Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Visible-Light-Induced Difunctionalization of β-CF₂H-1,3-Enynes to Access CF₂H-Containing All-Carbon Quaternary Centers

Shu-Jie Chen,^a Jin-Hao Lin,^a Jia-Ming Wu,^a You-Hong Li,^a Bao-Le Dong,^a Guo-Shu Chen,^a and Yun-Lin Liu^{*a,b}

^a School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou,
510006, P. R. China
^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, Shanghai 200032, China
Email: ylliu@gzhu.edu.cn

Table of Contents

1. General Information	1
2. General Procedure for Carbopyridylation of β -CF ₂ H-1,3-Enynes	2
3. Scale-Up Synthesis and Derivatization of the Products	15
4. Single Crystal X-ray Structural Analysis	20
5. References	22
6. Copies of NMR Spectra	23

1. General Information

Unless otherwise mentioned, all reactions were performed in oven-dried glassware under N₂. NMR spectra were recorded on Bruker AV III, Ascend 500 HD, or Bruker AVANCE III HD 400. The chemical shifts (δ) for ¹H, ¹³C, and ¹⁹F are given in ppm relative to residual signals of the solvents (CDCl₃ δ 7.26 ppm for ¹H NMR and δ 77.16 ppm for ¹³C NMR). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift and multiplicity where appropriate. NMR yields were calculated by using 3,4,5-trichloropyridine as an internal standard. High-resolution mass spectra were performed on Agilent Q-TOF 6545 (ESI Source). Flash chromatography was performed on silica gel (200-300 mesh). Thin-layer chromatography (TLC) was carried out using commercial silica gel-precoated glass plates, and compounds were visualized under UV light (254 nm). The starting materials *N*-benzoylmethylpyridinium bromides **1**^[1] and β -CF₂H-1,3-enynes **2**^[2] were synthesized according to the literature. A household 24 W LED lamp from Philips was used as the source of light.

2. General Procedure for Carbopyridylation of β -CF₂H-1,3-Enynes

To an oven-dried Schlenk tube was charged with pyridinium salt **1** (0.10 mmol, 1.0 equiv), and K_2CO_3 (0.20 mmol, 2.0 equiv, if K_2CO_3 was used). The tube was capped, evacuated, and filled with nitrogen (three cycles). To these solids, degassed toluene (2 mL, 0.05 M), β -CF₂H-1,3-enyne **2** (0.12 mmol, 1.2 equiv), and DBU (0.20 mmol, 2.0 equiv, if DBU was used) were added sequentially under N₂ atmosphere. The mixture was stirred and irradiated with a 24 W LED lamp (PHILIPS, 5 cm away) at room temperature for 12 h. The reaction mixture was passed through a plug of silica eluting with petroleum ether-EtOAc (1/1), and the eluent was concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc) to afford the desired product **3**.

Characterization Data:

1-(4-chlorophenyl)-4-(difluoromethyl)-4-(pyridin-2-yl)-6-(triisopropylsilyl)hex-5-yn-1-one (3a)

Following the general procedure, the reaction of pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3a** (36 mg, 73%) as a white solid after purification by flash chromatography (5% EtOAc in petroleum ether).

mp 64-65 °C

TLC (SiO₂) R_f = 0.54 (hexanes/ethyl acetate = 9:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 8.58 (ddd, *J* = 4.7, 1.9, 0.9 Hz, 1H), 7.91 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.82-7.77 (m, 2H), 7.74 (td, *J* = 7.7, 1.8 Hz, 1H), 7.423-7.35 (m, 2H), 7.24 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 6.19 (dd, *J* = 57.3, 55.6 Hz, 1H), 3.30-3.17 (m, 1H), 2.77-2.57 (m, 2H), 2.48-2.35 (m, 1H), 1.17-1.10 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 156.3, 149.3, 139.4, 136.9, 135.0, 129.4, 128.8, 123.7, 122.8, 117.3 (t, *J* = 250.5 Hz), 103.0, 90.1, 52.7 (t, *J* = 19.2 Hz), 34.2, 30.0, 18.7, 11.2. ¹⁹F NMR (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.4, -122.1, -125.5, -126.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₇H₃₄ClF₂NNaOSi 512.1958; found 512.1952.

4-(4-(Difluoromethyl)-4-(pyridin-2-yl)-6-(triisopropylsilyl)hex-5-ynoyl)benzonitrile (3b)

Following the general procedure, the reaction of corresponding pyridinium salt 1b (30

mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3b** (28 mg, 59%) as a colorless oil after purification by flash chromatography (10% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.27 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1H), 7.97-7.89 (m, 3H), 7.78 -7.70 (m, 3H), 7.27-7.22 (m, 1H), 6.16 (dd, *J* = 57.2, 55.5 Hz, 1H), 3.34-3.17 (m, 1H), 2.79-2.67 (m, 2H), 2.49-2.40 (m, 1H), 1.15-1.11 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6, 156.2, 149.3, 139.6, 136.9, 132.4, 128.4, 123.8, 122.9, 117.9, 117.2 (t, *J* = 250.5 Hz), 116.3, 102.9, 90.3, 52.6 (t, *J* = 19.2 Hz), 34.6, 29.7, 18.6, 11.2. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.4, -122.1, -125.3, -126.0. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₃₅F₂N₂OSi 481.2481; found 481.2481.

