Rhodium-Catalyzed Isomerization of Homoallylic Alcohols with a Tethered Carbonyl Group: Pathway to 1,6-Diketones

Shuang Peng†, Tong Su†, Xuan Yang, Jia-Jie Li, Jie Wan, Hai-Liang Ni, Peng Cao, Ping Hu, Bi-Qin Wang and Bin Chen*

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China

*E-mail: <u>binchen@sicnu.edu.cn</u>

Table of Contents

I. General Information	S2
II. Preparation of substrates	S3
III. Optimization of Reaction Conditions	S5
IV.General Procedure for the Catalytic Reaction	S9
V. The Utility of 1,6-Diketone	S31
VI. Preliminary Asymmetric Studies	S34
VII. Mechanism Studies.	S41
VIII.Crystal data of 2v	S45
IX. References	S47
Spectroscopic Data (NMR Spectrum)	S48

I. General Information

All solvents used in reactions were dried and distilled in appropriate method. Solvents employed for column chromatography were purchased in technical grade quality without distillation before using. The experimental reagent section uses [Rh(cod)Cl]₂, [Rh(cod)₂]BF₄, Cp₂ZrHCl, Ni(cod)₂ purchased from Laajoo, and all the above reagents are stored under nitrogen in glovebox. Bis(cyclopentadienyl)zirconium dichloride, Isoprene 99% (stabilized with TBC), Benzaldehyde, Cesium carbonate, Styrene, benezylmagnesium bromide (1.0 M in THF) and Xanthhos purchased from Energy Chemical. THF, Tol., DCM, Na₂SO₄, purchased from Chengdu Kelong Chemical Reagent Factory, and other commercial reagents purchased from Alfa Aesar, Aladdin, TCI, J&K, Energy Chemical, and Bide Pharmatech Co., Ltd. Column chromatography was performed using glass columns with Silica Gel (Haiyang, 300-400 mesh). Ethyl acetate purchased from Shanghai Exploration Platform. The deuterated reagents used in nuclear magnetic testing are CDCl₃ with a purity of 99.8% using Energy and Leyan Chemical.

All unknown compounds starting materials and products were characterized by ¹H NMR, ¹³C NMR, and high-resolution mass spectrometry, IR. The known desired products were characterized by ¹H NMR, ¹³C NMR. NMR spectra were obtained on a Bruker 600 MHz spectrometer (operating at 600 MHz for ¹H NMR, 151 MHz for ¹³C NMR, 564 MHz for ¹⁹F NMR) or Varian 400 MHz spectrometer (operating at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR). Data for ¹H, ¹³C, ¹⁹F are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiple, br = broad), integration, and coupling constant (Hz). High-resolution mass spectra (HRMS) were obtained using a quadrupole time-of-flight (Q-TOF) mass spectrometer with an electronspray ionization (ESI) or Electron Impact ionization (EI) resource. Melting points were

determined using a melting point apparatus. Single-crystal Xray diffraction data of the compound was collected at room temperature on Japan Rigku xtalab synergy diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.54$ nm). Using Olex2, the structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXH-1997 refinement package using Least Squares minimisation. Melting points range were determined in a X-4 micromelting point instrument (made in Shanghai, China). Medium-sized screw-cap test tubes (8 mL) were used for all catalytic reaction: Fisher 13 × 100 mm tubes.

II. Preparation of substrates

Preparation of alkyl acyl zirconium¹:

$$Zr(Cp)_2HCI+ R \xrightarrow{CO, DCM} R \xrightarrow{O} Zr(Cp)_2CI$$

Under an argon atmosphere, to a suspension of Cp_2ZrHCl (1.0 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (4 mL) was added alkene (2 mmol, 2.0 equiv) and the mixture was stirred for 0.5 h at ambient temperature. After that, the mixture was stirred under CO atmosphere (CO balloon) for 2 h, the solution was concentrated under vacuum to dryness to give the desired Acylzirconocene chloride as a solid. (The acylzirconocene chloride (solid) was stable at low temperature under argon atmosphere) (This method was not applied to prepare benzoylzirconocene chloride.

Preparation of phenyl acyl zirconium²:

$$Cp_2ZrCl_2 +$$
 $MgBr CO, THF$
 $rt, overnight$
 $Zr(Cp)_2Cl$

A flame-dried Schlenk tube was charged with Cp₂ZrCl₂ (365 mg, 1.25 mmol, 1.25 equiv), evacuated, and backfilled with CO and added anhydrous THF (3 mL) at ambient temperature, and the phenylmagnesium bromide (1.0 mmol, 1.0 equiv) was added slowly to the suspension under a CO atmosphere (CO balloon). The reaction mixture was then stirred at ambient temperature for 4 h, after that, the solution was concentrated under vacuum to dryness to give product as a viscous solid.

Synthesis of ε -hydroxyl- β , γ -unsaturated ketone³:

$$\begin{array}{c} O \\ R^{1} \\ H \end{array} + \begin{array}{c} R^{2} \\ R^{3} \end{array} + \begin{array}{c} O \\ R^{4} \\ R^{4} \end{array} ZrCp_{2}Cl \end{array} \xrightarrow{\text{Ni(cod)}_{2} (5 \text{ mol } \%)} \\ 4 \\ A MS, THF, rt, 12h \end{array} \xrightarrow{\text{OH}} \begin{array}{c} R^{2} \\ R^{1} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{\text{OH}} \begin{array}{c} R^{2} \\ R^{4} \\ R^{3} \\ R^{3} \\ R^{4} \end{array}$$

In the glovebox, to a dry vial with a magnetic stir bar was added Ni(cod)₂ (5 mol %, 0.01 mmol, 2.7 mg) and 1 mL THF, then the solution was added 1,3-diene (1.0 mmol, 5.0 equiv), aldehyde (0.2 mmol, 1.0 equiv), 4Å molecular sieve (50 mg) and acylzirconocene chloride (0.4 mmol, 2.0 equiv) successively (Note:1,3-diene must be added firstly, acylzirconocene chlorideshould be added in solid phase). The vial was sealed, removed from the gloveboxand stirred at ambient temperature for 12 hours. The reaction was quenched by 5 mL HCl aqueoussolution (2 M), then extracted with EtOAc (3 x 10 mL), the combined organic solvents was removed under vacuo, and the residue was purified by column chromatography on silica gel to give the product.(TLC monitored by staining with phophomolibdic acid solution in ethanol) **tert-butyl (E)-4-(1-hydroxy-3-methyl-6-oxo-8-phenyloct-3-en-1-yl)benzoate (1m)**

According to the general procedure, the homoallylic alcohol 1m was isolated (petroleum ether/EtOAc = 5 : 1 v/v as the eluent solvent) as a colorless liquid (69.3 mg, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 6.9 Hz, 2H), 7.18 (t, *J* = 8.4 Hz, 3H), 5.39 (t, *J* = 6.9 Hz, 1H), 4.81 (dd, *J* = 8.9, 4.1 Hz, 1H), 3.13 (d, *J* = 7.1 Hz, 2H), 2.88 (d, *J* = 7.5 Hz, 2H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.46 - 2.33 (m, 2H), 1.61 (s, 3H), 1.59 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 208.0, 165.7, 148.9, 140.9, 135.9, 131.0, 129.5, 128.5, 128.4, 126.2, 125.5, 120.3, 81.0, 77.3, 77.1, 76.9, 71.0, 50.1, 43.9, 42.5, 29.8, 28.2, 16.5.

HRMS-ESI (m/z): Calcd for C₂₆H₃₂O₄Na [M+Na]⁺: 431.2193; found: 431.2198. **IR** (KBr): υ 3475, 2976,2928, 1708, 1610, 1489, 1373, 1113, 1020, 853 cm⁻¹.

