Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Visible-Light-Mediated Synthesis of 2-Sulfenylated Pyrrolo[1,2-α]quinoxalines via Isocyanide/Disulfide Radical Cascades

Chen Chen, Songzhi Kong, Xiai Luo, Minxia Wu, yazi Deng, Xiaoke Luo, Pinjin Zheng, and Haisheng Xie *

College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.

Table of Contents

I. Ge	neral Expe	rimental Information	•••••	•••••	••••••	2
II. O	ptimization	of Reaction Condition	S		••••••	3
III. S	tudy on the	Gram-scale Reaction.	•••••			5
VI. C	ontrol Exp	eriments for the Mech	anism St	udies		5
V.	Detail	Characterization	for	the	Compounds	3
IV. ¹]	H NMR and	l ¹³ C NMR Spectrum o	of All Pro	oducts		11

I. General Experimental Information

All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. Reagents were purchased from Accela, Acros, Aladdin, Adamas, Energy Chemical or TCI. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by flash chromatography using Qingdao Haiyang Chemical Co. Ltd silica gel (400-630 mesh). ¹H NMR₅ ¹³C NMR and ¹⁹F NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature on a Bruker Avance III 400 MHz or 500 MHz for ¹H NMR and 100 MHz or 126 MHz for ¹³C NMR and 471 MHz for ¹⁹F NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), doublet (d), triplet (t), doublet of doublet (dd), quartet (q). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). High resolution mass spectra (HRMS) recorded **IF-TOF** spectrometer (Micromass) were on an

II. Optimization of Reaction Conditions

Table S1. Catalyst screening for the cross-coupling reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with 1,2-Diphenyldisulfane 2a

N +	$\begin{array}{c} PC(5 \text{ mol\%}) \\ K_2CO_3(2.0 \text{ equiv.}) \\ \hline 50 \text{ W LEDs, CH}_3CN, \text{rt, 24 h} \end{array}$		
1a	2a	3a	
entry	catalyst	yield 3a (%) ^b	
1	Ir(ppy) ₃	41	
2	Ru(bpy) ₃	0	
3	$(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$	37	
4	Eosin Y	0	
5	4CzIPN	0	
6	Mes-Acr ⁺ -Me ClO ₄ ⁻	0	

^{*a*}All the reactions were carried out employing 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), K₂CO₃ (0.20 mmol) with catalysts (5 mol %) in CH₃CN (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, followed by flash chromatography on SiO₂. ^{*b*}Isolated yield.

Table S2. Additive screening for the reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with 1,2-Diphenyldisulfane 2a

entry	additive	yield 3a (%) ^b
1	K ₂ CO ₃	41
2	Na ₂ CO ₃	33
3	Cs_2O_3	29
4	K ₃ PO ₄	21
5	Na ₂ HPO ₄	17
6	CH ₃ COOK	0
7	Et ₃ N	0
8	DIPEA	0

^{*a*}All the reactions were carried out employing 1-(2-isocyanophenyl)-1H-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), additive (0.20 mmol) with $Ir(ppy)_3$ (5 mol %) in CH₃CN (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, followed by flash chromatography on SiO₂. ^{*b*}Isolated yield.

Table S3. Various solvents screening for the reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with 1,2-Diphenyldisulfane 2a

N +	$S_{S} = \frac{Ir(0)}{K_2}$	ppy) ₃ (5 mol%) CO ₃ (2.0 equiv.) ✓ LEDs,solvent,rt,24h	
1a	2a		3 a
entry		solvent	yield 3a (%) ^b
1	(CH ₃ CN	47
2		THF	64
3]	oluene	50
4		DCE	49
5		DMF	0
6		MeOH	0
7	1,4	-dioxane	0

^{*a*}All the reactions were carried out employing 1-(2-isocyanophenyl)-1H-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), K_2CO_3 (0.20 mmol) with Ir(ppy)₃ (5 mol %) in solvent (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, followed by flash chromatography on SiO₂. ^{*b*}Isolated yield.

Table S4. photocatalyst screening for the reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with1,2-Diphenyldisulfane 2a

^{*a*}All the reactions were carried out employing 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), K₂CO₃ (0.20 mmol) in THF (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, no product was formed.

