Supporting Information

Substrate- and reagent-dependent selective annulation of amidines and 2-tert-amino benzaldehydes

Yi Zhang,^{a,b} Renchao Ma,^b Yongmin Ma ^{b*}and Weiwei Fang ^{a*}

^aInternational Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China

^bInstitute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China

Email:yongmin.ma@tzc.edu.cn;wwfang2020@njfu.edu.cn

Table of Contents

1.	General	S3
2.	General procedure for the synthesis of 4-7	S3
3.	Optimization of the reaction conditions	S4-S6
4.	HRMS spectra of the intermediates	
5.	Characterization data for compounds 4-7	
6.	NMR spectra of compounds 4-7	S14-S50

General methods. Various aryl 2-(piperidin-1-yl)benzaldehyde, 2-(diethylamino)benzaldehyde, Nphenylbenzimidamide substrates (**2**) and N-alkylamidines substrates (**3**)were prepared according to the previously reported literatures. ¹ Their analysis data were identical with the reported data. Other starting materials, reagents and solvents were purchased commercial sources and used as received. ¹H and ¹³C NMR spectra were recorded at 400 and 101 MHz, respectively. All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet; qd, quartet of doublets. The coupling constants, *J*, are reported in Hertz (Hz). High-resolution mass spectra (HRMS) were performed with a Q-TOF-Premier mass spectrometer. HPLC analyses were carried out on an Agilent 1260 Infinity II instrument. Melting points were determined using aX-4 digital micro melting point apparatus. All reactions were monitored by thin-layer chromatography (TLC) using silica gel plates (silica gel 60 F254).

General procedure for the synthesis of 4-7

General Procedure for the synthesis of quinazoline 4a. A sealed tube was charged with 2h (0.6 mmol, 1.0 equiv.), 1k (0.6 mmol, 1.0 equiv.), $CoCl_2$ (0.06 mmol, 10 mol%) and toluene (2 mL). The reaction was carried out at 120 °C for 48 hours till almost completed conversion of the substrates by TLC analysis. After being cooled to room temperature, the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography (column chromatography eluent, petroleum ether/EtOAc) to afford 4a.

General Procedure for the synthesis of quinazoline 5. A sealed tube was charged with 2 (0.6 mmol, 1.0 equiv.), 1 (0.6 mmol, 1.0 equiv.), FeSO4 \cdot 7H₂O (0.12 mmol, 20 mol%) and toluene (2 mL). The reaction was carried out at 120 °C for 48 hours till almost completed conversion of the substrates by TLC analysis. After being cooled to room temperature, the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography eluent, petroleum ether/EtOAc) to afford 5.

General Procedure for the synthesis of triazine 6. A sealed tube was charged with 2 (0.6 mmol, 2.0 equiv.), 1 (0.3 mmol, 1.0 equiv.), piperidine (0.15 mmol, 50 mol%) and dichloroethane (2 mL). The reaction was carried out at 90 °C for 24 hours till almost completed conversion of the substrates by TLC analysis. After being cooled to room temperature, the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography (column chromatography eluent, petroleum ether/EtOAc) to afford 6.

General Procedure for the synthesis of triazine 7. A sealed tube was charged with 3 (0.6 mmol, 1.0 equiv.), 1a (0.6 mmol), ZnI_2 (0.12 mmol, 20 mol%) and toluene (2 mL). The reaction was carried out at 120 °C for 40 hours till almost completed conversion of the substrates by TLC analysis. After being cooled to room temperature, the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography (column chromatography eluent, petroleum ether/EtOAc) to afford 7.

Optimization of the reaction conditions

Table S1 Optimization of reaction conditions for the synthesis of 5a ^{a,b}	

¢	+ 0 +		Conditions	N N N Ph 5a
Entry	Solvent	Catalyst (equiv.)	Temp. (°C)	Yield (%)
1	toluene	$CoCl_2(0.2)$	120	45
2	toluene	AlCl ₃ (0.2)	120	0
3	toluene	FeSO4·7H ₂ O (0.2)	120	61
4	toluene	Cu(OTf) ₂ (0.2)	120	53
5	toluene	$NiCl_2(0.2)$	120	0
6	toluene	MgSO ₄ (0.2)	120	0
7	toluene	$Ag_2CO_3(0.2)$	120	0
8	toluene	$ZnI_{2}(0.2)$	120	0
9	toluene	FeSO ₄ ·7H ₂ O (0.1)	120	55
10	toluene	FeSO ₄ ·7H ₂ O (0.4)	120	58
11	toluene	FeSO ₄ ·7H ₂ O (0.2)	100	40
12	toluene	FeSO ₄ ·7H ₂ O (0.2)	130	61
13	PhCl	FeSO ₄ ·7H ₂ O (0.2)	120	Trace
14	IPA	FeSO ₄ ·7H ₂ O (0.2)	120	0
15	DMSO	FeSO ₄ ·7H ₂ O (0.2)	120	0
16	DMF	FeSO ₄ ·7H ₂ O (0.2)	120	0
17	1,4-Dioxane	FeSO ₄ ·7H ₂ O (0.2)	120	Trace
18	DCE	FeSO ₄ ·7H ₂ O (0.2)	120	0
19	THF	FeSO ₄ ·7H ₂ O (0.2)	120	0
20	NMP	FeSO ₄ ·7H ₂ O (0.2)	120	Trace

^aReaction conditions: **1a** (0.6 mmol), **2a** (0.6 mmol) and catalyst at the indicated amount in solvent (2 mL) at the indicated temperature for 48 h; ^bisolated yield.