1-(3-Bromophenyl)-4-(difluoromethyl)-4-(pyridin-2-yl)-6-(triisopropylsilyl)hex-5-yn-1-one (3c)

Following the general procedure, the reaction of corresponding pyridinium salt **1c** (35.7 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), DBU (30 µL, 0.20 mmol, 2.0 equiv), and toluene (2 mL) at room temperature for 12 h afford **3c** (36 mg, 68%) as a colorless oil after purification by flash chromatography (2-4% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.54 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 7.98 (t, J = 1.8 Hz, 1H), 7.92 (dt, J = 7.9, 1.1 Hz, 1H), 7.80-7.72 (m, 2H), 7.65 (ddd, J = 7.9, 2.0, 1.0 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.24 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 6.18 (dd, J = 57.2, 55.6 Hz, 1H), 3.30-3.17 (m, 1H), 2.77-2.62 (m, 2H), 2.46-2.36 (m, 1H), 1.15-1.12 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 156.3, 149.3, 138.4, 136.9, 135.9, 131.1, 130.1, 126.5, 123.7, 122.9, 122.8, 117.3 (t, J = 250.5 Hz), 102.9, 90.2, 52.7 (t, J = 19.2 Hz), 34.3, 29.8, 18.7, 11.2. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.4, -122.2, -125.4, -126.1. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₃₅BrF₂NOSi 534.1634; found 534.1647.

4-(Difluoromethyl)-4-(pyridin-2-yl)-1-(o-tolyl)-6-(triisopropylsilyl)hex-5-yn-1-one (3d)

Following the general procedure, the reaction of corresponding pyridinium salt **1d** (29 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3d** (29 mg, 62%) as a pale yellow oil after purification by flash chromatography (3-5% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.57 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (dd, *J* = 4.9, 1.9 Hz, 1H), 7.90-7.86 (m, 1H), 7.70 (td, *J* = 7.8, 1.9 Hz, 1H), 7.48 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.31 (td, *J* = 7.5, 1.5 Hz, 1H), 7.23-7.14 (m, 3H), 6.19 (dd, *J* = 57.3, 55.6 Hz, 1H), 3.18 (ddd, *J* = 16.1, 11.3, 4.1 Hz, 1H), 2.69-2.50 (m, 2H), 2.44-2.40 (m, 4H), 1.13-1.10 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 203.2, 156.6, 149.4, 138.1, 137.8, 136.9, 132.0, 131.3, 128.4, 125.6, 123.7, 122.7, 117.5 (t, *J* = 251.5 Hz), 103.1 (t, *J* = 4.0 Hz), 90.0, 52.7 (t, *J* = 19.2 Hz), 37.1, 30.3, 21.3, 18.7, 11.3. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.4, -122.2, -125.7, -126.4. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₃₈F₂NOSi 470.2685; found 470.2685.

1-(4-Chlorophenyl)-4-(difluoromethyl)-4-(4-phenylpyridin-2-yl)-6-(triisopropylsilyl)hex-5-yn-1-one (3e)

Following the general procedure, the reaction of corresponding pyridinium salt **1e** (39 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and

DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3e** (37 mg, 65%) as a white solid after purification by flash chromatography (3-5% EtOAc in petroleum ether).

TLC (SiO₂) $R_f = 0.48$ (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 5.1, 0.8 Hz, 1H), 8.21 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.83-7.77 (m, 2H), 7.69-7.64 (m, 2H), 7.52-7.45 (m, 4H), 7.39-7.34 (m, 2H), 6.23 (dd, *J* = 57.3, 55.6 Hz, 1H), 3.29-3.19 (m, 1H), 2.80-2.67 (m, 2H), 2.51-2.41 (m, 1H), 1.17-1.13 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.8, 156.9, 149.8, 149.2, 139.4, 137.9, 135.0, 129.4, 129.3, 129.1, 128.8, 127.1, 121.8, 120.6, 117.3 (t, *J* = 250.5 Hz), 103.0, 90.4, 52.9 (t, *J* = 19.2 Hz), 34.2, 30.1, 18.7, 11.2. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.2, -121.9, -125.4, -126.1. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₃H₃₉ClF₂NOSi 566.2452; found 566.2466.

Methyl 2-(6-(4-chlorophenyl)-3-(difluoromethyl)-6-oxo-1-(triisopropylsilyl)hex-1-yn-3-yl)isonicotinate (3f)

Following the general procedure, the reaction of corresponding pyridinium salt **1f** (37 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3f** (39 mg, 71%) as a crimson oil after purification by flash chromatography (5-10% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.43 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (d, J = 5.0 Hz, 1H), 8.53-8.48 (m, 1H), 7.82-7.73 (m, 3H), 7.40-7.34 (m, 2H), 6.17 (dd, J = 57.1, 55.5 Hz, 1H), 3.93 (d, J = 2.1 Hz, 3H), 3.21 (ddd, J = 16.2, 10.4, 4.5 Hz, 1H), 2.75-2.57 (m, 2H), 2.43 (ddd, J = 13.7, 11.1, 4.3 Hz, 1H), 1.16-1.11 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6, 165.3, 157.8, 150.3, 139.6, 138.4, 135.0, 129.5, 128.9, 123.2, 122.2, 117.2 (t, J = 250.5 Hz), 102.4 (t, J = 3.0 Hz), 91.1, 52.9 (t, J = 19.2 Hz), 52.8, 34.1, 30.0, 18.7, 11.2. ¹⁹**F NMR** (with ¹H decoupling)

(376 MHz, CDCl₃) δ -121.2, -121.9, -125.2, -125.9. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₉H₃₆ClF₂NNaO₃Si 570.2013; found 570.2013.