III. Optimization of Reaction Conditions

Table S1: Optimization of Catalyst^a

6	NiBr ₂ (DME)	N.R.
7	Ni(cod) ₂	N.R.
8	RuCl ₂ (cod)	N.R.
9	[RuCl ₂ (p-cymene)] ₂	N.R.
10	$Cu(CN)_4(PF_6)$	N.R.

^aAll the reactions were performed with **1a** (0.1 mmol), Cat. (5 mol %), *rac*-BINAP (10 mol %) and CsOAc (40 mol %) in THF (1.0 mL) at 70 °C under N₂ atmosphere for 15 h. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

Table S2: Optimization of Ligand^a

^aAll the reactions were performed with **1a** (0.1 mmol), $[Rh(cod)Cl]_2$ (5 mol %), Ligand (10 mol %) and CsOAc (40 mol %) in THF (1.0 mL) at 70 °C under N₂ atmosphere for 15 h. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

Table S3: Optimization of Base^a

entry	base	yield of 2a (%) b
1	CsOAc	19
2	Cs ₂ CO ₃	50
3	K ₂ CO ₃	31
4	Na ₂ CO ₃	33
5	Ag ₂ CO ₃	15
6	NaO ^t Bu	N.D.
7	KO ^t Bu	N.D.
8	КОМе	N.D.
9	LiOMe	38
10	NaOH	N.D.
11	КОН	N.D.
12	DBU	trace

^aAll the reactions were performed with **1a** (0.1 mmol), $[Rh(cod)Cl]_2$ (5 mol %), Xantphos (10 mol %) and base (40 mol %) in THF (1.0 mL) at 70 °C under N₂ atmosphere for 15 h. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

Table S4: Optimization of Solvent^a

OH Me O 1a	[RhCl(cod)] ₂ (5 mol %) Xantphos (10 mol %) Cs ₂ CO ₃ (40 mol %) solvent (1.0 mL), 70 °C, 15 h	O Me O 2a
entry	solvent	yield of 2a (%) ^b
1	THF	48
2	MTBE	52
3	MeCN	35
4	toluene	55

5	xylene	40
6	DME	49
7	1,4-Dioxane	45
8	DMF	24
9	DCE	37

^aAll the reactions were performed with **1a** (0.1 mmol), $[Rh(cod)Cl]_2$ (5 mol %), Xantphos (10 mol %) and Cs₂CO₃ (40 mol %) in solvent (1.0 mL) at 70 °C under N₂ atmosphere for 15 h. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

OH Me O 1a	[RhCl(cod)] ₂ (5 mo I%) Xantphos (10 mol %) Cs ₂ CO ₃ (40 mol %) toluene (1.0 mL), 15 h	► C Me O 2a
entry	temp (°C)	yield of 2a (%) ^b
1	60	trace
2	70	51
3	80	72
4	90	80
5	100	86
6	110	69

Table S5: Optimization of Temperature^a

^aAll the reactions were performed with **1a** (0.1 mmol), $[Rh(cod)Cl]_2$ (5 mol %), Xantphos (10 mol %) and Cs_2CO_3 (40 mol %) in toluene (1.0 mL) under N₂ atmosphere for 15 h. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

$\begin{array}{c} \begin{array}{c} \text{OH} & \text{Me} \\ & \text{OH} & \text{Me} \\ & \text{OH} & \text{In a} \end{array} \end{array} \xrightarrow[\text{RhCl(cod)]_2 (5 mol \%)} \\ & \text{In a} \\ \begin{array}{c} \text{Solution of the Annount of Base} \\ & \text{In a} \\ \begin{array}{c} \text{RhCl(cod)]_2 (5 mol \%)} \\ \text{Solution of \%)} \\ \text{Solution of \%)} \\ \text{Solution of \%)} \\ \text{Solution of \%)} \\ \text{Ohermitian of \%)} \\ \text{Ohermit$

Table S6: Optimization of the Amount of Base^a

entry ^a	Х	yield of 2a (%) ^b
1	10	36
2	20	80
3	30	95
4	40	86
5	50	84
6	60	72

^aAll the reactions were performed with **1a** (0.1 mmol), $[Rh(cod)Cl]_2$ (5 mol %), Xantphos (10 mol %) and Cs₂CO₃ (**x** mol %) in toluene (1.0 mL) at 100 °C under N₂ atmosphere for 15 h. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

Table S7: Optimization of Time^a

OH Me O 1a	[RhCl(cod)] ₂ (5 mol %) Xantphos (10 mol %) Cs ₂ CO ₃ (30 mol %) toluene (1.0 mL), 100 °C, t	O Me O 2a
entry ^a	time (h)	yield of 2a (%) ^b
1	12	88
2	15	97
3	18	96
4	21	97

^aAll the reactions were performed with **1a** (0.1 mmol), $[Rh(cod)Cl]_2$ (5 mol %), Xantphos (10 mol %) and Cs₂CO₃ (30 mol %) in toluene (1.0 mL) at 100 °C under N₂ atmosphere. ^bThe yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard.

IV.General Procedure for the Catalytic Reaction

Rhodium-Catalyzed Isomerization of Homoallylic Alcohols with a Tethered Carbonyl Group: Pathway to 1,6-Diketones

General procedures: In the glovebox, to a dry vial with a magnetic stir bar was added $[Rh(cod)Cl]_2$ (0.005 mmol, 2.4 mg, 0.05 equiv), Xantphos (0.01 mmol, 5.8 mg, 0.1 equiv), and homoallylic alcohol (0.1 mmol, 1.0 equiv) and 1 mL of toluene was added, then was added Cs_2CO_3 (0.03 mmol, 9.8 mg, 0.3 equiv). the vial was sealed by a cap stopper, removed from the glovebox and stirred at 100 °C for 15 hours. After the reaction is completed, the solvent was removed under vacuum, and the residue was purified by column chromatography to give 1,6-diketone.

3-methyl-1,8-diphenyloctane-1,6-dione (2a)

According to the general procedure, the 1,6-dione **2a** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a white solid (28.7 mg, 93% yield, mp = 41.2 °C - 41.8 °C.).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.56 – 7.54 (m, 1H), 7.48 – 7.45 (m, 2H), 7.30 – 7.25 (m, 2H), 7.21 – 7.19 (m, 3H), 2.93 – 2.88 (m, 3H), 2.76 – 2.72 (m, 3H), 2.50 – 2.38 (m, 2H), 2.17 – 2.14 (m, 1H), 1.73 – 1.68 (m, 1H), 1.55 – 1.49 (m, 1H), 0.95 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 210.0, 199.8, 141.1, 137.2, 133.0, 128.63, 128.56, 128.51, 128.4, 128.3, 128.1 126.1, 45.7, 44.3, 40.8, 30.7, 29.9, 29.2, 19.9.
HRMS-ESI (m/z): Calcd for C₂₁H₂₄O₂Na [M+Na]⁺: 331.1669; found: 331.1680.
IR (KBr): υ 3435, 3191,1715, 1682, 1600, 1371, 1261, 1011 cm⁻¹.

3-methyl-8-phenyl-1-(o-tolyl)octane-1,6-dione (2b)

According to the general procedure, the 1,6-dione **2b** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (21.6 mg, 67% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.7 Hz, 1H), 7.39 – 7.28 (m, 1H), 7.26 – 7.19 (m, 4H), 7.18 – 7.08 (m, 3H), 2.88 – 2.81 (m, 3H), 2.77 – 2.66 (m, 3H), 2.52 – 2.22 (m, 5H), 2.15 – 2.05 (m, 1H), 1.68 – 1.55 (m, 1H), 1.49 – 1.42 (m, 1H), 0.93 (d, J = 6.7 Hz, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 208.9, 203.1, 140.0, 137.4, 136.8, 130.9, 130.1, 127.5, 127.3, 125.1, 124.6, 47.8, 43.2, 39.7, 29.6, 28.8, 28.3, 20.2, 18.7.

HRMS-ESI (m/z): Calcd for C₂₂H₂₆O₂Na [M+Na]⁺: 345.1825; found: 345.1832.

IR (KBr): v 3803, 3306, 2962, 2366, 1709, 1675, 1447 cm⁻¹.

1-(2-chlorophenyl)-3-methyl-8-phenyloctane-1,6-dione (2c)

According to the general procedure, the 1,6-dione 2c was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (26.1 mg, 76% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.24 (m, 6H), 7.21 – 7.12 (m, 3H), 2.94 – 2.83 (m, 3H), 2.78 – 2.71 (m, 3H), 2.48 – 2.35 (m, 2H), 2.12 – 2.09 (m, 1H), 1.71 – 1.61 (m, 1H), 1.55 – 1.43 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 203.1, 141.1, 139.8, 131.6, 130.6, 128.8, 128.5, 128.3, 127.0, 126.1, 50.1, 44.3, 40.7, 30.4, 29.8, 29.2, 19.7.

HRMS-ESI (m/z): Calcd for C₂₁H₂₃O₂ClNa [M+Na]⁺: 365.1279; found: 365.1305. **IR** (KBr):υ 3067, 1709, 1595, 1502, 1368, 1069 cm⁻¹.

3-methyl-8-phenyl-1-(m-tolyl)octane-1,6-dione (2d)

According to the general procedure, the 1,6-dione **2d** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (23.2 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.67 (m, 2H), 7.38 – 7.32 (m, 2H), 7.32 – 7.22 (m, 2H), 7.20 – 7.11 (m, 3H), 2.93 – 2.85 (m, 3H), 2.77 – 7.67 (m, 3H), 2.52 – 2.35 (m, 5H), 2.15 – 2.08 (m, 1H), 1.71 – 1.63 (m, 1H), 1.56 – 1.44 (m, 1H), 0.94 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 210.0, 200.1, 141.1, 138.4, 137.3, 133.8, 128.6, 128.5, 128.3, 126.1, 125.3, 45.8, 44.3, 40.8, 30.7, 29.8, 29.2, 21.4, 19.9.

HRMS-ESI (m/z): Calcd for C₂₂H₂₆O₂Na [M+Na]⁺: 345.1825; found: 345.1832.

IR (KBr): v 3823, 3061, 2922, 1953, 1715, 1677, 1494 cm⁻¹.

