHz FTNMR spectrometer (500 MHz for ¹H and 125 MHz for ¹³C NMR spectroscopy). Chemical shifts for both ¹H (δ_H) and ¹³C (δ_c) NMR are assigned in parts per million (ppm) using TMS (0 ppm) as the internal reference, CDCl₃ and DMSO-*d*₆ as the solvent (CDCl₃: $\delta_H = 7.25$ ppm and $\delta_C = 77.1$ ppm; DMSO- d_6 : $\delta_H = 2.5$ ppm, DMSO- d_6 absorbed water = 3.3 ppm and $\delta_C = 40.0$ ppm). The coupling constants, J are given in hertz and the multiplicities of the signals are assigned as: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, br = broad and m = multiplet. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Melting points (mp) were determined by JSGW Digital Melting Point Apparatus and are uncorrected.

2. ¹H and ¹³C NMR spectral analysis of the aryl ketones

Benzophenone (3a)¹

Colourless oil (90 mg, 99%); ¹H NMR (600 MHz, CDCl₃): δ_H (ppm) 7.85-7.81 (m, 4H), 7.63-7.59 (m, 2H), 7.52-7.49 (m, 4H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ_C (ppm) 196.8, 137.6, 132.4, 130.1, 128.3.

Phenyl(*p*-tolyl)methanone (3b)¹

Colourless oil (97 mg, 99%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.79-7.76 (m, 2H), 7.73-7.69 (m, 2H), 7.59-7.53 (m, 1H), 7.48-7.43 (m, 2H), 7.29-7.25 (m, 2H), 2.42 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 196.6, 143.4, 138.0, 134.9, 132.3, 130.4, 130.0, 129.1, 128.3, 21.8.

(4-Methoxyphenyl)(phenyl)methanone (3c)¹

White solid (105 mg, 99%); mp 61-62 °C; ¹H NMR (500 MHz, CDCl₃): δ_H (ppm) 7.83 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 7.1 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.7, 163.3, 138.4, 132.7, 132.0, 130.2, 129.8, 128.3, 113.6, 55.6.

(4-Fluorophenyl)(phenyl)methanone (3d)¹

White solid (88 mg, 88%); mp 48-49 °C; ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.85-7.80 (m, 2H), 7.77-7.73 (m, 2H), 7.60-7.55 (m, 1H), 7.49-7.44 (m, 2H), 7.17-7.10 (m, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.4, 165.5 (d, ¹*J*_{C-F} = 253 Hz), 137.5, 133.8 (d, ⁴*J*_{C-F} = 3 Hz), 132.8 (d, ³*J*_{C-F} = 9 Hz), 132.6, 130.0, 128.5, 115.6 (d, ²*J*_{C-F} = 22 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ_F (ppm) -105.8.

(4-Chlorophenyl)(phenyl)methanone (3e)¹

White solid (91 mg, 73%); mp 75-76 °C; ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.78-7.72 (m, 4H), 7.62-7.56 (m, 1H), 7.50-7.43 (m, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.6, 139.0, 137.3, 136.0, 132.7, 131.5, 130.0, 128.7, 128.5.

(4-Bromophenyl)(phenyl)methanone (3f)²

White solid (108 mg, 83%); mp 76-77 °C; ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.78-7.74 (m, 2H), 7.69-7.57 (m, 5H), 7.51-7.45 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.8, 137.2, 136.4, 132.8, 131.71, 131.67, 130.0, 128.5, 127.6.

Phenyl(*m*-tolyl)methanone (3g)¹

Colourless oil (97 mg, 99%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.81-7.77 (m, 2H), 7.62 (s, 1H), 7.59-7.54 (m, 2H), 7.49-7.43 (m, 2H), 7.40-7.32 (m, 2H), 2.40 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 197.1, 138.2, 137.8, 137.7, 133.3, 132.5, 130.6, 130.1, 128.3, 128.2, 127.5, 21.5.

Phenyl(o-tolyl)methanone (3h)¹

Colourless oil (97 mg, 99%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.82-7.78 (m, 2H), 7.59-7.54 (m, 1H), 7.47-7.41 (m, 2H), 7.38 (td, J = 7.4, 1.6 Hz, 1H), 7.32-7.21 (m, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 198.8, 138.7, 137.8, 136.8, 133.3, 131.1, 130.4, 130.2, 128.64, 128.58, 125.3, 20.1.

