Supporting Information

Efficient Synthesis of Pyrrolo[1,2-*a*]indole-3-ones through Radical-Initiated Cascade Cyclization Reaction

Han Zhang,^a Yuze Lin, ^a Gang Yang, ^a Xifa Yang*,^b and Xiuling Cui*,^a

^a Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China; orcid.org/0000-0001-5759-766X; Email: cuixl@hqu.edu.cn.

^b College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China. Email: <u>yangxifachem@163.com</u>.

*.a cuixl@hqu.edu.cn and *.b yangxifachem@163.com.

Contents

A. General information	S2
B. Catalytic results	S2
C. Scale-up reaction	S16
D. Mechanistic studies	S16
E. Crystal structure	S18
F. NMR spectra	S20
G. References	S49

A. General information:

All chemicals were obtained from commercial sources. The reactions were monitored by TLC. Chromatographic purifications of the compounds were performed using silica gel (Mesh 100-200) and ethyl acetate and hexane as eluent. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker 400 (400, 100 and 376 MHz) advance spectrometer at room temperature in CDCl₃ (solvent signals, δ 7.26 and δ 77.16 ppm) using TMS as internal standard. Low-resolution mass spectra (LRMS) data were measured on GCMS-QP2010 Ultra. High-resolution mass spectra (HRMS) were recorded on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. IR spectra were recorded on a NICOLET iS50 FT-IR device and were recorded in the range from 4000 to 400 cm⁻¹. Digital melting point apparatus was used to record the Melting Point of the compound in degree centigrade (°C) and are uncorrected. All chemicals were obtained from commercial sources and were used as received unless otherwise noted. 1-Acryloyl-2-cyanoindoles **1** were prepared by following literature reports¹. Column chromatography was performed on silica gel (300-400 mesh) using petroleum ether (PE)/ethyl acetate (EA).

- B. Catalytic results:
- (a) General procedure for synthesis of 3.

To a Schlenk tube equipped with a magnetic stirring bar were added 1-methacryloyl-3-pheny 1-1H-indole-2-carbonitrile **1** (0.2 mmol), AIBN **2a** (2.5 equiv) and absolute ethanol (2 mL). Th e mixture was stirred at 60 °C for 20 h under N₂. After cooled to room temperature, the solv ent was removed under reduced pressure and the crude reaction mixture was directly purified t hrough column chromatography on silica gel using PE/EA (8:1) as eluent to obtain product **3**. (b) General procedure for synthesis of **3A**.

To a Schlenk tube equipped with a magnetic stirring bar were added 1-methacryloyl-3-(o-t olyl)-1*H*-indole-2-carbonitrile **1A** (0.2 mmol), AIBN **2a** (2.5 equiv) and methanol (2 mL). The mixture was stirred at 60 °C for 20 h under N₂. After cooled to room temperature, the solvent

was removed under reduced pressure and the crude reaction mixture was directly purified throu gh column chromatography on silica gel using PE/EA (8:1) as eluent to obtain product **3A**. (c) General procedure for synthesis of 4^2 .

To a Schlenk tube equipped with a magnetic stirring bar were added 3-(1-imino-2-methyl-3-oxo-9-phenyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile **1A** (0.2 mmol), K_2CO_3 (0.2 mmol, 2.5 equiv.) and 30%H₂O₂ (2 mmol 10 equiv.) and *N*,*N*-Dimethylformamide (2 mL). The mixture was stirred at room temperature for 24 h under N₂. The solvent was rem oved under reduced pressure and the crude reaction mixture was directly purifiedthrough colum n chromatography on silica gel using PE/EA (4:1) as eluent to obtain product **4**. (d) Characterization Data

NH O 3a

3-(1-imino-2-methyl-3-oxo-9-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-2-yl)-2,2-

dimethylpropanenitrile (3a)

Yellow solid 85% (60.4 mg), mp: 128-129 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 3H), 7.60 – 7.51 (m, 3H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 2.44 (d, *J* = 13.8 Hz, 1H), 2.26 (d, *J* = 14.5 Hz, 1H), 1.56 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.3, 134.1, 131.2, 131.2, 129.7, 129.0, 129.0, 127.7, 125.6, 124.0, 122.0, 121.7, 115.2, 54.5, 45.9, 30.8, 30.0, 27.9, 26.1 ppm (one signal is missing due to overlapping).