1-(3-fluorophenyl)-3-methyl-8-phenyloctane-1,6-dione (2e)

According to the general procedure, the 1,6-dione 2e was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (25.5 mg, 78% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.70 (m, 1H), 7.63 – 7.54 (m, 1H), 7.45 – 7.37 (m, 1H), 7.28 – 7.19 (m, 3H), 7.18 – 7.09 (m, 3H), 2.91 – 2.82 (m, 3H), 2.77 – 2.67

(m, 3H), 2.51 – 2.35 (m, 2H), 2.15 – 2.10 (m, 1H), 1.71 – 1.63 (m, 1H), 1.55 – 1.42 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 198.5, 163.7, 162.1, 141.1, 139.3, 130.3, 128.4
(d, *J* = 15.2 Hz), 126.1, 123.8, 120.1, 120.0, 114.9, 114.8, 45.9, 44.3, 40.8, 30.6, 29.8, 29.1, 19.8.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -111.81.

HRMS-ESI (m/z): Calcd for C₂₁H₂₃FO₂Na [M+Na]⁺: 349.1574; found: 349.1584. **IR** (KBr):υ 3407, 3073, 2966, 1953, 1715, 1682, 1490 cm⁻¹.

1-(3-chlorophenyl)-3-methyl-8-phenyloctane-1,6-dione (2f)

According to the general procedure, the 1,6-dione **2f** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (29.1 mg, 85% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.28 – 7.24 (m, 2H), 7.19 – 7.16 (m, 3H), 2.93 – 2.87 (m, 3H), 2.77 – 2.73 (m, 3H), 2.49 – 2.36 (m, 2H), 2.15 – 2.10 (m, 1H), 1.72 – 1.61 (m, 1H), 1.54 – 1.40 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 198.4, 141.1, 138.8, 135.0, 133.0, 130.0, 128.5, 128.3, 128.2, 126.2, 126.1, 45.8, 44.3, 40.7, 30.6, 29.9, 29.1, 19.8.

HRMS-ESI (m/z): Calcd for C₂₁H₂₃O₂ClNa [M+Na]⁺: 365.1279; found: 365.1305. **IR** (KBr):υ 3845, 3673, 2963, 1714, 1683, 1571, 1212 cm⁻¹.

3-methyl-8-phenyl-1-(p-tolyl)octane-1,6-dione (2g)

According to the general procedure, the 1,6-dione 2g was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (23.2 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.29 – 7.24 (m, 4H), 7.22 – 7.17 (m, 3H), 2.94 – 2.83 (m, 3H), 2.81 – 2.63 (m, 3H), 2.50 – 2.38 (m, 5H), 2.15 – 2.06 (m, 1H), 1.73 – 1.60 (m, 1H), 1.55 – 1.42 (m, 1H), 0.93 (d, J = 6.7 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 210.1, 199.6, 143.8, 141.1, 134.8, 129.3, 128.5, 128.3, 128.2, 126.1, 53.5, 45.6, 44.3, 40.8, 30.7, 29.8, 29.3, 21.6, 19.9.
HRMS-ESI (m/z): Calcd for C₂₂H₂₆O₂Na [M+Na]⁺: 345.1825; found: 345.1832.
IR (KBr): v 3883, 3844, 3371, 3028, 2862, 1714, 1675, 1410 cm⁻¹.

1-(4-methoxyphenyl)-3-methyl-8-phenyloctane-1,6-dione (2h)

According to the general procedure, the 1,6-dione **2h** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (18.6 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.8 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.18 – 7.07 (m, 3H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H), 2.94 – 2.81 (m, 3H), 2.73 – 2.60 (m, 3H), 2.47 – 2.23 (m, 2H), 2.13 – 1.98 (m, 1H), 1.72 – 1.51 (m, 1H), 1.50 – 1.32 (m, 1H), 0.93 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 210.1, 198.4, 163.4, 141.1, 130.4, 128.5, 128.3, 126.1, 113.7, 55.5, 45.4, 44.3, 40.8, 30.8, 29.8, 29.4, 19.9.

HRMS-ESI (m/z): Calcd for C₂₂H₂₆O₃Na [M+Na]⁺: 361.1774; found: 361.1779. **IR** (KBr):υ 3881, 3782, 2961, 1709, 1668, 1593, 1252 cm⁻¹.

1-(4-chlorophenyl)-3-methyl-8-phenyloctane-1,6-dione (2i)

According to the general procedure, the 1,6-dione 2i was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (32.6 mg, 95% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.27 – 7.19 (m, 2H), 7.18 – 7.06 (m, 3H), 2.88 – 2.76 (m, 3H), 2.74 – 2.64 (m, 3H), 2.52 – 2.33 (m, 2H), 2.13 – 1.97 (m, 1H), 1.70 – 1.51 (m, 1H), 1.49 – 1.30 (m, 1H), 0.93 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 198.5, 141.1, 139.5, 135.5, 129.5, 128.9, 128.5, 128.3, 126.1, 45.7, 44.3, 40.8, 30.6, 29.8, 29.2, 19.8.

HRMS-ESI (m/z): Calcd for C₂₁H₂₃O₂ClNa [M+Na]⁺: 365.1279; found: 365.1305. **IR** (KBr):υ 3863, 3759, 3025, 2362, 1710, 1678 cm⁻¹.

1-(4-(tert-butyl)phenyl)-3-methyl-8-phenyloctane-1,6-dione (2j)

According to the general procedure, the 1,6-dione 2j was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (31.7 mg, 87% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 – 7.85 (m, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.28 –

7.25 (m, 2H), 7.19 – 7.18 (m, 3H), 2.93 – 2.87 (m, 3H), 2.79 – 2.73 (m, 3H), 2.50 – 2.38 (m, 2H), 2.17 – 2.13 (m, 1H), 1.69 – 1.68 (m, 1H), 1.51 – 1.50 (m, 1H), 1.35 (s, 9H), 0.94 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl3) δ 210.1, 199.5, 156.7, 141.1, 134.7, 128.5, 128.3, 128.1, 126.1, 125.6, 45.6, 44.3, 40.8, 35.1, 31.4, 31.1, 30.8, 29.8, 29.3, 19.9.

HRMS-ESI (m/z): Calcd for C₂₅H₃₂O₂K [M+K]⁺: 403.2034; found: 403.2030. **IR** (KBr):υ 3813, 3664, 2960, 1713, 1674, 1602, 1018 cm⁻¹.

4-(3-methyl-6-oxo-8-phenyloctanoyl)benzonitrile (2k)

According to the general procedure, the 1,6-dione **2k** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless solid (23.3 mg, 70% yield, mp = 79.4 °C - 80.2 °C.).

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 2H), 7.76 (d, *J* = 8.5 Hz, 2H), 7.28 – 7.19 (m, 2H), 7.18 – 7.08 (m, 3H), 2.96 – 2.85 (m, 3H), 2.76 – 2.58 (m, 3H), 2.53 – 2.35 (m, 2H), 2.13 – 1.99 (m, 1H), 1.72 – 1.63 (m, 1H), 1.55 – 1.40 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.8, 198.3, 141.0, 140.1, 132.6, 128.5, 128.3, 126.1, 118.0, 116.3, 46.0, 44.3, 40.7, 30.5, 29.8, 29.0, 19.7.

HRMS-ESI (m/z): Calcd for C₂₂H₂₃NO₂Na [M+Na]⁺: 356.1621; found: 356.1611.

IR (KBr):v 3063, 2965, 1947, 1714, 1685, 1499, 1284 cm⁻¹.

3-methyl-8-phenyl-1-(4-(trifluoromethyl)phenyl)octane-1,6-dione (2l)

According to the general procedure, the 1,6-dione **2l** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (31.2 mg, 83% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.28 - 7.25 (m, 2H), 7.19 - 7.16 (m, 3H), 2.98 - 2.86 (m, 3H), 2.84 - 2.71 (m, 3H), 2.52 - 2.36 (m, 2H), 2.14 - 2.11 (m, 1H), 1.70 - 1.69 (m, 1H), 1.55 - 1.44 (m, 1H), 0.94 (d, J = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.8, 198.8, 141.0, 139.8, 128.5, 128.45, 128.41, 128.34, 128.27, 126.14, 126.07, 125.72, 125.67, 46.0, 44.3, 40.7, 30.6, 29.8, 29.1, 19.8.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -63.08.

HRMS-ESI (m/z): Calcd for C₂₂H₂₃F₃O₂Na [M+Na]⁺: 399.1542; found: 399.1551. **IR** (KBr):υ 3838, 3005, 1703, 1687, 1367, 1124, 832 cm⁻¹.

tert-butyl 4-(3-methyl-6-oxo-8-phenyloctanoyl)benzoate(2m)

According to the general procedure, the 1,6-dione 2m was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (30.2 mg, 74% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.28 - 7.24 (m, 2H), 7.19 - 7.14 (m, 3H), 2.96 - 2.85 (m, 3H), 2.77 (dt, *J* = 24.3, 7.2 Hz, 3H), 2.52 - 2.35 (m, 2H), 2.13 (d, *J* = 6.4 Hz, 1H), 1.69 (dd, *J* = 14.3, 8.4 Hz, 1H), 1.61 (s, 9H), 1.54 – 1.44 (m, 1H), 0.94 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 208.83, 198.36, 163.83, 140.01, 138.97, 134.70, 128.63, 127.46, 127.29, 126.79, 125.07, 80.75, 45.02, 43.23, 39.71, 29.57, 28.79, 28.08, 27.11, 18.75.