Table S5. Lighting screening for the reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with 1,2-Diphenyldisulfane 2a

^{*a*}All the reactions were carried out employing 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), K₂CO₃ (0.20 mmol) with Ir(ppy)₃ (5 mol %) in THF (2 mL) at rt for 24 h under Air in an open tube, no product was formed.

III. Study on the Gram-scale Reaction

Figure S1. Gram-scale reaction

An oven-dried sealed tube charged 1-(2-isocyanophenyl)-1H-pyrrole **1a** (1 mmol), diphenyl sulfides **2a** (2 mmol), K_2CO_3 (2 mmol), $Ir(ppy)_3$ (5 mol %) and THF (10 mL) was added under 50 W blue LEDs and Air atmosphere. The reaction mixture was then allowed to stir at rt for 48 h. After the reaction mixture was cooled down and filtrated, the corresponding filtrate was further concentrated under reduced pressure, followed by flash chromatography on silica gel using ethyl acetate/petroleum ether (1 : 250) as eluent to afford the desired products.

VI. Control Experiments for the Mechanism Studies a) TEMPO was added to the reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with 1,2-Diphenyldisulfane 2a

The reactions were carried out employing 1-(2-isocyanophenyl)-1H-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), K_2CO_3 (0.20 mmol), TEMPO (5.0 equiv.) with $Ir(ppy)_3$ (5 mol %) in THF (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, no product was formed.Moreover, the intermediates 2,2,6,6-tetramethyl-1-((phenylthio)oxy)piperidine in the reaction mixture were detected by HRMS.

Figure S2. HRMS spectra of reaction mixture in radical trapping experiment

b) BHT was added to the reaction of 1-(2-isocyanophenyl)-1H-pyrrole 1a with 1,2-Diphenyldisulfane 2a

The reactions were carried out employing 1-(2-isocyanophenyl)-1H-pyrrole **1a** (0.10 mmol), 1,2-Diphenyldisulfane **2a** (0.10 mmol), K_2CO_3 (0.20 mmol), BHT (5.0 equiv.) with Ir(ppy)₃ (5 mol %) in THF (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, no product was formed.Moreover, the intermediates (2,6-di-*tert*-butylphenoxy)(phenyl)sulfane in the reaction mixture were detected by HRMS.

Figure S3. HRMS spectra of reaction mixture in radical trapping experiment

c) 4-ethylbenzenethiol 6a reacted with 1-(2-isocyanophenyl)-1H- pyrrole 1a

Figure S4. 4-Ethylbenzenethiol 6a reacted with 1-(2-isocyanophenyl)-1H- pyrrole 1a

The reactions were carried out employing 1-(2-isocyanophenyl)-1H-pyrrole **1a** (0.10 mmol), 4-ethylben zenethiol **6a** (0.10 mmol), K_2CO_3 (0.20 mmol) with Ir(ppy)₃ (5 mol %) in THF (2 mL) at rt for 24 h under 50 W blue LEDs and Air in an open tube, no product is produced.

V. Detail Characterization for the Compounds 3

An oven-dried sealed tube charged 1-(2-isocyanophenyl)-1H-pyrrole 1a (0.10 mmol), diphenyl sulfides 2

(0.10 mmol), K₂CO₃ (0.20 mmol), Ir(ppy)₃ (5 mol %) and THF (2 mL) was added under 50 W blue LEDs and Air atmosphere. The reaction mixture was then allowed to stir at rt for 24 h. After the reaction mixture was cooled down and filtrated, the corresponding filtrate was further concentrated under reduced pressure, followed by flash chromatography on silica gel using ethyl acetate/petroleum ether (1:250) as eluent to afford the desired products.

IV. Analysis Data for All the Products

4-(Phenylthio)pyrrolo[1,2-a]quinoxaline (3a): The title compound was prepared from 1-(2-isocyanophenyl)-1H-pyrrole 1a (17 mg, 0.10 mmol) and 1,2-Diphenyldisulfane 2a (21.80 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a white solid; 17 mg, 64% yield; ¹H NMR (500 MHz, Chloroform-*d*) δ: 7.91 (dd, 1H), 7.81 (d, *J* = 1.0 Hz, 1H), 7.74 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.72 - 7.70 (m, 2H), 7.47 - 7.43 (m, 4H), 7.37 (t, 1H), 6.95 (dd, J = 4.0, 1.2 Hz, 1H), 6.85 (dd, J = 3.9, 2.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ: 153.6, 135.8, 134.8, 129.3, 129.2, 129.0, 128.7, 126.9, 126.8, 125.1, 124.5,