1-(4-Chlorophenyl)-4-(difluoromethyl)-4-(6-phenylpyridin-2-yl)-6-(triisopropylsilyl)hex-5-yn-1-one (3g)

Following the general procedure, the reaction of corresponding pyridinium salt **1g** (39 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.40 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3g** (47.5 mg, 84%) as a colorless oil after purification by flash chromatography (3% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.71 (hexanes/ethyl acetate = 3:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.03-7.98 (m, 2H), 7.87-7.74 (m, 4H), 7.70 (dd, J = 7.7, 1.2Hz, 1H), 7.49-7.40 (m, 3H), 7.31-7.25 (m, 2H), 6.28 (dd, J = 57.3, 55.6 Hz, 1H), 3.24 (ddd, J = 16.1, 11.4, 4.5 Hz, 1H), 2.86 (ddd, J = 13.0, 11.4, 4.5 Hz, 1H), 2.71 (ddd, J = 16.2, 11.5, 4.6 Hz, 1H), 2.47 (td, J = 12.3, 4.5 Hz, 1H), 1.18-1.12 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 198.0, 156.6, 156.1, 139.4, 138.6, 137.8, 134.9, 129.5, 129.4, 128.8, 128.8, 126.9, 122.0, 119.2, 117.5 (t, J = 250.5 Hz), 103.0, 90.1, 52.9 (t, J = 19.2 Hz), 34.3, 30.4, 18.7, 11.2. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.3, -122.0, -125.5, -126.2. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₃H₃₉ClF₂NOSi 566.2452; found 566.2437.

1-(4-Chlorophenyl)-4-(difluoromethyl)-6-(triisopropylsilyl)-4-(4-(3-((triisopropylsilyl)oxy)propyl)pyridin-2-yl)hex-5-yn-1-one (3h)

Following the general procedure, the reaction of corresponding pyridinium salt **1h** (53 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and K₂CO₃ (28 mg, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3h** (29 mg, 41%) as a white solid after purification by flash chromatography (4% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.51 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (d, *J* = 5.0 Hz, 1H), 7.83-7.77 (m, 3H), 7.42-7.35 (m, 2H), 7.07 (dd, *J* = 5.0, 1.6 Hz, 1H), 6.16 (dd, *J* = 57.3, 55.5 Hz, 1H), 3.74 (t, *J* = 6.1 Hz, 2H), 3.20 (ddd, *J* = 16.0, 11.8, 4.5 Hz, 1H), 2.78-2.60 (m, 4H), 2.40 (td, *J* = 13.7, 12.7, 4.4 Hz, 1H), 1.88 (ddt, *J* = 9.3, 7.8, 6.2 Hz, 2H), 1.14 (s, 21H), 1.10-1.03 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.9, 156.2, 152.4, 149.1, 139.4, 135.0, 129.4, 128.8, 123.9, 123.0, 117.3 (t, *J* = 250.5 Hz), 103.2, 90.0, 62.4, 52.6 (t, *J* = 19.2 Hz), 34.2, 33.2, 31.9, 30.0, 18.7, 18.0, 12.0, 11.2. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -121.3, -122.1, -125.4, -126.2. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₃₉H₆₀ClF₂NNaO₂Si₂ 726.3711; found 726.3714.

4-(6-Bromoisoquinolin-1-yl)-1-(4-chlorophenyl)-4-(difluoromethyl)-6-(triisopropylsilyl)hex-5-yn-1-one (3i)

Following the general procedure, the reaction of corresponding pyridinium salt **1i** (44 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2a** (31 mg, 0.12 mmol, 1.2 equiv), and K₂CO₃ (28 mg, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3i** (40 mg, 65%) as a pale yellow oil after purification by flash chromatography (3.5% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.65 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 9.25 (d, *J* = 9.3 Hz, 1H), 8.47 (d, *J* = 5.6 Hz, 1H), 8.00 (d, *J* = 2.1 Hz, 1H), 7.84 (dd, *J* = 8.8, 2.2 Hz, 2H), 7.60 (dd, *J* = 9.3, 2.1 Hz, 1H), 7.52 (d, *J* = 5.6 Hz, 1H), 7.38 (dd, *J* = 8.8, 2.2 Hz, 2H), 6.60-6.29 (m, 1H), 3.31-3.14 (m, 2H), 3.10-3.01

(m, 1H), 2.54-2.44 (m, 1H), 1.07-1.04 (m, 21H). ¹³**C** NMR (101 MHz, CDCl₃) δ 198.0, 155.2, 141.8, 139.6, 138.7, 135.1, 130.1, 129.8, 129.5, 128.9, 125.9, 124.8, 120.5, 117.1 (t, *J* = 251.5 Hz), 104.5, 91.6, 51.6 (t, *J* = 19.2 Hz), 34.7, 30.1, 18.7, 11.2. ¹⁹F NMR (with ¹H decoupling) (376 MHz, CDCl₃) δ -120.3, -121.0, -124.7, -125.5. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₃₆BrClF₂NOSi 618.1401; found 618.1406.

Following the general procedure, the reaction of corresponding pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2b** (26 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3j** (20 mg, 45%) as a pale yellow oil after purification by flash chromatography (5% EtOAc in petroleum ether).