HRMS-ESI (m/z): Calcd for C₂₆H₃₃O₄Na [M+Na]⁺: 431.2193; found: 431.2198. **IR** (KBr):υ 2963, 2963, 2357, 1703, 1260, 1092, 800, 688 cm⁻¹.

3-methyl-1-(naphthalen-1-yl)-8-phenyloctane-1,6-dione (2n)

According to the general procedure, the 1,6-dione 2n was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (24.7 mg, 69% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 6.6 Hz, 1H), 7.62 – 7.47 (m, 3H), 7.28 – 7.26 (m, 2H), 7.20 – 7.17 (m, 3H), 3.03 (dd, J = 16.0, 5.8 Hz, 1H), 2.93 – 2.82 (m, 3H), 2.73 (t, J = 7.7 Hz, 2H), 2.53 – 2.36 (m, 2H), 2.20 – 2.19 (m, 1H), 1.74 – 1.73 (m, 1H), 1.59 – 1.49 (m, 1H), 0.99 (d, J = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 204.3, 141.1, 136.5, 134.0, 132.5, 130.1, 128.5, 128.4, 127.9, 127.4, 126.5, 126.1, 125.7, 124.4, 49.4, 44.2, 40.8, 30.7, 29.9, 29.8, 19.9.
HRMS-ESI (m/z): Calcd for C₂₅H₂₆O₂Na [M+Na]⁺: 381.1825; found: 381.1831.
IR (KBr): υ 3057, 2963, 2862, 1949, 1717, 1668, 1367 cm⁻¹.

3-methyl-1-(naphthalen-2-yl)-8-phenyloctane-1,6-dione (20)

According to the general procedure, the 1,6-dione **20** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (26.5 mg, 74% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.06 – 7.97 (m, 2H), 7.95 – 7.83 (m, 2H), 7.63 – 7.50 (m, 2H), 7.28 – 7.24 (m, 2H), 7.20 – 7.16 (m, 3H), 3.05 (dd, *J* = 16.1, 5.8 Hz, 1H), 2.98 – 2.84 (m, 3H), 2.80 – 2.69 (m, 2H), 2.51 – 2.30 (m, 2H), 2.24 – 2.09 (m, 1H), 1.77 – 1.63 (m, 1H), 1.59 – 1.49 (m, 1H), 0.99 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 210.0, 199.8, 141.1, 135.6, 134.6, 132.6, 129.7, 129.6, 128.50, 128.49,128.46, 128.3, 127.8, 126.8, 126.1, 123.9, 45.8, 44.3, 40.6, 30.8, 29.8, 29.4, 19.9.

HRMS-ESI (m/z): Calcd for C₂₅H₂₆O₂Na [M+Na]⁺: 381.1825; found: 381.1831. **IR** (KBr):υ 3748, 3026, 2922, 2369, 1712, 1673, 1589, 1408 cm⁻¹.

3-methyl-8-phenyl-1-(3,4,5-trimethoxyphenyl)octane-1,6-dione (2p)

According to the general procedure, the 1,6-dione 2p was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (14.3 mg, 36% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.22 – 7.13 (m, 5H), 3.92 (s, 9H), 2.92 – 2.86 (m, 3H), 2.73 (dd, *J* = 15.7, 8.3 Hz, 3H), 2.52 – 2.37 (m, 2H), 2.14 (m, 1H), 1.74 – 1.66 (m, 1H), 1.54 – 1.44 (m, 1H), 0.94 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 208.9, 197.5, 152.1, 141.5, 140.0, 131.5, 127.5, 127.3, 125.1, 104.6, 59.9, 55.3, 44.5, 43.2, 39.8, 29.8, 28.8, 28.3, 18.8.

HRMS-ESI (m/z): Calcd for C₂₄H₃₀O₅Na [M+Na]⁺: 421.1985; found:421.1969. **IR** (KBr):υ 2935, 2358, 1709, 1583, 1411, 1124, 1003, 703 cm⁻¹.

1-(furan-2-yl)-3-methyl-8-phenyloctane-1,6-dione (2q)

According to the general procedure, the 1,6-dione 2q was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (19.4 mg, 65% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.56 (m, 1H), 7.28 – 7.24 (m, 2H), 7.17 – 7.16 (m, 4H), 6.55 – 6.50 (m, 1H), 2.90 – 2.87 (m, 2H), 2.75 – 2.71 (m, 3H), 2.66 – 2.60 (m, 1H), 2.49 – 2.37 (m, 2H), 2.12 – 2.07 (m, 1H), 1.72 – 1.64 (m, 1H), 1.57 – 1.51 (m, 1H), 0.93 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 189.0, 153.1, 146.4, 141.1, 128.5, 128.3, 126.1, 117.1, 112.2, 45.5, 44.3, 40.7, 30.7, 29.8, 29.4, 19.8.

HRMS-ESI (m/z): Calcd for C₁₉H₂₂O₃Na [M+Na]⁺: 321.1461; found: 321.1459. **IR** (KBr):υ 3733, 3027, 2868, 1712, 1668, 1459, 811 cm⁻¹.

3-methyl-8-phenyl-1-(thiophen-2-yl)octane-1,6-dione (2r)

According to the general procedure, the 1,6-dione 2r was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (22.3 mg, 71%)

yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 3.8 Hz, 1H), 7.63 (d, *J* = 4.7 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.19 – 7.16 (m, 3H), 7.14 – 7.11 (m, 1H), 2.92 – 2.82 (m, 3H), 2.73 – 2.67 (m, 3H), 2.44 – 2.36 (m, 2H), 2.20 – 2.09 (m, 1H), 1.73 – 1.65 (m, 1H), 1.56 – 1.47 (m, 1H), 0.95 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 192.7, 144.8, 141.1, 133.7, 131.9, 128.5, 128.3, 128.1, 126.1, 46.5, 44.3, 40.8, 30.7, 29.83, 29.76, 19.8.

HRMS-ESI (m/z): Calcd for C₁₉H₂₂O₂SNa [M+Na]⁺: 337.1233; found: 337.1245. **IR** (KBr):υ 3863, 2960, 1709, 1657, 1409, 751 cm⁻¹.

5-methyl-1,10-diphenyldecane-3,8-dione (2s)

According to the general procedure, the 1,6-dione **2s** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (29.6 mg, 88% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.27 (m, 4H), 7.26 (m, 6H), 2.89 – 2.87 (m, 4H), 2.74 – 2.68 (m, 4H), 2.41 – 2.29 (m, 3H), 2.20 (dd, *J* = 16.3, 7.7 Hz, 1H), 1.99 – 1.91 (m, 1H), 1.58 – 1.51 (m, 1H), 1.41 – 1.34 (m, 1H), 0.83 (d, *J* = 6.7 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 209.9, 209.6, 141.1, 128.5, 128.3, 126.1, 50.2, 44.8, 44.3, 40.7, 30.4, 29.8, 29.7, 28.6, 19.7.

HRMS-ESI (m/z): Calcd for C₂₃H₂₈O₂Na [M+Na]⁺: 359.1982; found: 359.1980. **IR** (KBr):υ 3882, 3732, 2920, 1951, 1710, 1451 cm⁻¹.

6-methyl-1-phenylundecane-3,8-dione (2t)

According to the general procedure, the 1,6-dione 2t was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (15.4 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 7.19 – 7.16 (m, 3H), 2.89 (t, *J* = 7.5 Hz, 2H), 2.72 (t, *J* = 7.5 Hz, 2H), 2.39 – 2.30 (m, 4H), 2.21 (dd, *J* = 16.2, 7.7 Hz, 1H), 1.97 – 1.94 (m, 1H), 1.62 – 1.53 (m, 4H), 1.44 – 1.35 (m, 1H), 0.96 – 0.82 (m, 6H)

¹³**C NMR** (151 MHz, CDCl₃) δ 210.7, 210.0, 141.1, 128.5, 128.3, 126.1, 50.0, 45.3, 44.3, 40.7, 30.5, 29.8, 28.7, 19.7, 17.2, 13.8.

HRMS-ESI (m/z): Calcd for C₁₈H₂₆O₂Na [M+Na]⁺: 297.1825; found: 297.1828. **IR** (KBr):υ 3784, 3335, 3027, 2868, 1712, 1501 cm⁻¹.

1-cyclohexyl-3-methyl-8-phenyloctane-1,6-dione (2u)

According to the general procedure, the 1,6-dione 2u was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (17.6 mg, 56% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.20 – 7.16 (m, 3H), 2.90 – 2.86 (m, 2H), 2.75 – 2.70 (m, 2H), 2.42 – 2.22 (m, 5H), 2.00 – 1.92 (m, 1H), 1.84 – 1.74 (m, 4H), 1.61 – 1.50 (m, 1H), 1.44 – 1.36 (m, 1H), 1.34 – 1.11 (m, 6H), 0.83 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 212.6, 209.0, 140.1, 127.5, 127.3, 125.1, 50.2, 46.9, 43.2, 39.8, 29.5, 28.8, 27.39, 27.37, 27.31, 24.8, 24.7, 24.6, 18.7.

