Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Water-Compatible Electrogenerated Chemiluminescence Effect

Derived from Readily Accessible Tripyridinium Salts

Lewei Wang,^a Ru Zhang,^a Wenrong Cai,^a Junyao Li,^a Junming Chen ^{b*} and Datong Wu ^{a*}

^aJiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China ^bSchool of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China

Email address: chenjm@cczu.edu.cn; wudatong@cczu.edu.cn

Table of Contents

General Information	S2-3
¹ H and ¹³ C NMR	S4-8
Optical characterization	S9-10
Electrochemical characterization	S10-12
ECL optimization	S13-15

General Information

Chemicals

Unless stated otherwise, all chemicals were analytical grade at least and used directly without further purification. The osmosis Milli-Q water (18 M Ω , Millipore, Bedford, USA) was used throughout. 1,3,5-Tri(pyridin-4-yl)benzene, 1,3,5-tris(pyridin-4-ylethynyl)benzene, 4,4'-(5'-(4-(pyridin-4-yl)phenyl)-[1,1':3',1"-terphenyl]-4,4"-diyl)dipyridine, copper iodide (CuI), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh₃)₄), 1,3,5-triethynylbenzene, 4-(4-bromophenyl)pyridine, iodomethane, lithium bis((trifluoromethyl)sulfonyl)amide (LiNTf₂), potassium hexafluorophosphate (KPF₆), potassium persulfate (K₂S₂O₈), hydrogen peroxide solution (30%), tripropylamine, sodium oxalate, and lithium perchlorate were purchased from Aladdin Industrial Inc. (China).

Instruments

¹H and ¹³C NMR were recorded on a Bruker 400 MHz nuclear magnetic resonance (NMR) spectrometer (Bruker, Switzerland) with trimethylsilylation (TMS) as the internal standard. Peak multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet). UV–visible absorption and fluorescence spectra were recorded on a UV-1700 UV–vis spectrophotometer (Shimadzu, Japan) and a LS-55 fluorescence spectrometer (PerkinElmer, USA) equipped with a 1 cm quartz cell, respectively. Electrochemical measurements were carried out on a CHI 660D electrochemical workstation (CH Instruments, Inc., China) coupled with a three-electrode system (a wire auxiliary electrode (AE), a saturated calomel reference electrode (RE), and a working glassy carbon electrode (GCE)). The ECL experiments were performed on a MPI-E multifunctional electrochemical and chemiluminescent analytical system (Xi'an Remex Analytical Instrument Co., Ltd. China).

To an oven-dried 100 mL Schlenk tube under a nitrogen atmosphere equipped with a magnetic bar were added Pd(PPh₃)₄ (0.116 g, 0.1 mmol), CuI (0.019 g, 0.1 mmol), 1,3,5-triethynylbenzene (0.3 g, 2 mmol), 4-(4-bromophenyl)pyridine (2.34 g, 10 mmol), and the mixed solvents of THF/EtN₃ ($\nu/\nu = 1/1$, 50 mL). The mixture was stirred at 60 °C in an oil bath for 48 h. After reaction, the crude sample was chromatographed on silica gel (CH₂Cl₂/methanol/Et₃N = 100/3/1) to afford **triYnPhPy** as a light red solid (0.464 g, 38%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.72-8.70 (m, 6H), 7.74 (s, 3H), 7.69-7.66 (m, 12H), and 7.55-7.52 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 150.5, 150.4, 147.3, 138.2, 134.4, 134.3, 132.5, 132.4, 127.1, 127.0, 124.0, 123.6, 121.5, 121.4, 90.2, and 89.3. MS (ESI) *m/z* calcd for triYnPhPy C₄₅H₂₇N₃; [M + H]⁺: 610.118, found 610.225.

Fig. S1 ¹H and ¹³C NMR of $triPy^+$ in DMSO-*d*₆.

S4

Fig. S2 ¹H and ¹³C NMR of $triYnPy^+$ in DMSO- d_6 .

Fig. S3 ¹H and ¹³C NMR of **triPhPy**⁺ in DMSO- d_6 .

Fig. S4 1 H and 13 C NMR of triYnPhPy⁺ in DMSO- d_6 .

Fig. S5 ¹H and ¹³C NMR of triYnPhPy in CDCl₃.

Fig. S6 Normalized UV-vis absorption spectra of $triPy^+$, $triYnPy^+$, $triPhPy^+$, and $triYnPhPy^+$ in the addition of NaBH₄.

Fig. S7 Fluorescence photographs of **triPy**⁺, **triYnPy**⁺, **triPhPy**⁺, and **triYnPhPy**⁺ irradiated under 365 nm light.

Fig. S8 PL decay profiles of $triPy^+$, $triYnPy^+$, $triPhPy^+$, and $triYnPhPy^+$ in CH₃CN/H₂O (1/1, v/v).

Table S1. Parameters of the PL decay profile curves for $triPy^+$, $triYnPy^+$, $triPhPy^+$, and $triYnPhPy^+$.

	$R(t) = B_1 e^{\left(\frac{-t}{\tau_1}\right)} + B_2 e^{\left(\frac{-t}{\tau_2}\right)}$						
	τ_1 / ns	$ au_2$ / ns	B_1	B_2	<i>x</i> ²	$ au_{\rm ave}$ / ns	
triPy+	0.6245(97.23%)	3.35(2.77%)	235.8	1.25	0.89	0.7	
triYnPy ⁺	1.2817(63.33%)	8.4684(36.67%)	484.2	42.4	0.91	3.9	
triPhPy ⁺	1.3812(69.41%)	12.5574(30.59%)	516.9	25.0	0.89	4.8	
triYnPhPy ⁺	0.5262(95.19%)	20.0(4.81%)	702.1	0.93	0.93	1.5	

Fig. S9 Differential pulse voltammetry measurements of $triPy^+$ in CH₃CN/H₂O (1/1, v/v) with LiClO₄ as supporting electrolyte.

Fig. S10 Differential pulse voltammetry measurements of $triYnPy^+$ in CH₃CN/H₂O (1/1, v/v) with LiClO₄ as supporting electrolyte.

Fig. S11 Differential pulse voltammetry measurements of **triPhPy**⁺ in CH₃CN/H₂O (1/1, v/v) with LiClO₄ as supporting electrolyte.

Fig. S12 Differential pulse voltammetry measurements of **triYnPhPy**⁺ in CH₃CN/H₂O (1/1, ν/ν) with LiClO₄ as supporting electrolyte.

Fig. S13 ECL curves of $triPhPy^+$ in the presence of different co-reactants (K₂S₂O₈, Na₂C₂O₄,

TPrA, and H₂O₂).

Fig. S14 ECL curves of triPhPy⁺ coupled with the counterions including I⁻, PF_6^- , and $[NTf_2]^-$.

Fig. S16 ECL curves of triPhPy⁺ operated at different scan rate (0.05, 0.1, 0.2, 0.5 V s⁻¹).

Fig. S17 ECL curves of $triPhPy^+$ at different pH.