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1H), 7.89 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.82-7.73 (m, 3H), 7.48-7.42 (m, 2H), 7.39-7.35 (m, 2H), 7.34-7.30 (m, 2H), 7.27 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 6.27 (dd, *J* = 57.2, 55.6 Hz, 1H), 3.20-3.11 (m, 1H), 2.84-2.66 (m, 2H), 2.60-2.47 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.7, 156.2 (d, *J* = 4.3 Hz), 149.5, 139.5, 137.0, 135.0, 134.9, 133.2, 129.5, 128.9, 128.7, 123.7, 123.0, 120.8, 117.4 (t, *J* = 250.5 Hz), 87.3, 85.8 (t, *J* = 3.1 Hz), 52.4 (t, *J* = 19.1 Hz), 34.0, 30.0 (d, *J* = 3.7 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.1 (d, *J* = 55.7 Hz), -121.8 (d, *J* = 55.5 Hz), -125.3 (d, *J* = 57.3 Hz), -126.0 (d, *J* = 57.2 Hz). **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₁₈Cl₂F₂NO 444.0728; found 444.0720.

1-(4-Chlorophenyl)-4-(difluoromethyl)-6-(naphthalen-2-yl)-4-(pyridin-2-yl)hex-5-yn-1-one (3k)

Following the general procedure, the reaction of corresponding pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2c** (27 mg, 0.12 mmol, 1.2 equiv), and K₂CO₃ (28 mg, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3k** (22 mg, 48%) as a yellow oil after purification by flash chromatography (5% EtOAc in petroleum ether).

¹H NMR (400 MHz, CDCl₃) δ 8.58-8.50 (m, 1H), 7.95 (d, J = 1.5 Hz, 1H), 7.93-7.88 (m, 1H), 7.74-7.67 (m, 6H), 7.47 (dd, J = 8.5, 1.6 Hz, 1H), 7.41 (dt, J = 6.3, 3.5 Hz, 2H), 7.29-7.23 (m, 2H), 7.2 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 6.23 (dd, J = 57.2, 55.6 Hz, 1H), 3.18-3.11 (m, 1H), 2.79-2.62 (m, 2H), 2.56-2.46 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 156.5 (d, J = 4.3 Hz), 149.5, 139.5, 137.0, 135.0, 133.0, 132.9, 132.0, 129.5, 128.9, 128.5, 128.1, 127.8, 127.8, 126.9, 126.7, 123.9, 123.0, 119.5, 117.6 (t, J = 249.5 Hz), 88.9, 85.0 (d, J = 2.9 Hz), 52.4 (t, J = 19.1 Hz), 34.1, 30.1 (d, J = 3.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -121.0 (d, J = 55.7 Hz), -121.8 (d, J = 55.5 Hz), -125.2 (d, J = 57.3 Hz), -125.9 (d, J = 57.3 Hz). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₁ClF₂NO 460.1274; found 460.1265.

1-(4-chlorophenyl)-4-(difluoromethyl)-4-(pyridin-2-yl)-6-(thiophen-3-yl)hex-5-yn-1one (3l)

Following the general procedure, the reaction of corresponding pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2d** (22 mg, 0.12 mmol, 1.2 equiv), and K₂CO₃ (28 mg, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3l** (22 mg, 53%) as a pale yellow oil after purification by flash chromatography (5-10% EtOAc in petroleum ether).

¹H NMR (400 MHz, CDCl₃) δ 8.61 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1H), 7.91 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.83-7.78 (m, 2H), 7.76 (td, *J* = 7.7, 1.8 Hz, 1H), 7.54 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.40-7.34 (m, 2H), 7.30 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.28-7.24 (m, 1H), 7.19 (dd, *J* = 5.0, 1.2 Hz, 1H), 6.26 (dd, *J* = 57.3, 55.6 Hz, 1H), 3.23-3.12 (m, 1H), 2.82-2.65 (m, 2H), 2.58-2.47 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 156.4 (d, *J* = 4.3 Hz), 149.4, 139.5, 137.0, 135.0, 130.0, 129.6, 129.5, 128.8, 125.5, 123.8, 122.9, 121.3, 117.5 (t, *J* = 249.3 Hz), 84.3 (t, *J* = 3.2 Hz), 83.6, 52.3 (t, *J* = 19.1 Hz), 34.0, 30.0 (d, *J* = 3.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -121.2 (d, *J* = 55.5 Hz), -121.9 (d, *J* = 55.7 Hz), -125.3 (d, *J* = 57.3 Hz), -126.0 (d, *J* = 57.3 Hz). HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₁₇ClF₂NOS 416.0682; found 416.0678.

(6-(4-Chlorophenyl)-3-(difluoromethyl)-6-oxo-3-(pyridin-2-yl)hex-1-yn-1yl)ferrocene (3m)

Following the general procedure, the reaction of corresponding pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2e** (34 mg, 0.12 mmol, 1.2 equiv), and K₂CO₃ (28 mg, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3m** (36 mg, 70%) as a yellow oil after purification by flash chromatography (5% EtOAc in petroleum ether).

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.92 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.86-7.80 (m, 2H), 7.77 (td, *J* = 7.7, 1.8 Hz, 1H), 7.42-7.36 (m, 2H), 7.25 (ddd, *J* =

7.2, 4.8, 1.2 Hz, 1H), 6.25 (dd, J = 57.5, 55.8 Hz, 1H), 4.52-4.49 (m, 2H), 4.23-4.22 (m, 7H), 3.25-3.11 (m, 1H), 2.81-2.61 (m, 2H), 2.56-2.41 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.9, 156.8, 149.4, 139.5, 136.9, 135.0, 129.5, 128.9, 123.8, 122.8, 117.4 (t, J = 249.0 Hz), 87.1, 80.6, 71.7, 70.0, 68.9, 64.1, 52.4 (t, J = 19.1 Hz), 34.1, 30.1. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.3 (d, J = 55.7 Hz), -122.0 (d, J = 55.8 Hz), -125.4 (d, J = 57.6 Hz), -126.2 (d, J = 57.7 Hz). **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃ClF₂FeNO 518.0780; found 518.0784.