Table S2 Optimization of reaction conditions for the synthesis of $\mathbf{6a}^{a,b}$

N. 1a	→ 0	NH NH H 2a	ditions Ph N	Ph N N 6a
Entry	Solvent	Additive (equiv.)	Temp. (°C)	Yield (%)
1	DCE	piperidine (0.5)	120	26
2	Toluene	piperidine (0.5)	120	0
3	EtOH	piperidine (0.5)	120	0
4	CH ₃ CN	piperidine (0.5)	120	0
5	DMSO	piperidine (0.5)	120	0
6	1,4-Dioxane	piperidine (0.5)	120	0
7	CCl_4	piperidine (0.5)	120	20
8	DMF	piperidine (0.5)	120	0
9	Dibutyl ether	piperidine (0.5)	120	0
10	DCE	piperidine (0.5)	90	42
12	DCE	piperidine (0.5)	130	10
13	DCE	NaOH (0.5)	120	0
14	DCE	$K_2CO_3(0.5)$	120	0
15	DCE	EtONa (0.5)	120	Trace
16	DCE	$KH_2PO_4(0.5)$	120	0
17	DCE	Pyrrolidine (0.5)	120	8

^aReaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol) and base (0.5 equiv.) at the indicated amount in solvent (2 mL) at the indicated temperature for 24 h; ^bisolated yield.

Table S3 Optimization of reaction conditions for the synthesis of $7c^{a,b}$

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ T					
Entry	Solvent	Additive (equiv.)	Temp. (°C)	Yield (%)	
1	CoCl ₂ (0.2)	toluene	120	32	
2	FeSO ₄ •7H ₂ O	toluene	120	68	
3	$CuBr_2(0.2)$	toluene	120	16	
4	$NiCl_2(0.2)$	toluene	120	75	
5	$MgSO_4(0.2)$	toluene	120	trace	
6	$Ag_2CO_3(0.2)$	toluene	120	40	
7	$ZnI_{2}(0.2)$	toluene	120	86	
8	$ZnI_{2}(0.1)$	toluene	120	68	
9	$ZnI_{2}(0.5)$	toluene	120	50	
10	$ZnI_{2}(0.2)$	PhCl	120	62	
11	$ZnI_{2}(0.2)$	xylene	120	36	
12	$ZnI_{2}(0.2)$	DMSO	120	0	
13	$ZnI_{2}(0.2)$	DMF	120	0	
14	$ZnI_{2}(0.2)$	toluene	100	65	
15	$ZnI_{2}(0.2)$	toluene	140	80	
16 ^c	$ZnI_{2}(0.2)$	toluene	120	0	
17 ^d	$ZnI_{2}(0.2)$	toluene	120	trace	
18 ^e	$ZnI_{2}(0.2)$	toluene	120	trace	
19 ^f	$ZnI_{2}(0.2)$	toluene	120	45	

^{*a*}Reaction conditions: **3c** (0.6 mmol), **1a** (0.6 mmol) and Lewis acid (0.2 equiv.) in solvent (2 mL) at the indicated temperature for 40 h unless mentioned otherwise. ^{*b*}Isolated yield. ^{*c*}The reaction was performed under N₂. ^{*d*}In the absence of **1a**. ^{*e*}*N*-phenylpiperidine instead of **1a**. ^{*f*}Benzaldehyde instead of **1a**.

HRMS spectra of the intermediates

The reaction of 3c in toluene in the presence of 1a and $ZnCl_2$ was carried out for 10 hours then took the sample for HRMS analysis.

S7

++ m/z

Characterization data for compounds 4-7

N-(2,6-dimethylphenyl)-1-phenyl-1-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)yl)methanimine (*4a*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (34.3 mg, 14%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.12 (m, 6H), 6.86 (d, *J* = 7.3 Hz, 2H), 6.76 – 6.62 (m, 4H), 4.93 – 4.85 (m, 1H), 4.31 – 4.08 (m, 2H), 3.52 – 3.30 (m, 2H), 2.82 – 2.70 (m, 1H), 2.15 – 1.88 (m, 6H), 1.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 147.8, 145.2, 134.6, 129.2, 128.1, 128.0, 127.7, 127.3, 125.5, 123.1, 121.4, 117.7, 112.4, 74.1, 48.8, 46.6, 31.4, 22.6, 21.6, 18.9, 18.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₈N₃ 382.2278; found 382.2272.

2-Phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5a*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (131.4 mg, 61%), mp 120 – 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 – 8.60 (m, 2H), 8.13 (d, *J* = 8.5 Hz, 1H), 7.91 – 7.75 (m, 2H), 7.64 – 7.42 (m, 6H), 7.27 – 7.15 (m, 2H), 2.89 – 2.74 (m, 4H), 1.22 – 0.80 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 160.8, 152.2, 151.2, 138.5, 133.4, 131.9, 131.6, 130.6, 130.4, 128.9, 128.7, 128.6, 128.5, 125.9, 122.4, 121.6, 118.9, 53.0, 25.8, 24.0. HRMS (ESI) m/z: [M + H]⁺Calcd for C₂₅H₂₄N₃ 366. 1965; found 366. 1960.