OMe 3b

4-((Methoxyphenyl)thio)pyrrolo[1,2-a]quinoxaline (3b): The title compound was prepared from 1-(2-isocyanophenyl)-1H-pyrrole 1a (17 mg, 0.10 mmol) and 1,2-b is(4-methoxyphenyl)disulfane **2b** (27.80 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 20 mg, 67% yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.89 (dd, J = 2.7, 1.2 Hz, 1H),

7.79 (dd, J = 8.2, 1.0 Hz, 1H), 7.71 (dd, J = 8.0, 1.3 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.45–7.40 (m, 1H), 7.37– 7.32 (m, 1H), 7.01 (d, J = 8.8 Hz, 1H), 6.94 (dd, J = 4.0, 1.2 Hz, 1H), 6.84 (dd, J = 3.9, 2.8 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ: 160.4, 154.5; 137.0, 135.9, 129.3, 126.9, 126.6, 125.0, 124.3, 119.2, 114.7, 114.3, 113.5, 113.5, 106.1, 55.4. **HRMS (ESI)** m/z calcd for C₁₈H₁₅ON₂S⁺ [M+H]⁺: 307.08996, found 307.08957.

114.5, 113.6, 113.6, 106.5. **HRMS (ESI)** m/z calcd for C₁₇H₁₃N₂S⁺ [M+H]⁺: 277.07939, found 277.07910.

4-(P-tolylthio)pyrrolo[1,2-a]quinoxaline (3c): The title compound was prepared from 1-(2-isocyanophenyl)-1H-pyrrole 1a (17 mg, 0.10 mmol) and 1,2-diptolyldisulfane 2c (24.60 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 16 mg, 53% yield; ¹H NMR (500 MHz, Chloroform-d) δ: 7.90 (d, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.60

(d, J = 8.1 Hz, 2H), 7.43 (t, J = 7.1 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 3.9 Hz, 2H 1H), 6.84 (t, 1H), 2.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.1, 139.0, 135.8, 135.0, 129.8, 129.3, 126.9, 126.7, 125.4, 125.0, 124.4, 114.4, 113.5, 106.4, 21.4. **HRMS (ESI)** m/z calcd for $C_{18}H_{15}N_2S^+$ [M+H]⁺: 291.09504, found 291.09451.

4-((4-Isopropylphenyl)thio)pyrrolo[1,2-a]quinoxaline (3d): The title compound was prepared from 1-(2-isocyanophenyl)-1H-pyrrole 1a (17 mg, 0.10 mmol) and 1,2bis(4-isopropylphenyl)disulfane 2d (30.20 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 30 mg, 93% yield; ¹H NMR (500 MHz, Chloroform-d) δ: 7.91-7.88 (m, 1H), 7.77

(dd, J = 15.4, 8.1 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.39–7.32 (m, 3H), 6.97 (d, J = 4.0 Hz, 1H), 6.87-6.82 (m, 1H), 3.06 - 2.97 (m, 1H), 1.35 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ : 154.0, 149.8, 135.9, 134.9, 129.3, 127.2, 126.9, 126.7, 125.7, 125.0, 124.4, 114.4, 113.5, 106.3, 34.0, 24.0. HRMS (ESI) m/z calcd for $C_{20}H_{19}N_2S^+$ [M+H]⁺: 319.12634, found 319.12592.

4-((4-(Tert-butyl)phenyl)thio)pyrrolo[1,2-a]quinoxaline (3e): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole 1a (17 mg, 0.10 mmol) and 1,2-bis(4-(tert-butyl)phenyl)disulfane 2e (33.01 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 24 mg, 71% yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.89 (dd, J = 2.5, 1.1 Hz, 1H), 7.81–7.74 (m, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.46-7.41 (m, 1H), 7.39-7.33 (m, 1H), 6.97 (dd, J = 4.0, 1.1 Hz, 1H), 6.88–6.83 (m, 1H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ : 154.0, 152.0, 135.9, 134.6, 129.3, 126.9, 126.7, 126.1, 125.5, 125.0, 124.5, 114.4, 113.6, 106.3, 34.8, 31.3. HRMS (ESI) m/z calcd for C₂₁H₂₁N₂S⁺ [M+H]⁺: 333.14199, found 333.14154.