1-(4-Chlorophenyl)-4-(difluoromethyl)-4-(pyridin-2-yl)hexadec-5-yn-1-one (3n)

Following the general procedure, the reaction of corresponding pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), β -CF₂H-1,3-enyne **2f** (29 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3n** (27.5 mg, 58%) as a pale yellow oil after purification by flash chromatography (5% EtOAc in petroleum ether).

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (dt, J = 4.7, 1.3 Hz, 1H), 7.86 (dt, J = 7.9, 1.1 Hz, 1H), 7.82-7.78 (m, 2H), 7.73 (td, J = 7.7, 1.9 Hz, 1H), 7.41-7.35 (m, 2H), 7.23 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 6.17 (dd, J = 57.5, 55.9 Hz, 1H), 3.18-3.07 (m, 1H), 2.72-2.57 (m, 2H), 2.43-2.31 (m, 3H), 1.59 (p, J = 7.1 Hz, 2H), 1.47-1.41 (m, 2H), 1.32-1.24 (m, 12H), 0.87 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 198.0, 157.0 (d, J = 4.5 Hz), 149.2, 139.4, 136.7, 135.1, 129.4, 128.8, 123.7, 122.7, 117.6 (t, J = 248.9 Hz), 89.2, 75.4 (t, J = 2.9Hz), 51.7 (t, J = 19.2 Hz), 34.1, 31.9, 30.1 (d, J = 3.9 Hz), 29.6, 29.3, 29.1, 28.9, 28.7, 22.7, 18.9, 14.1. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.7 (d, J = 55.9 Hz), -122.4 (d, J = 55.9Hz), -125.7 (d, J = 57.2 Hz), -126.4 (d, J = 57.3 Hz). **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₃₅ClF₂NO 474.2370; found 474.2365. Ethyl 2-(2-(4-chlorophenyl)-2-oxoethyl)-3-(difluoromethyl)-3-(pyridin-2-yl)-5-(triisopropylsilyl)pent-4-ynoate (30)

Following the general procedure, the reaction of pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), enyne **2i** (40 mg, 0.12 mmol, 1.2 equiv), and DBU (30 µL, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3o** (30 mg, 53%) as a pale yellow oil after purification by flash chromatography (2-5% EtOAc in petroleum ether). ¹H **NMR** (500 MHz, CDCl₃) δ 8.61-8.53 (m, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.82-7.71 (m, 3H), 7.41-7.33 (m, 2H), 7.24 (d, *J* = 6.3 Hz, 1H), 6.51 (t, *J* = 55.4 Hz, 1H), 4.14 (t, *J* = 10.1 Hz, 3H), 3.83 (dd, *J* = 17.9, 11.3 Hz, 1H), 2.69 (d, *J* = 17.7 Hz, 1H), 1.23 (dt, *J* = 8.4, 4.1 Hz, 3H), 1.19-1.12 (m, 21H). ¹³C **NMR** (126 MHz, CDCl₃) δ 196.4, 171.2, 155.7, 149.1, 139.6, 136.9, 134.8, 129.3, 128.8, 123.8, 123.0, 115.9 (t, *J* = 248.6 Hz), 100.4, 92.1, 61.2, 54.7 (t, *J* = 20.1 Hz), 45.9, 38.2, 18.6, 13.9, 11.2. ¹⁹F **NMR** (with ¹H decoupling) (471 MHz, CDCl₃) δ -121.1, -121.7, -121.8, -122.4. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₃₀H₃₈ClF₂NNaO₃Si 584.2170; found 584.2171.

1-(4-Chlorophenyl)-4-(1,1-difluoroethyl)-4-(pyridin-2-yl)-6-(triisopropylsilyl)hex-5yn-1-one (3p)

Following the general procedure, the reaction of pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), enyne **2g** (33 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3p** (17 mg, 33%) as a white solid after purification by flash chromatography (3.5% EtOAc in petroleum ether). **mp** 81-82 °C

TLC (SiO₂) R_f = 0.54 (hexanes/ethyl acetate = 9:1), [UV light]

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.87-7.81 (m, 2H), 7.73 (td, *J* = 7.7, 1.9 Hz, 1H), 7.41-7.35 (m, 2H), 7.26-7.22 (m, 1H), 3.25-3.02 (m, 2H), 2.77 (ddd, *J* = 15.9, 11.8, 4.1 Hz, 1H), 2.50-2.37 (m, 1H), 1.65 (t, *J* = 18.6 Hz, 3H), 1.13-1.09 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 198.4, 156.0, 148.8, 139.3, 136.4, 135.1, 129.5, 128.1, 125.3, 123.5 (t, *J* = 251.5 Hz), 122.7, 106.2, 88.6, 55.4 (t, *J* = 23.2 Hz), 35.1, 28.0 (t, *J* = 3.0 Hz), 20.7 (t, *J* = 27.3 Hz), 18.7, 11.3. ¹⁹**F NMR** (with ¹H decoupling) (376 MHz, CDCl₃) δ -94.8 (d, *J* = 8.0 Hz). **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₈H₃₆ClF₂NNaOSi 526.2115; found 526.2115.