HRMS-ESI (m/z): Calcd for C₂₁H₃₀O₂Na [M+Na]⁺: 337.2138; found: 337.2146. **IR** (KBr):υ 3027, 2963, 2851, 1707, 1603, 1495, 1409, 1095 cm⁻¹.

(8S,9S,10R,13R,14S)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl 4-(1-hydroxy-3-methyl-6-oxo-8phenyloctyl)benzoate (2v)

According to the general procedure, the 1,6-dione 2v was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless solid (30.3 mg, 42% yield, mp = 80.2 °C - 80.8 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 2H), 7.95 – 7.81 (m, 2H), 7.21 – 7.19 (m, 2H), 7.12 – 7.09 (m, 3H), 5.35 – 5.35 (m, 1H), 4.86 – 4.74 (m, 1H), 2.90 – 2.78 (m, 3H), 2.69 – 2.64 (m, 3H), 2.38 – 2.35 (m, 3H), 1.99 – 1.40 (m, 16H), 1.26 – 1.21 (m, 3H), 1.17 – 0.90 (m, 15H), 0.86 – 0.84 (m, 5H), 0.82 – 0.77 (m, 6H), 0.62 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.8, 199.3, 165.1, 141.1, 140.3, 139.5, 134.5, 129.8, 128.5, 128.3, 127.9, 126.1, 123.0, 75.2, 56.7, 56.2, 50.1, 46.1, 44.3, 42.3, 40.8, 39.8, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 32.0, 30.6, 29.8, 29.1, 28.3, 28.1, 28.0, 24.3, 23.9, 22.9, 22.6, 21.1, 19.8, 19.4, 18.7, 11.9.

HRMS-ESI (m/z):Calcd for C₄₉H₆₈O₄Na [M+Na]⁺: 743.5010; found: 743.5015. **IR** (KBr):υ 3851, 3070, 2965, 1718, 1682, 1460, 1112 cm⁻¹.

1,8-diphenyloctane-1,6-dione (2w)

According to the general procedure, the 1,6-dione **2w** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless solid (25.9 mg, 88% yield, mp = 79.2 °C - 80.0 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.51 – 7.46 (m, 2H), 7.30 – 7.25 (m, 2H), 7.22 – 7.17 (m, 3H), 2.97 (t, *J* = 5.5 Hz, 2H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.45 (t, *J* = 5.5 Hz, 2H), 1.76 – 1.62 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 209.9, 200.0, 141.1, 137.0, 133.0, 128.6, 128.5, 128.3, 128.0, 126.1, 44.3, 42.8, 38.3, 29.8, 23.7, 23.4.

HRMS-ESI (m/z): Calcd for C₂₀H₂₂O₂Na [M+Na]⁺: 317.1512; found: 317.1515. **IR** (KBr):υ 3747, 2932, 1715, 1679, 1499, 1449, 1027 cm⁻¹.

1,3,8-triphenyloctane-1,6-dione (2x)

According to the general procedure, the 1,6-dione 2x was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless solid (26.7 mg, 72% yield, mp = 45.2 °C - 46.0 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 7.3 Hz, 2H), 7.55 – 7.52 (m, 1H), 7.45 – 7.41 (m, 2H), 7.30 – 7.11 (m, 10H), 3.35 – 3.20 (m, 3H), 2.85 – 2.75 (m, 2H), 2.65 – 2.55 (m, 2H), 2.37 – 2.26 (m, 1H), 2.25 – 2.15 (m, 1H), 2.10 – 2.01 (m, 1H), 1.93 – 18.4(m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 208.6, 197.6, 142.7, 140.0, 136.0, 132.0, 127.6, 127.5, 127.4, 127.3, 127.0, 126.6, 125.6, 125.0, 44.9, 43.2, 40.0, 39.5, 28.8, 28.7.

HRMS-ESI (m/z): Calcd for C₂₆H₂₇O₂Na [M+Na]⁺: 393.1825; found: 393.1831. **IR** (KBr):v 3435, 3069, 3024, 2923,2857, 2358, 1678, 1492,1085, 800, 689 cm⁻¹.

3-benzyl-1,8-diphenyloctane-1,6-dione (2y)

According to the general procedure, the 1,6-dione 2y was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless solid (29.6 mg, 77% yield, mp = 45.3 °C - 45.9 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.57 – 7.52 (m, 1H), 7.46 – 7.40 (m, 2H), 7.29 – 7.23 (m, 4H), 7.21 – 7.12 (m, 6H), 2.97 – 2.78 (m, 4H), 2.72 – 2.55 (m, 4H), 2.44 – 2.35 (m, 2H), 1.82 – 1.68 (m, 1H), 1.68 – 1.61 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 208.2, 198.2, 139.5, 138.4, 135.5, 131.4, 127.7, 127.0, 126.9, 126.8, 126.7, 126.4, 124.6, 124.5, 42.5, 40.9, 39.1, 39.0, 34.1, 28.2, 26.4.

HRMS-ESI (m/z): Calcd for C₂₇H₂₈O₂Na [M+Na]⁺: 407.1982; found: 407.2012. **IR** (KBr):υ 3884, 3736, 2919, 1710,1677, 1558, 802 cm⁻¹.

3-(4-methylpent-3-en-1-yl)-1,8-diphenyloctane-1,6-dione (2z)

According to the general procedure, the 1,6-dione 2z was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (34.3 mg, 91% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.57 – 7.53 (m, 1H), 7.47 – 7.43 (m, 2H), 7.28 – 7.24 (m, 2H), 7.20 – 7.14 (m, 3H), 5.06 (t, *J* = 7.0 Hz, 1H), 3.00 – 2.80 (m, 4H), 2.76 – 2.69 (m, 2H), 2.45 – 2.35 (m, 2H), 2.16 – 2.03 (m, 1H), 2.00 – 1.93 (m, 2H), 1.71 – 1.57 (m, 8H), 1.41 – 1.30 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 210.0, 200.0, 141.1, 137.3, 133.0, 131.8, 128.6, 128.4, 128.3, 128.1, 126.1, 124.1, 44.2, 43.1, 40.5, 34.2, 33.4, 29.8, 28.0, 25.7, 25.2, 17.7.

HRMS-ESI (m/z): Calcd for C₂₆H₃₂O₂Na [M+Na]⁺: 399.2295; found: 399.2287. **IR** (KBr):υ 3065, 2967, 1716,1679, 1495, 1369, 1215 cm⁻¹.

3,4-dimethyl-1,8-diphenyloctane-1,6-dione (2A)

According to the general procedure, the 1,6-dione **2A** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (16.4 mg, 51% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 – 7.87 (m, 2H), 7.58 – 7.54 (m, 1H), 7.48 – 7.44 (m, 2H), 7.28 – 7.25 (m, 2H), 7.21 – 7.16 (m, 3H), 2.98 – 2.86 (m, 3H), 2.80 – 2.67 (m, 3H), 2.49 – 2.39 (m, 1H), 2.31 – 2.09 (m, 3H), 0.96 – 0.79 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 209.8, 200.1, 141.1, 137.3, 133.0, 128.6, 128.5, 128.4, 128.1, 126.1, 48.3, 47.0, 44.8, 44.7, 43.6, 42.4, 34.0, 33.6, 33.5, 33.2, 29.8, 17.0, 15.2.

HRMS-ESI (m/z): Calcd for C₂₂H₂₆O₂Na [M+Na]⁺: 345.1825; found: 345.1832. **IR** (KBr):υ 3856, 3070, 2863, 1956, 1713, 1674, 1499 cm⁻¹.

8-(4-fluorophenyl)-3-methyl-1-phenyloctane-1,6-dione (2B)

According to the general procedure, the 1,6-dione 2B was isolated (petroleum

ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless solid (27.7 mg, 85% yield, mp = 70.2 °C - 70.8 °C).

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.6 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.47 – 7.41 (m, 2H), 7.15 – 7.10 (m, 2H), 6.98 – 6.92 (m, 2H), 2.98 – 2.64 (m, 6H), 2.48 – 2.32 (m, 2H), 2.17 – 2.06 (m, 1H), 1.71 – 1.65 (m, 1H), 1.52 – 1.40 (m, 1H), 0.94 (d, J = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.7, 199.8, 162.2, 160.6, 137.3, 136.7 (d, J = 3.2 Hz), 133.0, 129.7 (d, J = 7.7 Hz), 128.6, 128.1, 115.3, 115.1, 45.7, 44.3, 40.8, 30.7, 29.2, 28.9, 19.9.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -117.29.

HRMS-ESI (m/z): Calcd for C₂₁H₂₃O₂FNa [M+Na]⁺: 349.1574; found: 349.1584. **IR** (KBr):υ 3733, 3063, 2964, 1887, 1715, 1674, 1508 cm⁻¹.