4-((4-Fluorophenyl)thio)pyrrolo[1,2-a]quinoxaline (3f): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-bis(4-fluorophenyl)disulfane **2f** (25.40 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 24 mg, 82% yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.90 (dd, J = 2.7, 1.2 Hz, 1H), 7.78

(dd, J = 8.2, 1.0 Hz, 1H), 7.72–7.67 (m, 3H), 7.46–7.40 (m, 1H), 7.38–7.32 (m, 1H), 7.17 (t, J = 8.7 Hz, 1H), 6.97 (dd, J = 4.0, 1.2 Hz, 1H), 6.86 (dd, J = 3.9, 2.8 Hz, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ : 164.3, 162.4, 153.5, 137.3 (d, C-F, ${}^{3}J_{C-F} = 35$ Hz), 137.3, 135.7, 129.2, 126.9, 126.8, 125.1, 124.2, 123.9, 123.9 (d, C-F, ${}^{2}J_{C-F} = 15$ Hz), 121.4, 116.3, 116.1, 114.6, 113.6, 113.6 (d, C-F, ${}^{1}J_{C-F} = 10$ Hz), 110.6, 106.1; ¹⁹F **NMR** (471 MHz, CDCl₃) δ : -110.0, -111.6, -112.1, -114.8. **HRMS (ESI)** m/z calcd for C₁₇H₁₂N₂FS⁺ [M+H]⁺: 295.06997, found 295.06964.

4-((4-Chlorophenyl)thio)pyrrolo[1,2-a]quinoxaline (3g): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole 1a (17 mg, 0.10 mmol) and 1,2-bis(4-chlorophenyl)disulfane 2g (28.60 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a white solid; 29 mg, 93% yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.91 (t, 1H), 7.80 (d, *J* = 8.1 Hz,

1H), 7.73 (d, 1H), 7.63 (d, J = 8.5 Hz, 2H), 7.47–7.41 (m, 3H), 7.37 (t, 1H), 6.96 (d, J = 4.0 Hz, 1H), 6.86 (t, 1H). ¹³C NMR (126 MHz, CDCl₃) δ : 154.0, 136.1, 135.7, 135., 129.3, 129.2, 127.5, 127.0, 126.9, 125.2, 124.3, 114.7, 113.7, 113.6, 106.3; **HRMS (ESI)** m/z calcd for C₁₇H₁₂N₂ClS⁺ [M+H]⁺: 311.04042, found 311.03989.

4-((4-Bromophenyl)thio)pyrrolo[1,2-a]quinoxaline (3h): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-bis(4-bromophenyl)disulfane **2h** (37.38 mg, 0.10 mmol) and was purified by column chromat ography (250:1 petroleum ether: ethyl acetate) to give a white solid; 26 mg, 72% yield; ¹H NMR (500 MHz, Chloroform-*d*) δ : 7.89 (dd, *J* = 2.5, 1.0 Hz, 1H), 7.80 –

7.77 (m, 1H), 7.69 (dd, J = 8.0, 1.1 Hz, 1H), 7.56 – 7.51 (m, 4H), 7.45 – 7.41 (m, 1H), 7.37 – 7.32 (m, 1H), 6.92 (dd, J = 4.0, 1.0 Hz, 1H), 6.84 – 6.82 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ : 152.8, 136.3, 135.7, 132.1, 129.3, 128.2, 127.0, 126.9, 125.2, 124.3, 123.2, 114.6, 113.7, 113.6, 106.3. **HRMS (ESI)** m/z calcd for C₁₇H₁₂N₂BrS⁺ [M+H]⁺: 354.98990, found 354.98935.

4-((2-Fluorophenyl)thio)pyrrolo[1,2-a]quinoxaline (3i): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-bis(2-fluorophenyl)disulfane **2i** (25.40 mg, 0.10 mmol) and was purified by column chromato graphy (250:1 petroleum ether: ethyl acetate) to give a white solid; 21 mg, 70 % yield; ¹H **NMR** (500 MHz, Chloroform-d) δ : 7.88 (dd, J = 2.6, 1.2 Hz, 1H), 7.76 (dd, 1H), 7.68 (td,