1-(4-Chlorophenyl)-4-(1-fluoroethyl)-4-(pyridin-2-yl)-6-(triisopropylsilyl)hex-5-yn-1one (3q)

Following the general procedure, the reaction of pyridinium salt **1a** (31 mg, 0.10 mmol, 1.0 equiv), enyne **2h** (31 mg, 0.12 mmol, 1.2 equiv), and DBU (30 μ L, 0.20 mmol, 2.0 equiv) in toluene (2 mL) at room temperature for 12 h afford **3q** (9 mg, 18%, dr = 1.1:1) as a colorless oil after purification by flash chromatography (5% EtOAc in petroleum ether).

TLC (SiO₂) R_f = 0.53 (hexanes/ethyl acetate = 9:1), [UV light]

¹H NMR (400 MHz, CDCl₃) δ 8.58 (ddd, J = 17.1, 4.7, 1.7 Hz, 1H), 7.95-7.87 (m, 1H), 7.83 -7.74 (m, 2H), 7.70 (tdd, J = 7.9, 4.1, 1.8 Hz, 1H), 7.40-7.33 (m, 2H), 7.23-7.16 (m, 1H), 5.10 (ddq, J = 46.1, 20.4, 6.1 Hz, 1H), 3.29-3.08 (m, 1H), 2.67-2.44 (m, 2.5H), 2.09 (td, J = 12.3, 3.9 Hz, 0.5H), 1.57 (dd, J = 24.5, 6.2 Hz, 1.8H), 1.21-1.10 (m, 22.2H). ¹³C NMR (101 MHz, CDCl₃) δ 198.6, (198.3), 159.0, (158.9), 149.4, (149.3), 139.4, (139.2), 136.6, (136.3), 135.1, (135.0), 129.5, (129.4), 128.8, (128.8), 124.0, (123.2), 122.2, (122.1), 106.6, (106.5), 95.1 (d, J = 8.1 Hz), {93.4 (d, J = 7.1 Hz)}, 89.0, (88.9), 53.7 (d, J = 14.1Hz), {53.5 (d, J = 14.1 Hz)}, 35.1, (34.6), 32.6 (d, J = 3.0 Hz), {(31.19, 31.15) (d, J = 6.1Hz)}, 18.7, (18.7), 17.0 (d, J = 6.1 Hz), {16.8 (d, J = 6.1 Hz)}, 11.3, (11.3). ¹⁹F NMR (with ¹H decoupling) (376 MHz, CDCl₃) δ -173.5 (-180.5). HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₈H₃₇ClFNNaOSi 508.2209; found 508.2208.

Substrates Limitation

3. Scale-Up Synthesis and Derivatization of the Products

Scale-Up Synthesis of 3c

A 100 mL oven-dried Schlenk tube equipped with a magnetic stirring bar was charged with pyridinium salt **1c** (357 mg, 1 mmol, 1.0 equiv). The tube was capped, evacuated, and filled with nitrogen (three cycles). To these solids, degassed toluene (20 mL, 0.05 M), β -CF₃-1,3-enyne **2a** (310 mg, 1.2 mmol, 1.2 equiv), and DBU (299 μ L, 2.0 mmol, 2.0 equiv) was added sequentially under nitrogen atmosphere. The mixture was stirred and irradiated with a 24 W white LED bulb (PHILIPS, 5 cm away) at room temperature for 12 h. The reaction mixture was passed through a short pad of silica eluting with petroleum ether-EtOAc (1/1) to remove the salts and unreacted DBU. After the eluent was concentrated under reduced pressure, the residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc = 96:4) to afford product **3c** (331 mg, 62% yield) as a colorless oil.

Derivatization of the Product 3c

(*E*)-2-(6-(3-bromophenyl)-3-(difluoromethyl)-1-(triisopropylsilyl)hex-5-en-1-yn-3yl)pyridine (4)

To a solution of **3c** (53 mg, 0.10 mmol) in MeOH (2 mL) was added NaBH₄ (4.5 mg, 0.12 mmol) in one portion at 0 °C, and the resulting mixture was stirred until full conversion as judged by TLC analysis. Then, the reaction was quenched with water (5 mL) and extracted with EtOAc (5 mL \times 3). The combined organics were dried over Na₂SO₄ and concentrated to give the crude alcohol, which was directly used in the next step without further purification.

The crude alcohol was dissolved in toluene (2 mL), and *p*-TsOH (26 mg, 0.15 mmol) was added. The reaction was stirred under reflux for 12 h in an oil bath maintained at 120 °C. The mixture was cooled to room temperature, filtered through a short SiO₂ plug (eluting with EtOAc), and concentrated *in vacuo*. Purification by column chromatography over silica gel (PE/EtOAc = 97.5:2.5) gave the compound **4** (37 mg, 71%) as a yellowish oil.

Characterization data of **4**:

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.76 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.62 (td, *J* = 7.7, 1.9 Hz, 1H), 7.29-7.27 (m, 1H), 7.22-7.20 (m, 1H), 7.14 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 7.02-7.00 (m, 2H), 6.32-5.93 (m, 3H), 3.08-3.03 (m, 1H), 2.91-2.78 (m, 1H), 1.07-1.03 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 156.5 (d, *J* = 4.3 Hz), 149.0, 139.4, 136.8, 132.3, 130.0, 129.9, 128.9, 125.8, 124.9, 123.8, 122.6, 122.6, 117.1 (t, *J* = 249.3 Hz), 102.9, 90.1, 53.3 (t, *J* = 19.0 Hz), 29.7, 18.6, 11.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -122.0 (d, *J* = 55.4 Hz), -122.7 (d, *J* = 55.4 Hz), -126.4 (d, *J* = 57.3 Hz), -127.1 (d, *J* = 57.4 Hz). **HRMS** (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₃₄BrF₂NNaSi 540.1504; found 540.1501.