(4-(tert-butyl)phenyl)(p-tolyl)methanone (3i)¹

Colourless oil (106 mg, 84%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.73 (t, J = 7.9 Hz, 4H), 7.48 (dd, J = 8.5, 2.0 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 2.43 (s, 3H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 196.3, 155.9, 143.0, 135.3, 135.2, 130.3, 130.1, 129.0, 125.2, 35.2, 31.2, 21.7.

mesityl(phenyl)methanone (3j)³

Yellow oil (62 mg, 55%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.70 (d, J = 7.1 Hz, 2H), 7.46-7.41 (m, 1H), 7.39-7.34 (m, 2H), 6.91 (s, 2H), 2.33 (s, 3H), 2.09 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 178.8, 137.9, 137.7, 134.4, 131.1, 128.7, 128.4, 127.7, 21.2, 19.7.

(4-nitrophenyl)(phenyl)methanone (3n)²

White solid (108 mg, 95%); mp 134-135 °C; ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 8.35-8.29 (m, 2H), 7.94-7.89 (m, 2H), 7.81-7.75 (m, 2H), 7.67-7.60 (m, 1H), 7.54-7.47 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 194.9, 149.9, 143.0, 136.4, 133.6, 130.8, 130.2, 128.8, 123.6.

(4-hydroxyphenyl)(p-tolyl)methanone (30)⁴

White solid (105 mg, 99%); mp 156-157 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H (ppm) 10.35 (s, 1H), 7.63-7.51 (m, 4H), 7.31-7.26 (m, 2H), 6.87-6.82 (m, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ_C (ppm) 194.5, 162.3, 142.6, 135.8, 132.9, 129.9, 129.4, 128.7, 115.7, 21.6.

(2-chlorophenyl)(p-tolyl)methanone (3p)⁵

Pale yellow oil (75 mg, 65%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.72-7.68 (m, 2H), 7.46-7.38 (m, 2H), 7.38-7.33 (m, 2H), 7.27-7.22 (m, 2H), 2.41 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.0, 144.9, 138.9, 134.1, 131.3, 131.0, 130.3, 130.1, 129.5, 129.1, 127.2, 126.7, 21.9.

(4-amino-3-iodophenyl)(4-ethylphenyl)methanone (3q)

Yellow oil (130 mg, 74%); ¹H NMR (400 MHz, DMSO-*d*₆): δ_H (ppm) 7.68 (d, J = 8.1 Hz, 1H), 7.63-7.59 (m, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 2.0 Hz, 1H), 6.57 (dd, J = 8.1, 2.1 Hz, 1H), 5.49 (s, 2H), 2.64 (q, J = 7.6 Hz, 2H), 1.16 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ_C (ppm) 195.9, 149.6, 149.3, 139.2, 138.7, 135.2, 130.4, 128.4, 119.1, 115.1, 88.9, 28.7, 15.8; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₄INO, 352.0198; found, 352.2708.

1-(3-(4-ethylbenzoyl)phenyl)ethan-1-one (3r)

Colourless oil (120 mg, 95%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 8.33-8.30 (m, 1H), 8.16-8.12 (m, 1H), 7.96-7.92 (m, 1H), 7.71 (d, J = 8.1 Hz, 2H), 7.56 (dd, J = 11.3, 4.1 Hz,

1H), 7.29 (d, J = 7.9 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 2.62 (s, 3H), 1.26 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 197.5, 195.7, 150.1, 138.5, 137.2, 134.6, 134.3, 131.6, 130.5, 129.7, 128.8, 128.1, 29.1, 26.9, 15.3; HRMS (ESI/Q-TOF) m/z: [M]⁺ calcd for C₁₇H₁₆O₂, 252.1150; found, 252.2738.

(4-methoxyphenyl)(naphthalen-1-yl)methanone (3s)⁶

Colourless oil (88 mg, 67%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 8.02-7.95 (m, 2H), 7.91-7.88 (m, 1H), 7.87-7.83 (m, 2H), 7.56-7.44 (m, 4H), 6.93-6.89 (m, 2H), 3.84 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 196.8, 163.9, 137.1, 133.8, 132.9, 131.2, 131.0, 130.8, 128.5, 127.1, 126.9, 126.5, 125.8, 124.5, 113.8, 55.6.