4-(4-Methyl-2-(piperidin-1-yl)phenyl)-2-phenylquinazoline (*5b*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (113.7 mg, 50%), mp 160 - 161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 - 8.65 (m, 2H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.86 - 7.74 (m, 2H), 7.56 - 7.37 (m, 5H), 7.01 (d, *J* = 7.8 Hz, 1H), 6.95 (s, 1H), 2.82 - 2.68 (m, 4H), 2.45 (s, 3H), 1.23 - 0.82 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 160.7, 152.1, 151.2, 140.7, 138.5, 133.4, 131.6, 130.4, 129.1, 128.7, 128.5, 128.4, 125.8, 123.2, 121.7, 119.5, 53.0, 25.8, 24.0, 21.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₆N₃ 380.2121; found 380.2125.

4-(5-Methyl-2-(piperidin-1-yl)phenyl)-2-phenylquinazoline (*5c*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (116.0 mg, 51%), mp 130 - 131 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 - 8.66 (m, 2H), 8.11 - 8.05 (m, 1H), 7.84 - 7.71 (m, 2H), 7.56 - 7.46 (m, 3H), 7.45 - 7.25 (m, 3H), 7.06 (d, *J* = 8.2 Hz, 1H), 2.82 - 2.66 (m, 4H), 2.38 (s, 3H), 1.22 - 0.79 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 160.7, 151.1, 150.0, 138.5, 133.4, 132.1, 132.0, 131.2, 130.4, 129.0, 128.7, 128.6, 128.4, 125.9, 121.80, 119.0, 53.2, 25.9, 24.0, 20.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₆N₃ 380.2121; found 380.2123.

4-(4-Methoxy-2-(piperidin-1-yl)phenyl)-2-phenylquinazoline (*5d*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (78.2 mg, 33%), mp 139 - 140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 - 8.65 (m, 2H), 8.07 (d, *J* = 8.9 Hz, 1H), 7.85 - 7.77 (m, 2H), 7.57 - 7.36 (m, 5H), 6.76 - 6.64 (m, 2H), 3.89 (s, 3H), 2.81 - 2.66 (m, 4H), 1.20 - 0.79 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 161.8, 160.8, 153.7, 151.3, 138.5, 133.4, 133.0, 130.4, 129.2, 128.6, 128.5, 128.4, 125.7, 124.5, 121.7, 106.7, 105.3, 55.4, 52.8, 25.7, 24.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₆N₃O 396.2070; found 396.2077.

4-(4-Chloro-2-(piperidin-1-yl)phenyl)-2-phenylquinazoline (*5e*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (134.1 mg, 56%), mp 130 - 131 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 - 8.63 (m, 2H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.87 - 7.80 (m, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.58 - 7.40 (m, 5H), 7.20 - 7.08 (m, 2H), 2.80 - 7.70 (m, 4H), 1.23 - 0.70 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 160.8, 153.2, 151.3, 138.2, 136.3, 133.7, 132.9, 130.5, 129.9, 128.6, 128.6, 128.6, 126.1, 122.2, 121.3, 119.2, 52.7, 25.6, 23.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃ClN₃ 400.1575; found 400.1578.

4-(5-Chloro-2-(piperidin-1-yl)phenyl)-2-phenylquinazoline (*5f*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (131.7 mg, 55%), mp 120 - 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 - 8.65 (m, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.89 - 7.80 (m, 1H), 7.71 (d, *J* = 8.3, 1.4 Hz, 1H), 7.57 - 7.38 (m, 6H), 7.07 (d, *J* = 8.6, 1H), 2.82 - 2.62 (m, 4H), 1.24 - 0.70 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 160.8, 151.3, 150.8, 138.2, 133.7, 133.3, 131.4, 130.6, 130.4, 128.7, 128.6, 128.5, 127.6, 126.1, 121.3, 120.3, 53.0, 25.7, 23.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃ClN₃ 400.1575; found 400.1572.

4-(4-Bromo-2-(piperidin-1-yl)phenyl)-2-phenylquinazoline (*5g*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (159.5 mg, 60%), mp 121 - 122 °C. ¹H NMR (400 MHz, CDC1₃) δ 8.71 - 8.64 (m, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.87 - 7.80 (m, 2H), 7.57 - 7.39 (m, 5H), 7.33 - 7.24 (m, 2H), 2.80 - 2.69 (m, 4H), 1.25 - 0.80 (m, 6H). ¹³C NMR (101 MHz, CDC1₃) δ 169.0, 160.8, 153.3, 151.3, 138.2, 133.7, 133.1, 130.5, 130.4, 128.6, 128.6, 128.5, 126.1, 125.2, 125.1, 124.6, 122.2, 121.3, 52.8, 25.6, 23.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃BrN₃ 444.1070; found 444.1077.