3-methyl-1-phenyl-8-(p-tolyl)octane-1,6-dione (2C)

According to the general procedure, the 1,6-dione **2**C was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (21.3 mg, 66% yield).

¹**H NMR** (400 MHz,CDCl₃) δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.56 (m, 1H), 7.47-7.46 (m, 2H), 7.10 – 7.03 (m, 4H), 2.95 – 2.78 (m, 4H), 2.72 (m, 2H), 2.50 – 2.36 (m, 2H), 2.30 (s, 3H), 2.14 (m, 1H), 1.68 (m, 1H), 1.51 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 210.1, 199.8, 138.0, 137.3, 135.6, 133.0, 129.2, 128.6, 128.2, 128.1, 45.7, 44.4, 40.8, 30.7, 29.4, 29.2, 21.0, 19.8.

HRMS-ESI (m/z): Calcd for C₂₂H₂₆O₂Na [M+Na]⁺: 345.1825; found: 345.1837.

IR (KBr): v 3686, 2956, 2365, 1714, 1678, 1590, 1509 cm⁻¹.

3-methyl-1-phenyldodecane-1,6-dione (2D)

According to the general procedure, the 1,6-dione **2D** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (6.4 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.59 – 7.53 (m, 1H), 7.48 – 7.42 (m, 2H), 2.94 (dd, *J* = 16.2, 5.7 Hz, 1H), 2.79 (dd, *J* = 16.2, 7.7 Hz, 1H), 2.61 – 2.24 (m, 4H), 2.23 – 2.08 (m, 1H), 1.75 – 1.65 (m, 1H), 1.59 – 1.42 (m, 3H), 1.38 – 1.09 (m, 6H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.87 (t, *J* = 6.3 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 211.3, 199.9, 137.3, 133.0, 128.6, 128.1, 45.8, 42.9, 40.5, 31.6, 30.8, 29.3, 28.9, 23.9, 22.5, 19.9, 14.0

HRMS-ESI (m/z): Calcd for C₁₉H₂₈O₂Na [M+Na]⁺: 311.1982; found: 311.1985. **IR** (KBr):υ 3845, 2963, 2859, 1717, 1679, 1590, 1456 cm⁻¹.

8-cyclohexyl-3-methyl-1-phenyloctane-1,6-dione (2E)

According to the general procedure, the 1,6-dione **2E** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (21.1 mg, 67% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 2H), 7.58 – 7.51 (m, 1H), 7.47 – 7.42 (m, 2H), 2.94 (dd, *J* = 16.1, 5.7 Hz, 1H), 2.79 (dd, *J* = 16.2, 7.7 Hz, 1H), 2.58 – 2.32 (m, 4H), 2.16 (m, 1H), 1.73 – 1.59 (m, 6H), 1.54 – 1.41 (m, 3H), 1.25 – 1.08 (m, 4H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.90 – 0.79 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 211.5, 199.9, 137.3, 133.0, 128.6, 128.1, 45.8, 40.5, 40.4, 37.3, 33.1, 31.3, 30.9, 29.3, 26.6, 26.3, 19.9.

HRMS-ESI (m/z): Calcd for C₂₁H₃₀O₂Na [M+Na]⁺: 337.2138; found: 337.2146. **IR** (KBr):υ 3797, 2962, 2850, 1713, 1684, 1448 cm⁻¹.

3,9,9-trimethyl-1-phenyldecane-1,6-dione (2F)

According to the general procedure, the 1,6-dione **2F** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (19.9 mg, 69% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 2H), 7.58 – 7.51 (m, 1H), 7.47 – 7.40 (m, 2H), 2.94 (dd, *J* = 15.3, 6.3 Hz, 1H), 2.79 (dd, *J* = 16.2, 9.5 Hz, 1H), 2.52 – 2.44 (m, 2H), 2.39 – 2.31 (m, 2H), 2.18 – 2.11 (m, 1H), 1.73 – 1.65 (m, 1H), 1.56 – 1.41 (m, 3H), 0.95 (d, *J* = 6.6 Hz, 3H), 0.87 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 211.5, 199.9, 137.3, 133.0, 128.6, 128.1, 45.8, 40.5, 38.5, 37.4, 30.9, 29.9, 29.3, 29.1, 19.9.

HRMS-ESI (m/z): Calcd for C₁₉H₂₈O₂Na [M+Na]⁺: 311.1982; found: 311.1985. **IR** (KBr):υ 3850, 2960, 1716, 1459, 1368, 1175 cm⁻¹.

3-methyl-1,6-diphenylhexane-1,6-dione (2G)

According to the general procedure, the 1,6-dione **2G** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (21.0 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 4H), 7.57 – 7.52 (m, 2H), 7.50 – 7.44 (m, 4H), 3.12 – 2.93 (m, 3H), 2.85 (dd, *J* = 16.2, 7.8 Hz, 1H), 2.33 – 2.23 (m, 1H), 1.92 – 1.81 (m, 1H), 1.75 – 1.65 (m, 1H), 1.03 (d, *J* = 6.7 Hz, 3H).
¹³C NMR (151 MHz, CDCl₃) δ 199.2, 198.9, 136.2, 135.9, 132.0, 127.6, 127.1, 127.0, 44.8, 35.4, 30.3, 28.4, 18.9.

HRMS-ESI (m/z): Calcd for C₁₉H₂₀O₂Na [M+Na]⁺: 303.1356; found: 303.1358. **IR** (KBr):υ 3738, 1681, 1589, 1449, 1268, 800 cm⁻¹.

3-methyl-1-phenyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonane-1,6dione (2H)

According to the general procedure, the 1,6-dione **2H** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (17.9 mg, 48% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 2H), 7.56 – 7.52 (m, 1H), 7.46 – 7.43 (m, 2H), 2.95 (dd, *J* = 16.1, 5.6 Hz, 1H), 2.77 (dd, *J* = 16.1, 7.9 Hz, 1H), 2.49 – 2.36 (m, 4H), 2.14 – 2.09 (m, 1H), 1.71 – 1.67 (m, 3H), 1.55 – 1.44 (m, 1H), 1.22 (s, 12H), 0.95 (d, *J* = 6.7 Hz, 3H), 0.76 (t, *J* = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 211.1, 199.9, 137.3, 133.0, 128.6, 128.1, 83.1, 45.8, 45.1, 40.5, 30.8, 29.3, 24.8, 19.8, 18.6.

¹¹**B NMR** (193 MHz, CDCl₃) δ 33.76.

HRMS-ESI (m/z): Calcd for $C_{22}H_{33}BO_4Na [M+Na]^+$: 395.2364; found: 395.2374.

IR (KBr): v 3856, 3748, 3061, 2969, 2877, 1608, 1588 cm⁻¹.

3-methyl-1-phenyl-9-(trimethylsilyl)nonane-1,6-dione (2I)

S30

According to the general procedure, the 1,6-dione **2I** was isolated (petroleum ether/EtOAc = 10 : 1 v/v as the eluent solvent) as a colorless liquid (22.2 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.55 – 7.51 (m, 1H), 7.46 – 7.42 (m, 2H), 2.93 (dd, J = 16.2, 5.7 Hz, 1H), 2.78 (dd, J = 16.2, 7.7 Hz, 1H), 2.49 – 2.42 (m, 2H), 2.37 – 2.31 (m, 2H), 2.19 – 2.11 (m, 1H), 1.74 – 1.64 (m, 1H), 1.54 – 1.45 (m, 1H), 0.95 (d, J = 6.6 Hz, 3H), 0.76 – 0.69 (m, 2H), -0.03 (s, 9H).
¹³C NMR (151 MHz, CDCl₃) δ 213.8, 201.7, 139.1, 134.8, 130.4, 129.9, 47.6, 41.6,

39.1, 32.8, 31.2, 21.7, 12.2, 0.

HRMS-ESI (m/z): Calcd for C₁₈H₂₉O₂SiNa [M+H]⁺: 305.1931; found: 305.1933.

IR (KBr): v 3064, 2953, 2358, 1685, 1592, 1685, 1252, 852, 754, 693, 589 cm⁻¹.

V. The Utility of 1,6-Diketone

a) The synthesis of 1,1,6,8-tetraphenyloctane-1,6-diol⁴

At 0 °C, PhMgBr (0.24 ml, 0.24 mmol, 1 M in THF) was aded in a dry reaction tube under Ar atmosphere, then 1,6-diketone(29.4 mg, 0.1 mmol, 1.0 equiv) was dissolved in 0.5 ml dry THF and slowly added to the reaction tube. Next, the reaction temperature was changed to room temperature and reacted overnight. The reaction was quenched with sat. NH₄Cl (aq.), and extracted with ethyl acetate three times. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (elution: ethylacetate/hexanes 1 : 10–1 : 3) to afford **3** (25.5 mg) in 57% yield as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.33 (m, 8H), 7.33 – 7.14 (m, 10H), 7.11 – 7.09 (m, 2H), 2.64 – 2.56 (m, 1H), 2.39 – 2.29 (m, 1H), 2.24 – 2.16 (m, 2H), 2.15 – 2.10 (m, 2H), 1.83 – 1.75 (m, 2H), 1.37 – 1.29 (m, 1H), 1.27 – 1.17 (m, 2H), 1.15 – 1.02 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 147.1, 147.0, 145.8, 142.4, 128.43, 128.36, 128.2, 128.2, 126.8, 126.5, 126.1, 125.8, 125.3, 78.2, 44.9, 43.2, 41.9, 30.0, 24.1, 23.9.