IR (ATR): $\tilde{v} = 2930, 1739, 1637, 1444, 1302, 1146, 884, 748, 700 cm⁻¹.$

HRMS: [M+Na]⁺ calculated for C₂₃H₂₁N₃ONa⁺: 378.1578, found: 378.1577.

3-(1-imino-2-methyl-3-oxo-9-(p-tolyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-

dimethylpropanenitrile(3b)

White solid 78% (57.6 mg), mp: 106-107 °C. $R_f = 0.5$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.22 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.40 (dd, *J* = 10.8, 7.8 Hz, 3H), 2.46 (s, 4H), 2.26 (d, *J* = 14.4 Hz, 1H), 1.56 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.3, 138.9, 134.2, 131.2, 130.4, 129.8, 128.8, 128.1, 127.6,

125.4, 124.0, 122.1, 121.8, 115.2, 54.5, 45.8, 30.8, 29.9, 27.9, 26.1, 21.5 ppm.

IR (ATR) : $\tilde{v} = 2975$, 1745, 1643, 1447, 1384, 1306, 1140, 823, 751 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{24}H_{24}N_3O^+$: 370.1914, found: 370.1915.

3-(9-(4-ethylphenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile(3c)

White solid 75% (57.5 mg), mp: 108-109 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.7 Hz, 1H), 7.41 (d, J = 7.5 Hz, 3H), 2.76 (q, J = 7.5 Hz, 2H), 2.43 (d, J = 12.3 Hz, 1H), 2.26 (d, J = 14.4 Hz, 1H), 1.56 (s, 3H), 1.39 (s, 3H), 1.31 (s, 6H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.2, 145.2, 134.1, 131.2, 129.1, 128.8, 128.3, 127.5, 125.3, 123.9, 122.0, 121.8, 115.1, 54.4, 45.7, 30.7, 29.8, 28.8, 27.8, 26.0, 15.4 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2930, 1737, 1644, 1452, 1145, 830, 754$ cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{25}H_{26}N_3O^+$: 384.2071, found: 384.2072.

3-(1-imino-9-(4-isopropylphenyl)-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(3d)

White solid 67% (53.3 mg), mp: 69-70 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.44 – 7.37 (m, 1H), 2.43 (d, *J* = 14.5 Hz, 1H), 2.26 (d, *J* = 14.6 Hz, 1H), 1.56 (s, 3H), 1.40 (d, *J* = 2.8 Hz, 9H), 1.31 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.3, 152.2, 134.2, 131.3, 128.7, 128.1, 127.6, 126.6, 125.5, 124.0, 122.3, 121.9, 115.2, 54.5, 45.8, 35.0, 31.4, 30.9, 29.9, 27.9, 26.2 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2966, 2233, 1739, 1643, 1444, 1384, 1140, 839, 754 \text{ cm}^{-1}$.

HRMS: [M+H]⁺ calculated for C₂₆H₂₈N₃O⁺: 398.2227, found: 398.2236.

3-(9-(4-(tert-butyl)phenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile(3e)

White solid 65% (53.5 mg), mp: 55-56 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.38 (s, 1H), 8.21 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.53 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 2.43 (d, J = 7.4 Hz, 1H), 2.26 (d, J = 14.4 Hz, 1H), 1.55 (t, J = 7.5 Hz, 6H), 1.39 (s, 9H), 1.30 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.3, 152.2, 134.2, 131.3, 128.7, 128.1, 127.6, 126.6, 125.5, 124.0, 122.3, 121.9, 115.2, 54.5, 45.8, 35.0, 31.4, 30.9, 29.9, 27.9, 26.2 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2923$, 2160, 1744, 1641, 1448, 1145, 1023, 841, 748 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{27}H_{28}N_3O^+$: 412.2384, found: 412.2382.

3-(9-([1,1'-biphenyl]-4-yl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(3f)

White solid 75% (64.7 mg), mp: 188-189 °C. $R_f = 0.8$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.43 (s, 1H), 8.25 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 5H), 7.73 – 7.66 (m, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.50 (d, *J* = 15.3 Hz, 2H), 7.47 – 7.37 (m, 2H), 2.48 (d, *J* = 12.9 Hz, 1H), 2.28 (d, *J* = 14.5 Hz, 1H), 1.58 (s, 3H), 1.41 (s, 3H), 1.33 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.2, 141.7, 140.3, 134.0, 131.2, 130.0, 129.3, 129.0, 128.3,

127.8, 127.6, 127.4, 127.2, 125.5, 123.9, 122.0, 115.2, 54.4, 45.8, 30.7, 29.9, 27.8, 26.0 ppm.