4-(2-Phenylquinazolin-4-yl)-3-(piperidin-1-yl)benzonitrile (*5h*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (156.8 mg, 67%), mp 176 - 177 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 - 8.63 (m, 2H), 8.13 (d, *J* = 8.5 Hz, 1H), 7.90 - 7.84 (m, 1H), 7.68 - 7.62 (m, 2H), 7.57 - 7.36 (m, 6H), 2.83 - 2.71 (m, 4H), 1.27 - 0.8 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 160.8, 152.5, 151.4, 138.0, 135.85, 134.0, 132.8, 130.7, 128.9, 128.7, 128.6, 127.9, 126.4, 125.4, 122.3, 120.8, 118.9, 114.1, 52.6, 25.5, 23.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₃N₄ 391.1917; found 391.1910.

3-(2-Phenylquinazolin-4-yl)-4-(piperidin-1-yl)benzonitrile (*5i*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (152.1 mg, 65%), mp 137 - 138 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 - 8.65 (m, 2H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.91 - 7.82 (m, 2H), 7.74 - 7.64 (m, 2H), 7.59 - 7.42 (m, 4H), 7.12 (d, *J* = 8.6 Hz, 1H), 2.94 - 2.75 (m, 4H), 1.29 - 0.28 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 160.9, 155.1, 151.6, 137.9, 136.3, 134.4, 134.11, 130.8, 130.3, 129.0, 128.7, 128.6, 127.8, 126.6, 120.7, 119.3, 118.7, 103.8, 52.0, 25.3, 23.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₃N₄ 391.1917; found 391.1925.

N,*N*-diethyl-2-(2-phenylquinazolin-4-yl)aniline (*5j*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (127.1 mg, 60%), mp 113 - 114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.64 (m, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.85 – 7.77 (m, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.57 – 7.39 (m, 6H), 7.18 – 7.07 (m, 2H), 2.50 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 160., 151.7, 151.2, 138.5, 133.5, 132.0, 130.4, 130.4, 129.8, 128.7, 128.7, 128.6, 127.8, 126.4, 122.0, 121.1, 117.6, 43.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₄N₃ 354.1965; found 354.1956.

6-Methyl-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5k*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (113.6 mg, 50%), mp 128 - 129 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 - 8.67 (m, 2H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.73 - 7.50 (m, 7H), 7.26 - 7.16 (m, 2H), 2.88 - 2.75 (m, 4H), 2.48 (s, 3H), 1.28 - 0.88 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 160.0, 152.2, 149.8, 138.6, 135.7, 135.6, 132.0, 131.8, 130.5, 130.2, 128.5, 128.2, 127.7, 122.4, 121.4, 118.9, 52.9, 25.8, 24.0, 21.7. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₆H₂₆N₃ 380.2121; found 380.2125.

6-Chloro-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*51*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (131.7 mg, 55%), mp 133 - 134 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.65 - 8.57 (m, 2H), 7.99 - 7.93 (m, 1H), 7.72 - 7.65 (m, 2H), 7.57 - 7.39 (m, 5H), 7.20 - 7.07 (m, 2H), 2.80 - 2.63 (m, 4H), 1.23 - 0.76 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 161.1, 149.7, 138.0, 134.3, 131.9, 131.3, 131.2, 131.0, 130.7, 130.1, 128.6, 128.6, 128.1, 122.7, 121.8, 119.1, 53.0, 29.7, 25.7, 23.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃ClN₃ 400.1575; found 400.1577.

7-Ethyl-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5m*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (141.5 mg, 60%), mp 142 - 143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 - 8.68 (m, 2H), 7.93 (s, 1H), 7.69 (d, *J* = 8.5 Hz, 1H), 7.61 - 7.47 (m, 5H), 7.33 - 7.15 (m, 3H), 2.98 - 2.70 (m, 6H), 1.40 (t, *J* = 7.6 Hz, 3H), 1.28 - 0.08 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 160.8, 152.2, 151.6, 150.4, 138.6, 132.0, 131.6, 130.4, 130.3, 128.6, 128.5, 127.3, 126.0, 122.3, 120.1, 118.9, 53.0, 29.3, 25.8, 24.0, 14.93. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₈N₃ 394.2278; found 394.2273.

7-Chloro-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5n*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (136.5 mg, 57%), mp 150 - 151 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 - 8.67 (m, 2H), 8.12 (d, *J* = 2.1 Hz, 1H), 7.72 (d, *J* = 8.9 Hz, 1H), 7.60 - 7.50 (m, 5H), 7.41 - 7.36 (m, 2H), 7.27 - 7.16 (m, 2H), 2.88 - 2.72 (m, 4H), 1.31 - 0.90 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 161.7, 152.1, 151.8, 139.4, 138.0, 131.7, 131.5, 130.9, 130.8, 130.5, 128.8, 128.6, 127.5, 126.8, 122.6, 120.0, 118.9, 53.1, 25.8, 23.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃ClN₃ 400.1575; found 400.1574.

8-Methyl-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5o*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (84.1 mg, 37%), mp 160 - 161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.85 - 8.75 (m, 2H), 7.70 (d, *J* = 7.0 Hz, 1H), 7.64 - 7.48 (m, 6H), 7.38 - 7.30 (m, 1H), 7.26 - 7.14 (m, 2H), 2.97 - 2.75 (m, 7H), 1.27 - 1.10 (m, 4H), 1.01 - 0.88 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 159.5, 152.2, 150.2, 138.8, 136.6, 133.2, 132.3, 131.6, 130.4, 130.2, 128.6, 128.5, 126.5, 125.5, 122.3, 121.6, 118.9, 53.0, 25.8, 24.0, 17.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₆N₃ 380.2121; found 380.2127.