HRMS-ESI (m/z): Calcd for C₃₂H₃₄NaO₂ [M+Na]⁺: 473.2451; found: 473.2447.

IR (KBr): v 3562, 3467, 3059, 3027, 2937, 2859, 2357, 1599, 1493, 1449, 973 cm⁻¹.

b) The synthesis of 3-phenyl-1-(2-phenylcyclopent-2-en-1-yl)propan-1-one⁵

In the glovebox, to a dry vial with a magnetic stir bar was added 1,6-dione (29.4 mg, 0.1 mmol, 1.0 equiv), AlCl₃ (13.3 mg, 0.1 mmol, 1.0 equiv) and DCM (1.0 mL) was added. The resulting mixture reacted at room temperature overnight. The progress of the reaction was monitored by TLC (eluent: ethyl acetate/hexanes 1:5 v/v). After the reaction is complete, the solvent is removed under vacuum. The crude product was purified by flash chromatography on silica gel (elution: ethylacetate/hexanes 1:5) to afford **4** (21.0 mg) in 76% yield as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 4H), 7.24 – 7.18 (m, 3H), 7.18 – 7.13 (m, 1H), 7.10 – 7.03 (m, 2H), 6.38 – 6.36 (m, 1H), 4.05 – 3.99 (m, 1H), 2.85 – 2.72 (m, 3H), 2.63 – 2.56 (m, 3H), 2.36 – 2.25 (m, 1H), 1.98 – 1.89 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 211.9, 141.4, 141.3, 135.4, 130.6, 128.6, 128.40, 128.36, 127.5, 126.0, 125.8, 59.6, 40.6, 32.6, 29.7, 27.9.

HRMS-ESI (m/z): Calcd for C₂₀H₂₁O [M+H]⁺: 277.1587; found: 277.1587.

IR (KBr):v 2929, 2851, 2358, 1704, 1493, 1448, 1083, 752, 695 cm⁻¹.
c) The synthesis of 2-(8-oxo-1,8-diphenyloctan-3-ylidene)malononitrile⁶

In the glovebox, in a dry reaction tube, 1,6-dione (29.4 mg, 0.1 mmol, 1.0 equiv), malononitrile (15.4 mg, 0.2 mmol, 2.0 equiv), and CHCl₃ (1.0 ml) were added. Then Al₂O₃ (30.6 mg, 0.3 mmol, 3.0 equiv) was slowly added to the reaction tube and reacted overnight at room temperature. The reaction progress was monitored by TLC (developing solvent: ethyl acetate/hexane 1:8 v/v). The crude product was purified by flash chromatography on silica gel (elution: ethylacetate/hexanes 1 : 8) to afford **5** (20.8 mg) in 74% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 – 7.95 (m, 2H), 7.60 – 7.56 (m, 1H), 7.50 – 7.46 (m, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.24 (m, 1H), 7.23 – 7.19 (m, 2H), 3.03 (t, *J* = 6.8 Hz, 2H), 2.89 (br, 4H), 2.59 (t, *J* = 7.7 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.70 – 1.62 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 199.3, 184.8, 138.6, 136.8, 133.3, 128.9, 128.7, 128.3, 128.0, 127.1, 111.8, 111.7, 86.7, 37.5, 37.4, 35.9, 34.1, 27.3, 23.6.

HRMS-ESI (m/z): Calcd for C₂₃H₂₃N₂O [M+H]⁺: 343.1805; found: 343.1804.

IR (KBr):v 3738, 3064, 3029, 2930, 2865, 2358, 1683, 1589, 1452, 747, 693 cm⁻¹.

d) The synthesis of 6-phenethyl-2,3,4,5-tetrahydro-1,1'-biphenyl⁷

At Ar atmosphere, Zn (1.0 g, 1.5 mmol, 10.0 equiv) and dry THF (2.5 mL) were placed in a dry reaction tube and cooled to 0 °C. Then, TiCl₄ (60 uL, 0.5 mmol, 5.0 equiv) was added. The reaction was carried out at room temperature for 0.5 hours and then heated to 70 °C for 2.5 hours. Next, anhydrous pyridine (26 uL, 0.3 mmol, 3.0 equiv) was added at 0 °C and stirred for 10 minutes, added 1,6-diketone (29.4 mg, 0.1 mmol, 1.0 equiv). Finally, the reaction mixture was refluxed at 70 °C overnight. The progress of the reaction was monitored by TLC (eluent: ethyl acetate/hexane 1:10 v/v). The reaction was quenched with sat. K₂CO₃ (aq.) and extracted three times with ethyl acetate. The combined organics were washed with brine, dried over Na₂SO₄, filtered, and then concentrated. The crude product was purified by flash chromatography on silica gel (elution: ethylacetate/hexanes 1:50-1:10) to afford **6** (19.5 mg) in 71% yield as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.21 – 7.17 (m, 3H), 7.14 – 7.10 (m, 1H), 7.03 - 6.95 (m, 4H), 2.64 - 2.60 (m, 2H), 2.21 (br, 2H), 2.17 - 2.13 (t, J =7.8 Hz, 4H), 1.73 – 1.69 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 144.4, 142.4, 134.0, 132.2, 128.4, 128.21, 128.16, 128.0, 125.9, 125.6, 36.5, 34.9, 32.5, 29.0, 23.5, 23.2.

IR (KBr): v 2923, 2856, 1668, 1452, 1261, 1081, 1023, 802, 752,699 cm⁻¹.

VI. Preliminary Asymmetric Studies

OH M	le b)-1a	[RhCl(cod)] ₂ (5 mol %) (<i>R</i>)-BINAP (10 mol %) Cs ₂ CO ₃ (30 mol %) toluene (1.0 mL), 15 h	Me * O 2a
entry	temp (°C)	yield of 2a (%) ^b	ee% of 2a (%) ^c
1	60	13	6
2	80	34	4

3	100	65	28
4	110	61	28

^aAll the reactions were performed with **1a** (0.1 mmol), [Rh(cod)Cl]₂ (5 mol %), (*R*)-BINAP (10 mol %) and Cs₂CO₃ (30 mol %) in toluene (1.0 mL) under N₂ atmosphere for 15 h. ^bIsolated yield. ^cEnantiomeric excess was determined by chiral HPLC (Daicel Chiralcel OJ-H, hexane/isopropyl alcohol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm), t^{1} = 27.9 min (major), t^{2} = 34.2 min (minor).

Table S9: Optimization of Base^a

entry ^a	base	yield of 2a (%) ^b	ee% of 2a (%) ^c
1	CsOAc	13	28
2	Cs ₂ CO ₃	71	29
3	K ₂ CO ₃	25	29
4	Ag ₂ CO ₃	61	28
5	AgOTf	N.R.	-
6	DBU	36	26

^aAll the reactions were performed with **1a** (0.1 mmol), [Rh(cod)Cl]₂ (5 mol %), (*R*)-BINAP (10 mol %) and base (30 mol %) in toluene (1.0 mL) at 100 °C under N₂ atmosphere for 15 h.^bIsolated yield.^cEnantiomeric excess was determined by chiral HPLC (Daicel Chiralcel OJ-H, hexane/isopropyl alcohol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm), t^{1} = 27.9 min (major), t^{2} = 34.2 min (minor)

Table S10: Optimization of the amount of Base^a

1	10	23	12
2	30	71	33
3	100	65	30
4	200	69	31

^aAll the reactions were performed with **1a** (0.1 mmol), [Rh(cod)Cl]₂ (5 mol %), (*R*)-BINAP (10 mol %) and Cs₂CO₃ (X mol %) in toluene (1.0 mL) at 100 °C under N₂ atmosphere for 15 h. ^bIsolated yield. ^cEnantiomeric excess was determined by chiral HPLC (Daicel Chiralcel OJ-H, hexane/isopropyl alcohol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm), t^{1} = 27.9 min (major), t^{2} = 34.2 min (minor).

Table S11: Optimization of Ligand^a

^aAll the reactions were performed with **1a** (0.1 mmol), [Rh(cod)Cl]₂ (5 mol %), Ligand (10 mol %) and and Cs₂CO₃ (30 mol %) in toluene (1.0 mL) at 100 °C under N₂ atmosphere for 15 h. ^bIsolated yield.^cEnantiomeric excess was determined by chiral HPLC (Daicel Chiralcel OJ-H, hexane/isopropyl alcohol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm), t^{1} = 26.0 min (major), t^{2} = 34.8 min (minor).