1-(3-(Benzo[b]thiophen-2-yl)phenyl)-4-(difluoromethyl)-4-(pyridin-2-yl)-6-

(triisopropylsilyl)hex-5-yn-1-one (5)

To a 25 mL Schlenk tube equipped with a stirrer bar was added aryl boronic acid (21.5 mg, 0.12 mmol) and Pd(PPh₃)₄ (6 mg, 0.005 mmol). The system was purged with nitrogen three times, and then Na₂CO₃ (2 M in H₂O, 200 uL) and a degassed solution of **3c** (53 mg, 0.1 mmol) in 1,2-dimethoxyethane (3 mL) was added under nitrogen. The resulting mixture was stirred in an oil bath maintained at 90 °C for 24 h. After cooling to room temperature, the reaction mixture was poured into water and extracted with ethyl acetate (5 mL × 3). The combined organics were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by column chromatography over silica gel (PE/EtOAc = 96:4) gave the compound **5** (45 mg, 76%) as a colorless oil.

Characterization data of 5:

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1H), 8.12 (t, *J* = 1.8 Hz, 1H), 7.86 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.79-7.64 (m, 5H), 7.50 (d, *J* = 0.7 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.31-7.24 (m, 2H), 7.15 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 6.14 (dd, *J* = 57.3, 55.6 Hz, 1H), 3.31-3.18 (m, 1H), 2.75-2.60 (m, 2H), 2.39 (ddd, *J* = 13.8, 11.8, 4.5 Hz, 1H), 1.09-1.04 (m, 21H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6, 155.4, 148.3, 141.9, 139.5, 138.6, 136.3, 135.8, 133.8, 129.7, 128.1, 126.6, 124.7, 123.7, 122.7, 122.7, 121.7, 121.3, 119.3, 116.3 (t, *J* = 250.5), 102.0, 89.1, 51.7 (t, *J* = 19.1 Hz), 33.3, 29.1, 17.6, 10.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.4 (d, *J* = 55.6 Hz), -122.1 (d, *J* = 55.7 Hz), -125.5 (d, *J* = 57.2 Hz), -126.2 (d, *J* = 57.1 Hz). **HRMS (ESI-TOF)** *m/z*: [M + Na]⁺ calcd for C₃₅H₃₉F₂NNaOSSi 610.2382; found 610.2391.

1-(3-Bromophenyl)-4-(difluoromethyl)-4-(pyridin-2-yl)hex-5-yn-1-one (6)

To a solution of **3c** (160 mg, 0.3 mmol) in THF (4 mL) was added TBAF (0.33 mmol, 1 M in THF) dropwise at -5 °C. The solution was stirred until full conversion as judged by TLC analysis (with 20 minutes). Then, the reaction was quenched with saturated NH₄Cl solution (5 mL) and extracted with EtOAc (5 mL \times 3). The combined organic extract was dried over Na₂SO₄ and concentrated in *vacuo*. The crude product was purified by flash chromatography on silica gel (PE/EtOAc = 95/5) to give compound **6** as a colorless oil (107 mg, 94% yield).

Characterization data of 6:

¹H NMR (400 MHz, CDCl₃) δ 8.54 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.91 (t, *J* = 1.8 Hz, 1H), 7.80 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.73-7.66 (m, 2H), 7.58 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1H), 7.25-7.17 (m, 2H), 6.13 (dd, *J* = 57.1, 55.4 Hz, 1H), 3.07 (ddd, *J* = 16.9, 11.0, 4.5 Hz, 1H), 2.70-2.52 (m, 3H), 2.40-2.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 155.6, 149.5, 138.4, 137.0, 135.9, 131.1, 130.2, 126.6, 123.6, 123.0, 122.9, 117.3 (t, *J* = 249.8 Hz), 79.5 (t, *J* = 3.1 Hz), 76.8, 51.7 (t, *J* = 19.1 Hz), 34.0, 29.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.5 (d, *J* = 55.4 Hz), -122.3 (d, *J* = 55.6 Hz), -125.6 (d, *J* = 57.2 Hz), -126.3 (d, *J* = 57.0 Hz). HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₅BrF₂NO 378.0300; found 378.0294.

4-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)-1-(3-bromophenyl)-5,5-difluoro-4-(pyridin-2yl)pentan-1-one (7)

mg, 0.05 equiv) and L-Ascorbic acid sodium salt (1.0 mg, 0.05 equiv). The system was purged with nitrogen three times, and then a solution of **6** (37.8 mg, 0.1 mmol, 1.0 equiv) in *t*-BuOH (0.5 mL), H₂O (0.5 mL) was added in sequence, followed by a quick evacuate-refill cycle. BnN₃ (25 μ L, 0.2 mmol, 2.0 equiv) was added *via* microsyringe, and the reaction mixture was stirred in an oil bath maintained at 50 °C for 24 h. After the reaction was complete, the reaction mixture was diluted with H₂O (5 mL) and extracted with EtOAc (5 mL × 3). The combined organic layers were washed with brine and dried over Na₂SO₄. After the solvent was evaporated under reduced pressure, the residue was purified by silica gel column chromatography (PE/EtOAc = 3:1) to deliver product **7** (26 mg, 51%) as a yellowish oil.