8-Bromo-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5p*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (111.7 mg, 42%), mp 185 - 186 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.81 - 8.76 (m, 2H), 8.16 (d, *J* = 7.4 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 1H), 7.59 - 7.52 (m, 5H), 7.26 - 7.14 (m, 3H), 2.86 - 2.73 (m, 4H), 1.28 - 0.85 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 161.3, 152.2, 148.5, 138.0, 136.8, 131.6, 130.9, 130.8, 129.0, 128.6, 128.6, 128.5, 126.2, 124.0, 123.0, 122.6, 119.1, 53.1, 25.9, 23.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃BrN₃ 444.1070; found 444.1066.

8-Chloro-2-phenyl-4-(2-(piperidin-1-yl)phenyl)quinazoline (*5q*). Petroleum ether/ethyl acetate (30:1) as eluent; Yellow solid (93.4 mg, 39%), mp 175 - 176 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.83 - 8.76 (m, 2H), 7.95 (d, *J* = 6.1 Hz, 1H), 7.69 (d, *J* = 7.1 Hz, 1H), 7.60 - 7.50 (m, 5H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.26 - 7.15 (m, 2H), 2.84 - 2.71 (m, 4H), 1.30 - 0.84 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 161.1, 147.8, 138.0, 133.2, 132.9, 131.8, 131.6, 130.8, 128.9, 128.6, 128.6, 128.5, 127.8, 125.5, 122.9, 122.6, 119.1, 53.1, 25.8, 23.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₃ClN₃ 400.1575; found 400.1573.

1,4,6-Triphenyl-2-(2-(piperidin-1-yl)phenyl)-1,2-dihydro-1,3,5-triazine (*6a*). Petroleum ether/ethyl acetate (20:1) as eluent; Yellow solid (59.2 mg, 42%), mp 120 - 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 - 8.30 (m, 2H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.69 - 7.60 (m, 2H), 7.45 - 7.17 (m, 8H), 7.10 - 6.95 (m, 5H), 6.87 - 6.81 (m, 2H), 3.57 - 3.36 (m, 2H), 2.80 - 2.96 (m, 2H), 1.88 - 1.51 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 157.6, 150.5, 144.2, 138.7, 137.0, 135.7, 130.9, 130.2, 129.9, 129.5, 128.4, 128.4, 128.1, 128.0, 128.0, 125.3, 124.7, 124.6, 120.2, 73.4, 55.0, 26.7, 24.4. HRMS (ESI) m/z: [M + H]⁺Calcd for C₃₂H₃₁N₄ 471.2543; found 471.2537.

2-(4-Bromo-2-(piperidin-1-yl)phenyl)-1,4,6-triphenyl-1,2-dihydro-1,3,5-triazine (*6b*). Petroleum ether/ethyl acetate (20:1) as eluent; Yellow solid (95.4 mg, 58%), mp 202 - 203 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37 - 8.29 (m, 2H), 7.71 - 7.57 (m, 3H), 7.47 - 7.23 (m, 7H), 7.15 - 6.99 (m, 4H), 6.89 - 6.78 (m, 3H), 3.53 - 3.34 (m, 2H), 2.95 - 2.80 (m, 2H), 1.87 - 1.46 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 157.8, 151.9, 144.0, 137.7, 136.8, 135.5, 131.0, 130.4, 129.9, 129.5, 128.5, 128.4, 128.0, 127.9, 127.5, 125.5, 124.6, 123.7, 123.0, 73.3, 54.9, 26.6, 24.2. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₃₀BrN₄ 549.1648; found 549.1640.

2-(5-Bromo-2-(piperidin-1-yl)phenyl)-1,4,6-triphenyl-1,2-dihydro-1,3,5-triazine (*6c*). Petroleum ether/ethyl acetate (20:1) as eluent; Yellow solid (88.8 mg, 54%), mp 215-216 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.30 (m, 2H), 7.90 (d, J = 2.4 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.47 – 7.26 (m, 7H), 7.12 – 6.99 (m, 4H), 6.91 (s, 1H), 6.80 (d, J = 7.4 Hz, 2H), 3.57 – 3.27 (m, 2H), 2.94 – 2.67 (m, 2H), 1.90 – 1.45 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 157.8, 149.8, 143.9, 140.8, 136.8, 135.5, 132.5, 130.9, 130.9, 130.4, 129.8, 128.5, 128.4, 128.0, 128.0, 125.6, 124.8, 122.2, 117.3, 73.3, 54.9, 26.6, 24.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₂H₃₀BN₄ 549.1648; found 549.1647.