IR (ATR) : $\tilde{v} = 2929$, 1726, 1638, 1445, 1375, 1147, 751, 696 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{21}H_{18}NO_3^+$: 432.2071, found: 432.2072.

3-(1-imino-9-(4-methoxyphenyl)-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile (3g)

White solid 87% (67.1 mg), mp: 152-153 °C. $R_f = 0.8$ (PE:EA = 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 28.3 Hz, 3H), 7.53 (t, J = 7.7 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.10 (d, J = 8.2 Hz, 2H), 3.89 (s, 3H), 2.51 – 2.37 (m, 1H), 2.25 (d, J = 14.4 Hz, 1H), 1.55 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.2, 160.0, 134.2, 131.1, 130.2, 127.5, 125.3, 123.9, 123.2, 122.0, 121.5, 115.1, 55.4, 54.4, 45.7, 30.7, 29.9, 27.7, 26.0 ppm (two signals are missing due to overlapping).

IR (ATR) : $\tilde{v} = 2978$, 1723, 1640, 1510, 1393, 1245, 1015, 826, 750, 576 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{24}H_{24}N_3O_2^+$: 386.1863, found: 386.1866.

$\label{eq:2.1} 3-(9-(4-fluorophenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1\\ H-pyrrolo[1,2-a]indol-2-yl)-2,2-indol-2-yl-2,-indol-2-yl-2,-indol-2-$

dimethylpropanenitrile(3h)

Yellow solid 93% (69.5 mg), mp: 141-142 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.25 (d, *J* = 8.2 Hz, 1H), 7.90 – 7.67 (m, 3H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.30 – 7.26 (m, 2H), 2.52 – 2.36 (m, 1H), 2.27 (d, *J* = 14.5 Hz, 1H), 1.57 (s, 3H), 1.42 (s, 3H), 1.32 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.2, 162.9 (d, *J* = 249.1 Hz), 134.0, 131.1, 130.9, 130.8, 127.6, 127.0 (d, *J* = 3.3 Hz), 125.5, 123.9, 121.7, 120.4, 116.6 (d, *J* = 22.1 Hz), 115.1, 54.4, 45.8, 30.7, 30.0, 27.7, 25.9 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.80 ppm.

IR (ATR) : $\tilde{v} = 2921, 1739, 1634, 1510, 1380, 1144, 842, 748, 564 \text{ cm}^{-1}$.

HRMS: $[M+H]^+$ calculated for $C_{23}H_{21}FN_3O^+$: 374.1663, found: 374.1665.

 $\label{eq:2.1} 3-(9-(4-chlorophenyl)-1-imino-2-methyl-3-oxo-2, 3-dihydro-1 H-pyrrolo[1,2-a]indol-2-yl)-2, 2-indol-2-yl-2, 2-$

dimethylpropanenitrile (3i)

White solid 83% (64.7 mg), mp: 112-113 °C. $R_f = 0.7$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 7.71 (t, *J* = 8.6 Hz, 3H), 7.58 – 7.51 (m, 3H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.26 (s, 0H), 2.44 (s, 1H), 2.24 (d, *J* = 14.2 Hz, 1H), 1.55 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.1, 134.8, 133.8, 131.1, 130.4, 129.8, 129.6, 127.7, 125.6, 123.9, 121.7, 120.2, 115.2, 54.4, 45.8, 30.6, 29.9, 27.7, 25.9 ppm.

IR (ATR) : $\tilde{v} = 2978$, 1724, 1640, 1444, 1387, 1143, 827, 745 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{23}H_{21}CIN_3O^+$: 390.1368, found: 390.1371.

3-(9-(4-bromophenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(3j)

White solid 80% (69.5 mg), mp: 120-121 °C. $R_f = 0.7$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.3 Hz, 3H), 7.65 (d, J = 8.4 Hz, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.26 (s, 1H), 2.47 – 2.34 (m, 1H), 2.25 (d, J = 14.4 Hz, 1H), 1.55 (s, 3H), 1.39 (s, 3H), 1.29 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.2, 133.8, 132.8, 131.2, 130.7, 130.1, 128.8, 127.8, 125.7,

123.9, 123.1, 121.8, 120.3, 115.3, 54.5, 45.9, 30.7, 30.0, 27.8, 26.0 ppm.