Characterization data of 7:

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.92 (t, *J* = 1.8 Hz, 1H), 7.73 (dt, *J* = 7.9, 1.3 Hz, 1H), 7.58-7.50 (m, 3H), 7.353-7.26 (m, 3H), 7.24-7.17 (m, 3H), 7.12 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 7.06-7.01 (m, 1H), 6.57 (t, *J* = 52 Hz, 1H), 5.50 (d, *J* = 3.1 Hz, 2H), 3.27-3.11 (m, 1H), 2.86-2.64 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 198.2, 158.7, 149.0, 145.2, 138.5, 136.7, 135.8, 134.5, 131.1, 130.1, 129.2, 128.8, 128.0, 126.7, 123.7, 123.5, 122.8, 122.5, 119.0 (t, *J* = 248.1 Hz), 54.3, 52.8 (t, *J* = 18.7 Hz), 34.2, 29.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -122.6 (d, *J* = 55.2 Hz), -123.3 (d, *J* = 55.4 Hz), -127.0 (d, *J* = 56.5 Hz), -127.7 (d, *J* = 56.5 Hz). **HRMS** (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₅H₂₁BrF₂N₄NaO 533.0759; found 533.0766.

4. Single Crystal X-ray Structural Analysis

Crystal Structure of 3a

A view of the molecular structure of compound **3a** (thermal ellipsoids are shown with a 30% probability level). Single crystals of compound **3a** suitable for the X-ray crystal structure analysis were obtained by the slow evaporation of a solution of compound **3a** in PE/dichloromethane.

X-Ray Crystallographic Data of 3a

Crystal data and structure refinement for 3a		
CCDC	2117234	
Empirical formula	C ₂₇ H ₃₄ ClF ₂ NOSi	
Formula weight	490.10	
Temperature/K	149.99(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	7.4228(3)	
b/Å	12.3770(4)	
c/Å	15.3766(5)	
α/°	76.468(3)	
β/°	76.054(3)	
γ/°	81.669(3)	
Volume/Å ³	1327.10(9)	
Z	2	
$\rho_{calc}g/cm^3$	1.226	
μ/mm^{-1}	0.222	
F(000)	520.0	
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$	
Radiation	Mo K α ($\lambda = 0.71073$)	
2Θ range for data collection/°	3.926 to 58.798	
Index ranges	$-9 \le h \le 9, -16 \le k \le 15, -19 \le 1 \le 19$	
Reflections collected	18104	
Independent reflections	$6397 [R_{int} = 0.0518, R_{sigma} = 0.0568]$	
Data/restraints/parameters	6397/0/304	
Goodness-of-fit on F ²	1.033	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0482, wR_2 = 0.1146$	
Final R indexes [all data]	$R_1 = 0.0657, wR_2 = 0.1298$	
Largest diff. peak/hole / e Å ⁻³	0.31/-0.42	

5. References

[1] S.-J. Chen, G.-S. Chen, T. Deng, J.-H. Li, Z.-Q. He, L.-S. Liu, H. Ren, Y.-L. Liu, 1,2-Dicarbofunctionalization of trifluoromethyl alkenes with pyridinium salts via a cycloaddition/visible-light-enabled fragmentation cascade. *Org. Lett.* 2022, **24**, 702-707.

[2] Z.-Q. He, S.-J. Chen, G.-S. Chen, B.-L. Dong, J.-H. Lin, Y. Zhong, J.-M. Wu, Z. Ren, Y.-L. Liu, Base-mediated allylic defluorinative functionalizations of β -CF₂H-1,3-enynes enables the construction of terminal monofluoroenynes. *Org. Lett.* 2024, **26**, 7468-7473.

6. Copies of NMR Spectra

¹H NMR spectra of compound **3a** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3a** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3a** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3b** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3b** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3b** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3c** in CDCl₃ (400 MHz):

^{13}C NMR spectra of compound 3c in CDCl3 (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3c** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3d** in CDCl₃ (400 MHz):

 ^{13}C NMR spectra of compound **3d** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3d** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3e** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3e** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3e** in CDCl₃ (376 MHz):

¹³C NMR spectra of compound **3f** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3f** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3g** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3g** in CDCl₃ (101 MHz):

 $^{19}\mathsf{F}$ NMR (with $^1\mathsf{H}$ decoupling) spectra of compound 3g in CDCl3 (376 MHz):

^{13}C NMR spectra of compound **3h** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3h** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3i** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3i** in CDCl₃ (101 MHz):

¹⁹F NMR (with ¹H decoupling) spectra of compound **3i** in CDCl₃ (376 MHz):

¹³C NMR spectra of compound **3j** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **3j** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3k** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3k** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **3k** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3I** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3I** in CDCI₃ (101 MHz):

¹⁹F NMR spectra of compound **3I** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3m** in CDCl₃ (400 MHz):

 ^{13}C NMR spectra of compound 3m in CDCl3 (101 MHz):

¹⁹F NMR spectra of compound **3m** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **3n** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3n** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **3o** in CDCl₃ (500 MHz):

¹³C NMR spectra of compound **3o** in CDCl₃ (126 MHz):

 $^{19}\mathsf{F}$ NMR (with $^1\mathsf{H}$ decoupling) spectra of compound 3o in CDCl3 (471 MHz):

¹H NMR spectra of compound **3p** in CDCl₃ (400 MHz):

^{13}C NMR spectra of compound 3p in CDCl3 (101 MHz):

¹H NMR spectra of compound **3q** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **3q** in CDCl₃ (101 MHz):

¹H NMR spectra of compound **4** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **4** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **4** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **5** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **5** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **5** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **6** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **6** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **6** in CDCl₃ (376 MHz):

¹H NMR spectra of compound **7** in CDCl₃ (400 MHz):

¹³C NMR spectra of compound **7** in CDCl₃ (101 MHz):

¹⁹F NMR spectra of compound **7** in CDCl₃ (376 MHz):