1-(4-Chlorophenyl)-4,6-diphenyl-2-(2-(piperidin-1-yl)phenyl)-1,2-dihydro-1,3,5-triazine (*6d*). Petroleum ether/ethyl acetate (20:1) as eluent; Yellow solid (55.9 mg, 37%), mp 130 - 131 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.30 (m, 2H), 7.79 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.47 – 7.16 (m, 8H), 7.07 – 6.98 (m, 3H), 6.93 (s, 1H), 6.83 – 6.77 (m, 2H), 3.56 – 3.38 (m, 2H), 2.96 – 2.81 (m, 2H), 1.87 – 1.55 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 157.5, 150.4, 142.8, 138.2, 136.8, 135.4, 131.1, 130.7, 130.3, 129.8, 129.6, 128.5, 128.0, 127.9, 125.6, 124.7, 120.2, 73.4, 55.0, 26.7, 24.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₂H₃₀ClN₄ 505.2154; found 505.2160.

1-Ethyl-2-methyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (7*a*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow solid (60.7 mg, 73%), mp 74 - 75 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 - 8.20 (m, 2H), 7.70 - 7.63 (m, 2H), 7.55 - 7.37 (m, 6H), 5.17 (q, *J* = 6.1 Hz, 1H), 3.50 - 3.24 (m, 2H), 1.50 (d, *J* = 6.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 160.0, 137.1, 135.1, 131.0, 130.1, 129.0, 128.7, 128.0, 127.9, 68.8, 45.3, 19.8, 15.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀N₃ 278.1652; found 278.1660.

2-Ethyl-4,6-diphenyl-1-propyl-1,2-dihydro-1,3,5-triazine (*7b*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow solid (77.8 mg, 85%), mp 60 - 61 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 - 8.21 (m, 2H), 7.71 - 7.64 (m, 2H), 7.55 - 7.36 (m, 6H), 4.99 (t, J = 6.2 Hz, 1H), 3.69 - 3.02 (m, 2H), 2.01 - 1.46 (m, 4H), 1.14 (t, J = 7.5 Hz, 3H), 0.74 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 160.2, 137.1, 135.1, 131.0, 130.0, 129.3, 128.7, 128.6, 128.0, 127.9, 126.8, 73.8, 52.8, 27.2, 23.2, 11.0, 9.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄N₃ 306.1965; found 306.1972.

1-Butyl-4,6-diphenyl-2-propyl-1,2-dihydro-1,3,5-triazine (7*c*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (85.9 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.21 (m, 2H), 7.71 – 7.63 (m, 2H), 7.56 – 7.32 (m, 6H), 5.06 (t, J = 6.4 Hz, 1H), 3.76 – 2.98 (m, 2H), 1.97 – 1.06 (m, 8H), 1.01 (t, J = 7.4 Hz, 3H),0.74 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 160.1, 137.1, 135.1, 131.0, 130.0, 129.3, 128.7, 128.0, 127.9, 72.3, 50.7, 36.2, 32.0, 19.6, 17.8, 14.3, 13.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₈N₃ 334.2278; found 334.2268.

2-Butyl-1-pentyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (7*d*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (88.8 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 8.22 (m, 2H), 7.71 – 7.63 (m, 2H), 7.54 – 7.40 (m, 6H), 5.10 (t, J = 6.4 Hz, 1H), 3.71 – 3.05 (m, 2H), 2.02 – 0.99 (m, 12H), 0.94 (t, J = 7.3 Hz, 3H), 0.77 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 160.4, 136.7, 134.8, 131.2, 130.5, 129.3, 128.7, 128.1, 128.1, 72.1, 51.2, 33.7, 29.6, 28.4, 26.6, 22.8, 22.0, 14.1, 13.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₂N₃ 362.2591; found 362.2591.

1-Hexyl-2-pentyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (*7e*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (96.9 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 7.1 Hz, 2H), 7.58 – 7.37 (m, 6H), 5.08 (t, J = 6.4 Hz, 1H), 3.71 – 3.08 (m, 2H), 2.00 – 0.87 (m, 17H), 0.80 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 160.2, 137.1, 135.1, 131.0, 130.1, 129.3, 128.7, 127.9, 72.6, 51.0, 34.0, 31.9, 31.1, 29.9, 25.9, 24.2, 22.6, 22.4, 14.0, 13.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₃₆N₃ 390.2904; found 390.2900.

1-Heptyl-2-hexyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (*7f*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (95.1 mg, 76%).¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.11 (m, 2H), 7.62 – 7.57 (m, 2H), 7.50 – 7.29 (m, 6H), 4.98 (t, *J* = 6.3 Hz, 1H), 3.62 – 2.98 (m, 2H), 1.87 – 0.97 (m, 20H), 0.83 – 0.68 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 160.1, 137.1, 135.1, 131.0, 130.0, 129.3, 128.7, 127.9, 127.9(2), 72.6, 51.0, 34.0, 31.8, 31.5, 29.9, 29.4, 28.6, 26.2, 24.5, 22.6, 22.5, 14.1, 14.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₄₀N₃ 418.3217; found 418.3224.

1-Nonyl-2-octyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (7g). **P**etroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (95.1 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.12 (m, 2H), 7.61 – 7.55 (m, 2H), 7.46 – 7.28 (m, 6H), 4.97 (t, J = 6.3 Hz, 1H), 3.60 – 2.96 (m,

2H), 1.97 - 0.62 (m, 34H). ¹³C NMR (101 MHz, CDCl₃) δ 163.88, 160.17, 137.04, 135.05, 130.99, 130.06, 129.29, 128.67, 128.62, 127.95, 72.57, 51.04, 33.98, 31.87, 31.84, 31.76, 29.89, 29.69, 29.53, 29.26, 29.10, 28.93, 26.25, 24.47, 22.68, 22.60, 14.11, 14.08. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₂H₄₈N₃ 474.3843; found 474.3840.