J = 7.3, 1.6 Hz, 1H), 7.63 (dd, J = 8.1, 1.3 Hz, 1H), 7.46 (m, J = 9.3, 5.1, 1.7 Hz, 1H), 7.42–7.38 (m, 1H), 7.33–7.29 (m, 1H), 7.25–7.18 (m, 2H), 6.96 (dd, J = 4.0, 1.1 Hz, 1H), 6.86–6.79 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ: 164.0, 162.0, 152.2, 137.2, 135.8, 131.5, 131.5 (d, C-F, ${}^{I}J_{C-F} = 35$ Hz), 129.3, 126.9, 126.8, 125.1, 124.5, 124.5(d, C-F, ${}^{2}J_{C-F} = 15$ Hz), 124.2, 116.1, 116.0, 114.5, 113.6(d, C-F, ${}^{3}J_{C-F} = 35$ Hz), 113.6, 105.4, 106.1. ¹⁹F NMR (471 MHz, CDCl₃) δ: -105.3. HRMS (ESI) m/z calcd for C₁₇H₁₂N₂FS⁺ [M+H]⁺: 295.06997, found 295.06949.

4-((2-Chlorophenyl)thio)pyrrolo[1,2-a]quinoxaline (3j): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2 -bis-(2-chlorophenyl)disulfane **2j** (28.60 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a white solid; 18 mg, 58 % yield; ¹H NMR (500 MHz, Chloroform-*d*) δ : 7.90 (dd, J = 2.7, 1.3 Hz, 1H), 7.81 – 7.75

(m, 2H), 7.71 (dd, J = 8.0, 1.4 Hz, 1H), 7.57 (dd, J = 8.0, 1.4 Hz, 1H), 7.44 (td, J = 8.2, 7.7, 1.5 Hz, 1H), 7.41 – 7.31 (m, 3H), 6.99 (dd, J = 4.0, 1.3 Hz, 1H), 6.89 – 6.85 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ : 152.2, 138.6, 136.8, 135.8, 130.2, 130.1, 129.4, 128.8, 127.1, 127.0, 126.9, 125.1, 124.5, 114.6, 113.7, 113.6, 106.4. **HRMS** (**ESI**) m/z calcd for C₁₇H₁₂N₂ClS⁺ [M+H]⁺: 311.04042, found 311.03989.

4-(o-tolylthio)pyrrolo[1,2-a]quinoxaline (3k): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-di-o-tolyldisulfane **2k** (24.60 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 19 mg, 64 % yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.82 (dd, *J* = 2.6, 1.2 Hz, 1H), 7.73–7.67 (m, 2H), 7.49–7.45 (m, 2H),

7.38–7.34 (m, 1H), 7.32–7.26 (m, 2H), 7.19 (d, J = 7.6 Hz, 1H), 6.89 (dd, J = 4.0, 1.2 Hz, 1H), 6.77 (dd, J = 3.9, 2.8 Hz, 1H), 2.36 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ : 153.8, 138.8, 135.9, 135.2, 131.9, 129.6, 129.4, 128.9, 128.8, 126.9, 126.8, 125.1, 124.6, 114.5, 113.6, 113.6, 106.5, 21.4. **HRMS (ESI)** m/z calcd for C₁₈H₁₅N₂S⁺ [M+H]⁺: 291.09504, found 291.09451.

4-((2,4-Dimethylphenyl)thio)pyrrolo[1,2-a]quinoxaline (31): The title compound was prepared from N-(2-(1H-pyrrol-1-yl)phenyl)methanimine **1a** (17 mg, 0.10 mmol) and 1,2-bis(2,4-dimethylphenyl)disulfane **2l** (27.40 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 19 mg, 64 % yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.88 (dd, J = 2.6, 1.1 Hz,

1H), 7.77 (dd, 1H), 7.72 (dd, J = 8.0, 1.3 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.43–7.39 (m, 1H), 7.36–7.32 (m, 1H), 7.24 (s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 6.97 (dd, J = 4.0, 1.1 Hz, 1H), 6.87–6.84 (m, 1H), 2.47 (d, J = 19.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ : 153.9, 143.1, 139.8, 136.5, 136.0, 129.2, 127.4, 126.8, 126.5, 125.0, 124.5, 124.4, 114.3, 113.6, 113.5, 106.1, 21.4, 21.1. HRMS (ESI) m/z calcd for C₁₉H₁₇N₂S⁺ [M+H]⁺: 305.11069, found 305.11008.