(4-methoxyphenyl)(naphthalen-2-yl)methanone (3t)⁶

Colourless oil (108 mg, 82%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 8.22 (s, 1H), 7.94-7.86 (m, 6H), 7.61-7.50 (m, 2H), 7.00-6.96 (m, 2H), 3.87 (s, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.7, 163.3, 135.6, 135.1, 132.7, 132.4, 131.3, 130.5, 129.4, 128.3, 128.2, 127.9, 126.9, 126.0, 113.7, 55.6.

phenyl(thiophen-2-yl)methanone (3u)⁷

Colourless oil (91 mg, 97%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.86-7.83 (m, 2H), 7.70 (dd, J = 5.0, 1.1 Hz, 1H), 7.62 (dd, J = 3.8, 1.1 Hz, 1H), 7.60-7.54 (m, 1H), 7.50-7.45 (m, 2H), 7.14 (dd, J = 4.9, 3.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 188.4, 143.7, 138.2, 135.0, 134.4, 132.4, 129.3, 128.5, 128.1. benzo[d][1,3]dioxol-5-yl(phenyl)methanone (3v)⁷

Colourless oil (112 mg, 99%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.71 (ddd, J = 7.0, 3.0, 1.6 Hz, 2H), 7.54-7.49 (m, 1H), 7.45-7.40 (m, 2H), 7.34-7.31 (m, 2H), 6.82-6.79 (m, 1H), 6.00 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.2, 151.6, 148.0, 138.2, 132.1, 131.9, 129.8, 128.3, 127.0, 109.9, 107.8, 102.0.

1-(4-methoxyphenyl)ethan-1-one (4a)⁸

Colourless oil (62 mg, 83%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.95-7.86 (m, 2H), 6.93-6.87 (m, 2H), 3.84 (s, 3H), 2.52 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 196.9, 163.6, 130.7, 130.4, 113.7, 55.5, 26.4

1-(*m*-tolyl)ethan-1-one (4b)⁸

Yellow oil (37 mg, 55%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.77-7.72 (m, 2H), 7.38-7.31 (m, 2H), 2.58 (s, 3H), 2.40 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 198.5, 138.4, 137.2, 134.0, 128.9, 128.5, 125.7, 26.8, 21.4.

1-(4-bromophenyl)ethan-1-one (4c)⁸

S9

Colourless oil (35 mg, 35%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.83-7.78 (m, 2H), 7.61-7.57 (m, 2H), 2.57 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 197.2, 135.9, 132.0, 129.9, 128.4, 26.6.

1-(4-methoxyphenyl)propan-1-one (4d)⁹

Colourless oil (81 mg, 99%); ¹H NMR (500 MHz, CDCl₃): δ_H (ppm) 7.96-7.93 (m, 2H), 6.95-6.91 (m, 2H), 3.86 (s, 3H), 2.95 (q, J = 7.3 Hz, 2H), 1.21 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 199.6, 163.4, 130.3, 130.1, 113.7, 55.5, 31.5, 8.5.

1-(p-tolyl)propan-1-one (4e)¹⁰

Colourless oil (52 mg, 70%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.87-7.83 (m, 2H), 7.25-7.21 (m, 2H), 2.96 (q, J = 7.3 Hz, 2H), 2.38 (s, 3H), 1.20 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 200.6, 143.7, 134.5, 129.3, 128.2, 31.7, 21.7, 8.4.

1-(4-chlorophenyl)propan-1-one (4f)¹⁰

Colourless oil (44 mg, 52%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.91-7.87 (m), 7.43-7.39 (m), 2.96 (q, J = 7.2 Hz), 1.20 (t, J = 7.2 Hz); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 199.7, 139.4, 135.2, 129.5, 129.0, 31.9, 8.2.

1-(4-bromophenyl)propan-1-one (4g)¹¹

Colourless oil (33 mg, 31%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.84-7.79 (m, 2H), 7.61-7.56 (m, 2H), 2.96 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 199.8, 135.7, 131.9, 129.6, 128.1, 31.9, 8.2.

1-(4-methoxyphenyl)butan-1-one (4h)¹²

Colourless oil (88 mg, 99%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.92-7.88 (m, 2H), 6.90-6.86 (m, 2H), 3.81 (s, 3H), 2.87-2.82 (m, 2H), 1.76-1.66 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 199.1, 163.4, 130.3, 130.2, 113.7, 55.5, 40.2, 18.1, 14.0.

1-(4-fluorophenyl)butan-1-one (4i)¹²

Colourless oil (55 mg, 66%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 8.00-7.94 (m, 2H), 7.14-7.07 (m, 2H), 2.93-2.87 (m, 2H), 1.80-1.69 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 198.9, 165.7 (d, ¹ J_{C-F} = 253 Hz), 133.6 (d, ⁴ J_{C-F} = 3 Hz), 130.7 (d, ³ J_{C-F} = 9 Hz), 115.7 (d, ² J_{C-F} = 22 Hz), 40.5, 17.8, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): δ_F (ppm) -105.6.