1-Decyl-2-nonyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (*7h*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (99.2 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.09 (m, 2H), 7.65 – 7.55 (m, 2H), 7.49 – 7.28 (m, 6H), 4.98 (t, *J* = 6.4 Hz, 1H), 3.62 – 2.97 (m, 2H), 1.90 – 0.97 (m, 32H), 0.84 – 0.75 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 160.2, 137.0, 135.1, 131.0, 130.1, 129.3, 128.7, 128.5, 128.0, 72.5, 51.1, 34.0, 33.9, 31.9, 31.8, 29.9, 29.7, 29.6, 29.4, 29.3, 29.2, 28.9, 26.3, 24.5, 22.7, 22.7, 14.1, 14.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₅₂N₃ 502.4156; found 502.4161.

1-Isobutyl-2-isopropyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (7*i*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (77.9 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.23 (m, 2H), 7.76 – 7.69 (m, 2H), 7.53 – 7.42 (m, 6H), 4.74 (d, *J* = 7.4 Hz, 1H), 3.62 – 3.51 (m, 1H), 3.04 – 2.96 (m, 1H), 2.36 – 1.85 (m, 2H), 1.21 – 0.54 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 160.1, 135.2, 131.0, 130.1, 129.6, 128.7, 128.0, 128.0, 127.9, 59.7, 52.2, 33.4, 29.0, 20.0, 19.6, 18.4, 18.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₈N₃ 334.2278; found 334.2274.

2-Isobutyl-1-isopentyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (7*j*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (81.2 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.13 (m, 2H), 7.64 – 7.56 (m, 2H), 7.48 – 7.38 (m, 3H), 7.36 – 7.28 (m, 3H), 5.04 (t, *J* = 6.8 Hz, 1H), 3.60 – 2.98 (m, 2H), 2.03 – 1.28 (m, 6H), 1.05 – 0.56 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 160.2, 137.1, 135.0, 131.1, 130.0, 129.3, 128.7, 128.0, 127.9, 70.8, 49.3, 42.4, 39.0, 25.4, 23.7, 23.2, 23.0, 22.6, 21.9. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₄H₃₂N₃ 362.2591; found 362.2599.

1-Benzyl-2,4,6-triphenyl-1,2-dihydro-1,3,5-triazine (7*k*).² Petroleum ether/ethyl acetate (10:1) as eluent; Yellow solid (74.6 mg, 62%), mp 140 – 141 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.23 (m, 2H), 7.66 – 7.61 (m, 2H), 7.59 – 7.52 (m, 2H), 7.49 – 7.41 (m, 3H), 7.42 – 7.36 (m, 5H), 7.35 – 7.27 (m, 3H), 7.24 – 7.19 (m, 2H), 5.99 (s, 1H), 4.96 (d, *J* = 15.4 Hz, 1H), 4.16 (d, *J* = 15.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 159.0, 141.3, 137.0, 135.7, 134.8, 130.8, 130.3, 129.0, 129.0, 128.9, 128.8, 128.7, 128.2, 128.1, 128.0, 127.5, 126.7, 74.1, 53.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₄N₃ 402.1965; found 402.1969.

1-Butyl-4,6-bis(4-methoxyphenyl)-2-propyl-1,2-dihydro-1,3,5-triazine (7*l*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (59.0mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.99 (m, 2H), 7.53 – 7.45 (m, 2H), 7.23 – 7.10 (m, 4H), 4.95 (t, *J* = 6.3 Hz, 1H), 3.67 – 2.94 (m, 2H), 2.36 – 2.27 (m, 6H), 1.84 – 0.97 (m, 8H), 0.92 (t, *J* = 7.4 Hz, 3H), 0.67 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 160.2, 141.3, 140.1, 134.3, 132.2, 129.3, 129.3, 128.7, 127.9, 72.2, 50.8, 36.1, 32.1, 21.5, 21.5, 19.6, 17.9, 14.3, 13.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₂N₃O₂ 394.2489; found 394.2496.

1-Butyl-2-propyl-4,6-di-m-tolyl-1,2-dihydro-1,3,5-triazine (7*m*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (59.6 mg, 55%).¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, J = 7.5, 2.2 Hz, 2H), 7.72 (dd, J = 7.8, 1.8 Hz, 2H), 7.53 – 7.42 (m, 6H), 4.74 (d, J = 7.4 Hz, 1H), 3.56 (dd, J = 13.9, 9.5 Hz, 1H), 2.99 (dd, J = 13.9, 5.3 Hz, 1H), 2.34 – 2.18 (m, 1H), 1.98 – 1.89 (m, 1H), 1.18 (dd, J = 6.7, 4.9 Hz, 6H), 0.74 (dd, J = 52.2, 6.6 Hz, 6H).

¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.95 (m, 2H), 7.41 – 7.33 (m, 2H), 7.30 – 7.13 (m, 4H), 4.98 (t, *J* = 6.3 Hz, 1H), 3.61 – 2.96 (m, 2H), 2.39 – 2.28 (m, 6H), 1.89 – 0.97 (m, 8H), 0.94 (t, *J* = 7.3 Hz, 3H), 0.67 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 160.4, 138.5, 137.6, 137.0 135.0, 131.7, 130.9, 129.8, 128.5, 128.4, 127.9, 126.4, 125.2, 72.1, 50.7, 36.2, 32.0, 21.5, 21.5, 19.6, 17.8, 14.3, 13.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₂N₃ 362.2591; found 362.2590.

1-Butyl-4,6-bis(3-methoxyphenyl)-2-propyl-1,2-dihydro-1,3,5-triazine (7*n*). Petroleum ether/ethyl acetate (8:1) as eluent; Yellow oil (60.1 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.70 (m, 2H), 7.36 – 7.09 (m, 4H), 7.00 – 6.88 (m, 2H), 4.99 (t, J = 6.3 Hz, 1H), 3.89 – 2.97 (m, 8H), 1.93 – 0.99 (m, 8H), 0.93 (t, J = 7.3 Hz, 3H), 0.69 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 160.0, 159.8, 159.4, 138.5, 136.3, 129.7, 129.0, 121.6, 120.6, 116.7, 116.5, 114.9, 112.5, 72.2, 55.5, 55.4, 50.8, 39.8, 36.2, 32.0, 19.6, 17.8, 14.3, 13.8, 13.6. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₄H₃₂N₃O₂ 394.2489; found 394.2486.

4,6-Bis(3-bromophenyl)-1-butyl-2-propyl-1,2-dihydro-1,3,5-triazine (7*o*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (88.0 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.33 (m, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 1.9 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.32 – 7.22 (m, 1H), 5.06 (t, *J* = 6.3 Hz, 1H), 3.63 – 3.07 (m, 2H), 1.93 – 1.06 (m, 8H), 1.02 (t, *J* = 7.2 Hz, 3H), 0.77 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 158.8, 139.0, 136.9, 134.1, 133.1, 132.0, 130.8, 130.3, 129.6, 127.8, 126.5, 122.8, 122.3, 72.4, 50.7, 36.4, 31.9, 19.6, 17.7, 14.2, 13.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆Br₂N₃ 490.0488; found 490.0485.

1-Butyl-4,6-bis(3-chlorophenyl)-2-propyl-1,2-dihydro-1,3,5-triazine (7*p*). Petroleum ether/ethyl acetate (10:1) as eluent; Yellow oil (77.0 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 7.99 (m, 2H), 7.55 (s, 1H), 7.48 – 7.22 (m, 5H), 4.99 (t, *J* = 6.3 Hz, 1H), 3.56 – 2.99 (m, 2H), 1.86 – 1.32 (m, 6H), 1.17 – 0.89 (m, 5H), 0.70 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 160.4, 138.5, 137.6, 137.0, 135.0, 131.7, 130.9, 129.8, 128.5, 128.4, 127.9, 126.4, 125.2, 72.1, 50.7, 36.2, 32.0, 19.6, 17.8, 14.3, 13.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₆Cl₂N₃ 402.1498; found 402.1494.

References

- a) Wang, S.; Shen, Y.-B.; Li, L.-F.; Qiu, B.; Yu, L.; Liu, Q.; Xiao, J., N-Alkylation-Initiated Redox-Neutral [5 + 2] Annulation of 3-Alkylindoles with o-Aminobenzaldehydes: Access to Indole-1,2-Fused 1,4- Benzodiazepines. Org. Lett. 2019, 21, 8904-8908; b) Vaibhav, P. C., Ayyakkannu, R., Arunachalam, S.; Kuo, C. H., Photoredox synthesis of functionalized quinazolines via copper-catalyzed aerobic oxidative C_{sp2}–H annulation of amidines with terminal alkynes. Green Chem. 2021, 23, 5024–5030; c) Gong, Z.-R.; Zhao, Y.; Xu, B.-Y.; Yang, Z.; Ren, B.-Q.; Yang, H.; Zeng, C.-F.; Chen, R.-Q.; Xu, Y.-J.; Li, Q., Identiffcation of novel 3-aryl-1-aminoisoquinolines-based KRAS^{G12C} inhibitors: Rational drug design and expedient construction by C–H functionalization/annulation. Bioorg Chem. 2024, 142, 106954; d) Bruce, C. H.; Allen, S. K.; Robert, C. C.; Yang, S.-T., Parallel Solid-Phase Synthesis and High-Throughput ¹H NMR Evaluation of a 96-Member 1,2,4-Trisubstitutedpyrimidin-6-one-5-carboxylic Acid Library. J. Comb. Chem. 2009, 11, 469–480.
- 2. Guo, H.-H.; Lin, J.-Y.; Liu, Q.; Li, X., Construction of 1,2-dihydro-1,3,5-triazines via reactions involving amidines. *Org. Biomol. Chem.* **2023**, *21*, 4269–4275.

NMR Spectra of 4-7

¹H NMR of Compound 4a (400 MHz, CDCl₃)

¹H NMR of Compound **5g** (400 MHz, CDCl₃)

¹H NMR of Compound **5j** (400 MHz, CDCl₃)

¹H NMR of Compound **51** (400 MHz, CDCl₃)

¹H NMR of Compound 7e (400 MHz, CDCl₃)