4-((2,5-Dimethylphenyl)thio)pyrrolo[1,2-a]quinoxaline (3m): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-bis(2,5-dimethylphenyl)disulfane **2m** (27.40 mg, 0.10 mmol) and was purified by columnchrom atography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 24 mg, 77 % yield; ¹H NMR (500 MHz, Chloroform-d) δ : 7.83 (dd, J = 2.7, 1.2 Hz, 1H), 7.73 (d, J =

8.1 Hz, 1H), 7.65 (dd, J = 8.1, 1.3 Hz, 1H), 7.49 (s, 1H), 7.38–7.34 (m, 1H), 7.30–7.26 (m, 1H), 7.22 (d, J = 7.7 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 6.89 (dd, J = 4.0, 1.2 Hz, 1H), 6.81–6.76 (m, 1H), 2.35 (d, J = 26.0 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ : 153.7, 140.0, 136.8, 136.0, 135.9, 130.5, 130.4, 129.3, 127.6, 126.8, 126.5, 125.0, 124.4, 114.3, 113.5, 113.5, 106.1, 20.9, 20.6. HRMS (ESI) m/z calcd for C₁₉H₁₇N₂S⁺ [M+H]⁺: 305.11069, found 305.11020.

4-((3,5-Dichlorophenyl)thio)pyrrolo[1,2-a]quinoxaline (3n): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-bis(3,5-dichlorophenyl)disulfane **2n** (35.39 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a white solid; 28 mg, 80 % yield; ¹H NMR (500 MHz, Chloroform-*d*) δ :7.88 (dd, J = 2.6, 1.1 Hz,

1H), 7.78 – 7.75 (m, 1H), 7.57 (dd, J = 8.1, 1.2 Hz, 1H), 7.49 (d, J = 8.1 Hz, 2H), 7.41 – 7.37 (m, 1H), 7.36 – 7.32

(m, 1H), 7.31 - 7.27 (m, 1H), 6.95 (dd, J = 4.0, 1.1 Hz, 1H), 6.83 (dd, J = 3.9, 2.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ :151.3, 142.2, 135.8, 131.0, 129.3, 128.6, 127.8, 126.9, 126.7, 125.0, 124.0, 114.5, 113.6, 105.8. **HRMS** (ESI) m/z calcd for C₁₇H₁₁N₂Cl₂S⁺ [M+H]⁺: 345.00145, found 345.00082.

4-((2,4-Difluorophenyl)thio)pyrrolo[1,2-a]quinoxaline (30): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-bis(2,4-difluorophenyl)disulfane **2o** (29.00 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 25 mg, 79 % yield. ¹H NMR (500 MHz, Chloroform-*d*) δ : 7.90 – 7.87 (m, 1H),

7.77 (d, J = 8.1 Hz, 1H), 7.67 (dt, J = 24.7, 7.7 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.05 – 6.99 (m, 3H), 6.89 – 6.84 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ : 165.3(d, C-F, ${}^{1}J_{C-F} = 50$ Hz), 165.2, 164.6(d, C-F, ${}^{2}J_{C-F} = 50$ Hz), 164.5, 163.3(d, C-F, ${}^{3}J_{C-F} = 50$ Hz), 163.2, 162.6(d, C-F, ${}^{4}J_{C-F} = 50$ Hz), 162.5, 151.9, 138.6(d, C-F, ${}^{5}J_{C-F} = 5$ Hz), 138.6, 138.5,(d, C-F, ${}^{6}J_{C-F} = 5$ Hz) 138.5, 135.7, 129.2, 126.6, 126.8, 125.1, 124.0, 114.6, 113.6(d, C-F, ${}^{7}J_{C-F} = 35$ Hz), 113.6, 112.1(d, C-F, ${}^{8}J_{C-F} = 15$ Hz), 112.0, 111.9, 111.9, 111.4(d, C-F, ${}^{9}J_{C-F} = 15$ Hz), 111.4, 111.3(d, C-F, ${}^{10}J_{C-F} = 15$ Hz), 111.2, 106.0, 104.9, 104.7(t, C-F, ${}^{1}J_{C-F} = 105$ Hz), 104.5, 87.1, 67.3, 32.6, 29.7, 24.6; ¹⁹**F NMR** (471 MHz, CDCl₃) δ : -100.14, -100.16, -103.84, -103.86, -106.80, -106.82, -109.82. **HRMS (ESI)** m/z calcd for C₁₇H₁₁N₂F₂S⁺ [M+H]⁺: 313.06055, found 313.06003.