1,2-diphenylethan-1-one (4j)²

White solid (96 mg, 98%); mp 55-56 °C; ¹H NMR (500 MHz, CDCl₃): δ_H (ppm) 8.01 (d, J = 7.4 Hz, 2H), 7.57-7.52 (m, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.35-7.30 (m, 2H), 7.25 (dd, J = 12.4, 7.7 Hz, 3H), 4.28 (s, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 197.7, 136.7, 134.6, 133.3, 129.6, 128.8, 128.74, 128.71, 127.0, 45.6.

1-(4-acetylphenyl)-2-phenylethan-1-one (4k)¹³

White solid (61 mg, 51%); mp 135-136 °C; ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 8.08-8.04 (m, 2H), 8.03-7.98 (m, 2H), 7.35-7.28 (m, 2H), 7.28-7.22 (m, 3H), 4.29 (s, 2H), 2.62 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 197.5, 197.2, 140.2, 139.8, 134.0, 129.5, 128.89, 128.88, 128.6, 127.2, 46.0, 26.9.

1-(4-bromophenyl)-2-(*m*-tolyl)ethan-1-one (4l)

Yellow oil (77 mg, 53%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.89-7.82 (m, 2H), 7.62-7.54 (m, 2H), 7.28-7.16 (m, 1H), 7.10-7.00 (m, 3H), 4.19 (s, 2H), 2.31 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 196.8, 138.5, 135.4, 134.1, 132.0, 130.3, 130.1, 128.8, 128.4, 127.9, 126.5, 45.6, 21.5; HRMS (ESI/Q-TOF) m/z: [M]⁺ calcd for C₁₅H₁₃BrO, 288.0150; found, 288.6530.

2-(2-methoxyphenyl)-1-(*m*-tolyl)ethan-1-one (4m)

Sticky white solid (94 mg, 78%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.88-7.82 (m, 2H), 7.38-7.31 (m, 2H), 7.26 (td, J = 8.0, 1.7 Hz, 1H), 7.18 (dd, J = 7.4, 1.6 Hz, 1H), 6.95-6.90 (m, 1H), 6.90-6.87 (m, 1H), 4.27 (s, 2H), 3.79 (s, 3H), 2.41 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 198.3, 157.3, 138.3, 137.1, 133.8, 131.1, 129.0, 128.5, 128.4, 125.8, 123.9, 120.7, 110.7, 55.5, 40.1, 21.5; HRMS (ESI/Q-TOF) m/z: [M]⁺ calcd for C₁₆H₁₆O₂, 240.1150; found, 240.0879.

(3,4-dimethoxyphenyl)(phenyl)methanone (5b)¹⁴

Colourless oil (111 mg, 92%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.77-7.68 (m, 2H), 7.61-7.50 (m, 1H), 7.49-7.37 (m, 3H), 7.34 (dd, J = 8.4, 2.1 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 195.6, 153.1, 149.1, 138.3, 132.0, 130.2, 129.8, 128.2, 125.6, 112.1, 109.8, 56.2, 56.1.

(4-hydroxyphenyl)(phenyl)methanone (5c)²

White solid (96 mg, 97%); mp 125-126 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ_H (ppm) 10.40 (s, 1H), 7.64-7.60 (m, 4H), 7.57 (dt, J = 2.8, 1.8 Hz, 1H), 7.52-7.46 (m, 2H), 6.88-6.84 (m, 2H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ_C (ppm) 194.8, 162.5, 138.6, 133.0, 132.3, 129.7, 128.9, 128.4, 115.8.

1-(4-hydroxyphenyl)-2-phenylethan-1-one (5e)¹³

Pale yellow solid (81 mg, 76%); mp 143-144 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ_H (ppm) 10.36 (s, 1H), 7.91-7.87 (m, 2H), 7.28-7.15 (m, 5H), 6.84-6.79 (m, 2H), 4.22 (s, 2H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ_C (ppm) 196.3, 162.6, 136.2, 131.6, 130.1, 128.8, 128.4, 126.9, 115.8, 44.8.

