## Supporting information for

## Novel indolespiro bicoumarins: synthesis and their antifungal

## activity

Zhengyu Liu,<sup>*a*</sup> Qihe Liu, <sup>*a*</sup> Li Chen, <sup>*a*</sup> Yukang Liu, <sup>*a*</sup> Ting Zhao, <sup>*a*</sup> Liuqing Yang, <sup>*a*</sup> Min Zhang\*<sup>*a*</sup> and Changsheng Yao\*<sup>*b*</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China

<sup>b</sup> Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China E-mail: zhangmin@ujs.edu.cn (M. Zhang); csyao@jsnu.edu.cn (C. Yao)

## List of contents



**Figure S1**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3a**.



**Figure S2**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3b**.



Figure S3. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3c.



Figure S4. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3d.



Figure S5. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3e.



Figure S6. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3f.



**Figure S7**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3g**.



**Figure S8**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3h**.



Figure S9. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3i.



Figure S10. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3j.



Figure S11. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3k.



Figure S12. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3l.



Figure S13. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3m.



**Figure S14**. The <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **3m**.



**Figure S15**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3n**.



**Figure S16**. The <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **3n**.



**Figure S17**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **30**.



**Figure S18**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3p**.



Figure S19. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3q.



Figure S20. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3r.



**Figure S21**. The <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **3s**.



Figure S22. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3t.



Figure S23. The <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) of 3u.