4-(Pyridin-4-ylthio)pyrrolo[1,2-a]quinoxaline (3p): The title compound was prepared from 1-(2-isocyanophenyl)-1*H*-pyrrole **1a** (17 mg, 0.10 mmol) and 1,2-di(pyr idin-4-yl)disulfane **2p** (22 mg, 0.10 mmol) and was purified by column chromatography (250:1 petroleum ether: ethyl acetate) to give a white solid; 19 mg, 67 % yield; ¹H NMR (500 MHz, Chloroform-*d*) δ : 8.55 (d, *J* = 5.3 Hz, 2H), 7.96 (dd, *J* = 2.7, 1.2 Hz, 1H), 7.86 –

7.80 (m, 2H), 7.57 – 7.49 (m, 3H), 7.45 – 7.40 (m, 1H), 6.97 (dd, J = 4.0, 1.2 Hz, 1H), 6.87 (dd, J = 4.0, 2.8 Hz, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ : 150.1, 149.5, 142.6, 135.5, 129.6, 127.9, 127.1, 126.1, 125.5, 125.0, 115.2, 114.1, 113.8, 107.1. **HRMS (ESI)** m/z calcd for C₁₆H₁₂N₃S⁺ [M+H]⁺: 278.07464, found 278.07425.

4-(phenylselanyl)pyrrolo[1,2-a]quinoxaline (3r): The title compound was prepared from 2-isocyano-1,1'-biphenyl **1a** (17 mg, 0.10 mmol) and 1,2-diphenyldisefane **2q** (31.20 mg) and was purified by column chromatography (500:1 petroleum ether: ethyl acetate) to give a pale yellow solid; 8 mg, 27 % yield; ¹H NMR (500 MHz, Chloroform-*d*) δ :7.86 (dd, J = 2.7, 1.3 Hz, 1H), 7.77 – 7.73 (m, 4H), 7.42 (td, J = 8.5,

7.9, 1.5 Hz, 1H), 7.38 – 7.32 (m, 4H), 6.82 (dd, J = 4.0, 1.3 Hz, 1H), 6.78 (dd, J = 4.0, 2.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ : 151.58, 136.0, 135.5, 129.6, 129.2, 128.4, 127.2, 127.2, 127.1, 126.2, 125.1, 114.5, 113.6, 107.7. HRMS (ESI) m/z calcd for C₁₇H₂₃NSe⁺ [M+H]⁺: 319.02980, found 319.10059.

2-(phenylthio)benzo[d]thiazole (3t): The title compound was prepared from (2-isocyanophenyl)(methyl)sulfane **5a** (14.90 mg, 0.10 mmol) and 1,2-Dipheny ldisulfane **2a** (21.80 mg) and was purified by column chromatography (50:1 petroleum ether: ethyl acetate) to give a pale yellow oil; 18 mg, 73 % yield; ¹H NMR (500 MHz, Chloroform-*d*) δ :7.91 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.75 – 7.71 (m, 2H), 7.65 – 7.61 (m, 1H), 7.52 – 7.44 (m, 3H),

7.40 (ddd, J = 8.4, 7.3, 1.2 Hz, 1H), 7.25 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.6, 154.0, 135.6, 135.4, 130.5, 130.0, 126.2, 124.4, 122.0, 120.9. **HRMS (ESI)** m/z calcd for C₁₃H₁₀NS₂⁺ [M+H]⁺: 244.02491, found 244.02405.

IX. ¹H NMR, and ¹³C NMR and ¹⁹F NMR Spectrum of All Products.

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for 3a (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for 3b (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **3c** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **3d** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for 3e (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) 13 C NMR (101 MHz) and ¹⁹F NMR(471 MHz) for **3f** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **3h** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) 13C NMR (101 MHz) and ¹⁹F NMR(471 MHz) for **3i** (using CDCl₃ as solvent)

 $\begin{array}{c} 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.75\\ 7.77\\ 7.75\\$

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for 3j (using CDCl₃ as solvent)

ĊΙ 3j

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **3k** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **31** (using CDCl₃ as solvent)

S24

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **3n** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) 、 ¹³C NMR (101 MHz) and ¹⁹F NMR(471 MHz) for **30** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for **3p** (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for 3q (using CDCl₃ as solvent)

The ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) for 3s (using CDCl₃ as solvent)