1-(3,4-dimethoxyphenyl)ethan-1-one (5f)¹⁵

Colourless oil (88 mg, 98%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.48 (dd, J = 8.3, 2.0 Hz, 1H), 7.42 (d, J = 2.0 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 3.84 (d, J = 4.9 Hz, 6H), 2.47 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 196.9, 153.3, 148.9, 130.4, 123.4, 110.0, 109.9, 56.1, 56.0, 26.2.

1-(4-hydroxyphenyl)propan-1-one (5g)¹⁶

White solid (75 mg, 99%); mp 146-147 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ_H (ppm) 10.28 (s, 1H), 7.83-7.77 (m, 2H), 6.82-6.76 (m, 2H), 2.88 (q, *J* = 7.2 Hz, 2H), 1.00 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ_C (ppm) 199.1, 162.3, 130.8, 128.7, 115.7, 31.1, 8.9.

1-(3,4-dimethoxyphenyl)butan-1-one (5h)¹⁷

White solid (103 mg, 99%); mp 66-67 °C; ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.57 (dd, J = 8.4, 2.0 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 2.91-2.86 (m, 2H), 1.79-1.69 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 199.3, 153.1, 149.0, 130.4, 122.8, 110.1, 110.0, 56.1, 56.0, 40.1, 18.2, 14.0.

(4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (7)¹⁸

Colourless oil (145 mg, 96%); ¹H NMR (400 MHz, CDCl₃): δ_H (ppm) 7.79-7.75 (m, 2H), 6.97 (s, 2H), 6.94-6.90 (m, 2H), 3.88 (s, 3H), 3.83 (s, 3H), 3.83 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ_C (ppm) 194.8, 163.2, 152.9, 141.5, 133.4, 132.5, 130.2, 113.6, 107.4, 61.0, 56.3, 55.6.

3. References

- C. Bo, Q. Bu, J. Liu, B. Dai and N. Liu, ACS Sustain. Chem. Eng., 2022, 10, 1822-1828.
- 2. B. Zhao and X. Lu, Org. Lett., 2006, 8, 5987-5990.
- 3. J. Xiao, F. Guo, Y. Li, F. Li, Q. Li and Z. L. Tang, J. Org. Chem., 2021, 86, 2028-2035.
- M. Li, X. Liu, Y. Che, H. Xing, F. Sun, W. Zhou and G. Zhu, *Angew. Chem. Int. Ed.*, 2023, 62, e202308651.
- 5. Y. Zhong and W. Han, Chem. Commun, 2014, 50, 3874-3877.
- 6. T. Das, A. Chakraborty and A. Sarkar, *Tetrahedron Lett.*, 2014, 55, 7198-7202.
- 7. X. Zeng, D. Xu, C. Miao, C. Xia and W. Sun, RSC Adv., 2014, 4, 46494-46497.
- 8. M. Yousuf, T. Das and S. Adhikari, New J. Chem., 2015, 39, 8763-8770.
- B. Spiegelber, A. Dell'Acqua, T. Xia, A. Spannenberg, S. Tin, S. Hinze and J. G. de Vries, *Chem. - Eur. J.*, 2019, 25, 7820-7825.
- D. H. Tu, Y. Li, B. Zhao, Y. J. Gu, B. Wang, J. Y. Lu and J. Lu, *Synlett*, 2018, 29, 593-596.

- H. Jiang, J. R. Bak, F. J. López-Delgado and K. A. Jørgensen, *Green Chem.*, 2013, 15, 3355-3359.
- 12. K. Zhang, J. Huang and W. Zhao, Chem. Eur. J., 2022, 28, e202103851.
- R. Venkatesh, A. C. Narayan and J. Kandasamy, Org. Biomol. Chem., 2024, 22, 5193-5197.
- 14. R. Chebolu, A. Bahuguna, R. Sharma, V. K. Mishra and P. C. Ravikumar, *Chem. Commun.*, 2015, **51**, 15438-15441.
- S. Saha, S. Yadav, N. U. D. Reshi, I. Dutta, S. Kunnikuruvan and J. K. Bera, *ACS Catal.*, 2020, 10, 11385-11393.
- 16. W. Zu, C. Day, L. Wei, X. Jia and L. Xu, Chem. Commun., 2020, 56, 8273-8276.
- N. Sharma, A. Sharma, R. Kumar, A. Shard and A. K. Sinha, *Eur. J. Org. Chem.*, 2010, 2010, 6025-6032.
- 18. P. Q. Huang and H. Chen, Chem. Commun., 2017, 53, 12584-12587.