Figure 3. The HPLC data of 2a using L7 as chiral ligand

Table S12: Optimization of Ligand using 1x as starting material^a

^aAll the reactions were performed with **1x** (0.1 mmol), [Rh(cod)Cl]₂ (5 mol %), Ligand (10 mol %) and CsCO₃ (30 mol %) in toluene (1.0 mL) at 100 °C under N₂ atmosphere for 15 h.^bIsolated yield.^cEnantiomeric excess was determined by chiral HPLC (Daicel Chiralcel IH, hexane/isopropyl alcohol = 91/9, flow rate = 0.5 mL/min, λ = 254 nm), t^{1} = 24.1 min (major), t^{2} = 25.4 min (minor).^dOptical rotation: [α] $_{D}^{22}$ = -2 (C = 0.1, CH₂Cl₂)

<Peak Table>

PDA Chi 254nm							
F	eak#	Ret. Time	Peak Start	Peak End	Area	Height	Area%
	1	24.383	23.904	25.003	2551014	97205	50.491
	2	25.473	25.013	26.197	2501395	93613	49.509
	Total				5052409	190818	100.000

Peak#	Ret. Time	Peak Start	Peak End	Height	Area	Area%
1	24.123	23.637	25.024	495763	16984248	92.519
2	25.406	25.035	26.037	51453	1373255	7.481
Total				547216	18357503	100.000

Figure 4. The HPLC data of 2x using (*R*)-BINAP as chiral ligand

VII. Mechanism Studies

Synthesis of Benzaldehyde-D⁸

$$\begin{array}{c} & \overbrace{CN} & \underbrace{SnCl_2, CH_3COCl}_{D_2O, Et_2O} \\ & & \overbrace{D_2O, Et_2O} \\ & &$$

To a solution of anhydrous diethyl ether (10 mL), anhydrous stannous chloride (3.7g, 20 mmol) and acetyl chloride (6.28 g, 80 mmol) at -10 °C was added deuterium oxide (1.5 g, 75 mmol) slowly dropwise such that the temperature did not rise above 10 °C. To the homogeneous solution was added benzonitrile (1.03 g, 10 mmol), and stirring was continued for 12 h at room temperature. The precipitated crystalline stannic chloride complex was filtered away from the solution, washed with ether, dried in the dark. Hydrolysis of the complex to benzaldehyde-D was accomplished upon addition to hot water. Then the aqueous layer was extracted with EA for three times, the combined organic layers were dried and concentrated under reduced pressure, the residue was purified by column chromatography to furnish the Benzaldehyde-D (0.85 g, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.68 – 7.61 (m, 1H), 7.57 – 7.50 (m, 2H).

Synthesis of 8-hydroxy-6-methyl-1,8-diphenyloct-5-en-3-one-8-d³(1a-D)

In the glovebox, to a dry vial with a magnetic stir bar was added Ni(cod)₂ (5 mol %, 0.01 mmol,2.7 mg) and 1 mL THF, then the solution was added 1,3-diene (1.0 mmol, 5.0 eq.), benzaldehyde-d (0.2 mmol, 1.0 eq.), 4Å molecular sieve (50 mg) and acylzirconocene chloride(0.4 mmol, 2.0 eq.) successively (Note:1,3-diene must be $_{541}$

added firstly, acylzirconocene chlorideshould be added in solid phase). The vial was sealed by a rubber stopper, removed from the gloveboxand stirred at ambient temperature for 12 hours. The reaction was quenched by 5 mL HCl aqueoussolution (2 M), then extracted with EtOAc (3 x 10 mL), the combined organic solvents was removedunder vacuo, and the residue was purified by column chromatography on silica gel to give the product **1a-D** as a yellow oil liquid in 80% yield. (TLC monitored by staining with phophomolibdic acid solution in ethanol)

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.18 (m, 10H), 5.41 (t, *J* = 7.2 Hz, 1H), 3.14 (d, *J* = 3.6 Hz, 2H), 2.90 (t, *J* = 7.6 Hz, 2H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.61 (br, 1H), 2.44 (s, 2H), 1.65 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 208.1, 144.2, 141.0, 136.3, 128.6, 128.4, 127.4, 126.2, 125.8, 119.8, 50.0, 43.8, 42.7, 29.8, 16.5.

HRMS-ESI (m/z): Calcd for C₂₁H₂₃DO₂Na [M+Na]⁺: 332.1731; found: 332.1737.

Synthesis of 3-methyl-1,8-diphenyloctane-1,6-dione(2a-D)

In a glove box, $[Rh(cod)Cl]_2$ (0.005 mmol, 2.4 mg, 0.05 equiv.), Xantphos (0.01 mmol, 5.8 mg, 0.1 equiv.), homoallylic alcohol **1a-D** (0.1 mmol, 1.0 equiv.) and toluene (1 mL) was added to a reaction tube sequentially, the Cs₂CO₃ (0.03 mmol, 9.75 mg, 0.3 equiv.) was added at last. The reaction tube's stopper was sealed and wrapped with a sealing film before removing it from the glove box. The reaction mixture was stirred at 100 °C for 15 h. After the reaction was completed, the solvent was concentrated under vacuum, and the crude product was purified by column chromatography. Compound **2a-D** was obtained as a white solid in 64% yield (19.9 mg, eluent: petroleum ether/EtOAc = 10/1, mp = 41.2 °C - 41.8 °C.)

Figure 1. ¹H NMR and ¹³C NMR of 2a-D.

The stoichiometric reaction of 1a with [RhCl(cod)]₂, xantphos, and Cs₂CO₃

In a glovebox, a dry reaction tube was charged with $[Rh(cod)Cl]_2$ (24 mg, 0.05 mmol, 0.5 equiv.), xantphos (58 mg, 0.1 mmol, 1.0 equiv.), and toluene (1.5 mL). The mixture was stirred for 30 min at room temperature. Subsequently, Cs_2CO_3 (32.6 mg, 0.1 mmol, 1.0 equiv.) was added, and stirring was continued for an additional 30 min. A solution of **1a** (30.8 mg, 0.1 mmol, 1.0 equiv.) in toluene (0.5 mL) was then introduced into the reaction mixture. The tube was sealed with a stopper, wrapped with parafilm, and removed from the glovebox. The reaction was stirred at 100 °C for 2.5 h. Then, the mixture was filtered through a Celite pad, and the solvent was concentrated under reduced pressure. The crude product was analyzed by HRMS. The unsaturated 1,6-dione was detected. This observation suggests the presence of an alkoxy rhodium intermediate in the catalytic cycle, with the first (xantphos)Rh–H species being generated via β -H elimination of this intermediate.

Figure 2. HMRS spectrum of the stoichiometric reaction of **1a** with [RhCl(cod)]₂, xantphos, and Cs₂CO₃.

WII.Crystal data of 2w

Single crystal of compound 2w [C₁₉H₂₀O₂] was obtained in hexane and EtOAc using gas phase diffusion method. The CCDC of 2w is 2390628 contains the supplementary crystallographic data which can be obtained free of charge from the Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/structures/</u>

μ/mm-1	0.590
F(000)	632.0
Crystal size/mm3	$0.2\times0.18\times0.15$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	5.08 to 153.854
Index ranges	$-24 \le h \le 22, -6 \le k \le 5, -21 \le l \le 21$
Reflections collected	18261
Independent reflections	3382 [Rint = 0.0313, Rsigma = 0.0209]
Data/restraints/parameters	3382/0/200
Goodness-of-fit on F2	1.088
Final R indexes [I>= 2σ (I)]	R1 = 0.0450, wR2 = 0.1271
Final R indexes [all data]	R1 = 0.0512, wR2 = 0.1322
Largest diff. peak/hole / e Å-3	0.19/-0.14

IX. References

1. Y. Hanzawa, N. Tabuchi, K. Saito, S. Noguchi and T. Taguchi, *Angew. Chem., Int. Ed.*, **1999**, *38*, 2395–2398.

2. S. Zhang, B. An, J. Li, J. Hu, L. Huang, X. Li, and A. S. C. Chan, *Org. Biomol. Chem.*, **2017**, *15*, 7404–7410.

B. Chen, Y. Zhang, R. Wu, D. Fang, X. Chen, S. Wang, Y. Zhao, P. Hu, K.-Q. Zhao,
 B.-Q. Wang and P. Cao, *ACS Catal.*, 2019, *9*, 11788–11793.

4. T. Ramnial, S. A. Taylor, M. L. Bender, B. Gorodetsky, P. T. K. Lee, D. A. Dickie,
B. M. McCollum, C. C. Pye, C. J. Walsby and J. A. C. Clyburne, *J. Org. Chem.*, 2008,
73, 801–812.

5. Y. Miyahara and Y. N. Ito, J. Org. Chem., 2014, 79, 6801-6807.

6. S. L. Broman, A. U. Petersen, C. G. Tortzen, J. Vibenholt, A. D. Bond and M. B. Nielsen, Org. Lett., 2012, 14, 318–321.

7. N. Kise and T. Sakurai, J. Org. Chem., 2015, 80, 3496-3503

8. D.-X. Zhu, H. Xia, J.-G. Liu, L. W. Chung and M.-H. Xu, J. Am. Chem. Soc., 2021, 143, 2608–2619.

Spectroscopic Data (NMR Spectrum)

S52

S53

S69