4. ¹H and ¹³C NMR spectra of the aryl ketones

Figure S1. ¹H NMR (600 MHz) Spectrum of **3a** in CDCl₃ at 298K.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

Figure S3. ¹H NMR (400 MHz) Spectrum of **3b** in CDCl₃ at 298K.

70

60

50

40 30

20

10

0

180 170 160 150 140 130 120 110 100 90 80 Chemical Shift (ppm)

200 190

Figure S5. ¹H NMR (500 MHz) Spectrum of **3c** in CDCl₃ at 298K.

Figure S6. ¹³C $\{^{1}H\}$ NMR (101 MHz) Spectrum of 3c in CDCl₃ at 298K.

Figure S7. ¹H NMR (400 MHz) Spectrum of 3d in CDCl₃ at 298K.

Figure S8. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3d in CDCl₃ at 298K.

Figure S9. ¹⁹F NMR (376 MHz) Spectrum of **3d** in CDCl₃ at 298K.

Figure S13. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3f in CDCl₃ at 298K.

7.0 6.0 5.0 Chemical Shift (ppm) 3.8

2.0

1.0

0.0

3.0

4.0

2:00

8.0

9.0

10.0

11.0

12.0

Figure S15. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3g in CDCl₃ at 298K.

Figure S17. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of **3h** in CDCl₃ at 298K.

7.0 6.0 5.0 Chemical Shift (ppm) 8

2.0

3.0

4.0

ġ

1.0

0.0

1.99

8.0

12.0

11.0

10.0

9.0

Figure S19. ¹³C $\{^{1}H\}$ NMR (101 MHz) Spectrum of 3i in CDCl₃ at 298K.

Figure S23. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3n in CDCl₃ at 298K.

Figure S25. ¹³C{¹H} NMR (101 MHz) Spectrum of **30** in DMSO- d_6 at 298K.

Figure S27. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of **3p** in CDCl₃ at 298K.

Figure S29. ¹³C{¹H} NMR (101 MHz) Spectrum of 3q in DMSO- d_6 at 298K.

Figure S31. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3r in CDCl₃ at 298K.

Figure S33. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3s in CDCl₃ at 298K.

Figure S35. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3t in CDCl₃ at 298K.

Figure S37. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of **3u** in CDCl₃ at 298K.

Figure S39. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 3v in CDCl₃ at 298K.

Figure S41. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 4a in CDCl₃ at 298K.

Figure S43. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 4b in CDCl₃ at 298K.

Figure S45. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 4c in CDCl₃ at 298K.

2.09

8.0

12.0

11.0

10.0

9.0

2.12-

7.0 6.0 5.0 Chemical Shift (ppm) 2.12-

3.0

2.0

1.0

0.0

8

4.0

S41

7.0 6.0 5.0 Chemical Shift (ppm) 2.00

3.0

4.0

33

1.0

0.0

2.0

- 96.

8.0

12.0

11.0

10.0

9.0

Figure S51. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 4f in CDCl₃ at 298K.

Figure S53. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 4g in CDCl₃ at 298K.

S44

Figure S57. ${}^{13}C{}^{1}H$ NMR (101 MHz) Spectrum of 4i in CDCl₃ at 298K.

Figure S59. ¹H NMR (500 MHz) Spectrum of 4j in CDCl₃ at 298K.

Figure S61. ¹H NMR (400 MHz) Spectrum of 4k in CDCl₃ at 298K.

Figure S65. ¹H NMR (400 MHz) Spectrum of 4m in CDCl₃ at 298K.

Figure S69. ¹H NMR (400 MHz) Spectrum of 5c in DMSO- d_6 at 298K.

Figure S71. ¹H NMR (400 MHz) Spectrum of 5e in DMSO- d_6 at 298K.

Figure S73. ¹H NMR (400 MHz) Spectrum of 5f in CDCl₃ at 298K.

Figure S75. ¹H NMR (400 MHz) Spectrum of 5g in DMSO- d_6 at 298K.

Figure S77. ¹H NMR (400 MHz) Spectrum of **5h** in CDCl₃ at 298K.

Figure S79. ¹H NMR (400 MHz) Spectrum of 7 in CDCl₃ at 298K.

110 90 Chemical Shift (ppm)

80 70

Figure S81. HRMS spectrum of 3q in methanol solvent.

Figure S82. HRMS spectrum of 3r in methanol solvent.

Figure S83. HRMS spectrum of 4l in methanol solvent.

Figure S84. HRMS spectrum of 4m in methanol solvent.