IR (ATR) : $\tilde{v} = 2975$, 1742, 1634, 1444, 1314, 1142, 1013, 830, 747 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{23}H_{21}BrN_3O^+$: 434.0863, found: 434.0866

3-(9-(4-acetylphenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile(3k)

White solid 90% (71.6 mg), mp: 166-167 °C. $R_f = 0.6$ (PE:EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1H), 8.24 (d, J = 8.3 Hz, 1H), 8.16 (d, J = 7.7 Hz, 2H), 7.91 (s, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 2.68 (s, 3H), 2.42 (d, J = 12.8 Hz, 1H), 2.25 (d, J = 14.5 Hz, 1H), 1.56 (s, 3H), 1.40 (s, 3H), 1.30 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 172.0, 168.9, 137.1, 136.1, 133.6, 131.1, 130.3, 129.6, 129.2, 127.8, 125.7, 123.9, 121.7, 120.1, 115.2, 54.4, 45.9, 30.7, 30.0, 27.7, 26.8, 25.9 ppm. IR (ATR) : $\tilde{v} = 2981$, 1739, 1676, 1606, 1447, 1263, 1142, 838, 729 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{25}H_{24}N_3O_2^+$: 398.1863, found: 398.1867.

3-(1-imino-2-methyl-3-oxo-9-(m-tolyl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-

dimethylpropanenitrile(3l)

White solid 71% (52.5 mg), mp: 134-135 °C. $R_f = 0.7$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.38 (s, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.54 (dd, J = 14.3, 6.6 Hz, 3H), 7.46 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 2.46 (s, 4H), 2.26 (d, J = 14.4 Hz, 1H), 1.57 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.2, 139.4, 134.0, 131.1, 131.0, 129.7, 129.6, 129.4, 127.5, 125.9, 125.4, 123.9, 122.0, 121.7, 115.1, 54.4, 45.8, 30.7, 29.9, 27.9, 26.0, 21.5 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2921$, 1727, 1649, 1444, 1387, 1142, 1034, 751, 700 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{24}H_{24}N_3O^+$: 370.1914, found: 370.1918.

3-(9-(3-acetylphenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile(3m)

White solid 82% (65.2 mg), mp: 84-85 °C. $R_f = 0.7$ (PE:EA = 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.26 (s, 1H), 8.41 (s, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.99 (s, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.26 (s, 0H), 2.66 (s, 3H), 2.40 (s, 1H), 2.25 (d, *J* = 14.6 Hz, 1H), 1.55 (s, 3H), 1.40 (s, 3H), 1.29 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 198.0, 172.0, 169.2, 139.5, 134.0, 131.1, 131.0, 129.7, 129.6, 129.4, 127.5, 125.9, 125.4, 123.9, 122.0, 121.7, 115.1, 54.4, 45.8, 30.7, 29.9, 27.9, 26.0, 21.5 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2923$, 1740, 1685, 1447, 1242, 1145, 1032, 748, 688 cm⁻¹.

HRMS: $[M+H]^+$ calculated for $C_{25}H_{24}N_3O_2^+$: 398.1863, found: 398.1866.

 $\label{eq:2-fluorophenyl} 3-(9-(2-fluorophenyl)-1-imino-2-methyl-3-oxo-2, 3-dihydro-1 \\ H-pyrrolo[1,2-a]indol-2-yl)-2, 2-indol-2-yl-2, 3-dihydro-1 \\ H-pyrrolo[1,2-a]indol-2-yl)-2, 2-indol-2-yl-2, 3-dihydro-1 \\ H-pyrrolo[1,2-a]indol-2-yl-2, 3-dihydro-1 \\ H-pyrrolo[1,2-a]indol-2-yl-2,$

dimethylpropanenitrile(3n)

White solid 65% (48.5 mg), mp: 115-116 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 11.43 (s, 1H), 9.59 (d, *J* = 8.2 Hz, 1H), 9.09 (s, 1H), 9.01 (d, *J* = 8.1 Hz, 1H), 8.94 - 8.88 (m, 1H), 8.88 - 8.82 (m, 1H), 8.79 - 8.74 (m, 1H), 8.73 - 8.64 (m, 2H), 3.87 - 3.74 (m, 1H), 3.69 (d, *J* = 7.0 Hz, 1H), 3.03 (s, 3H), 2.93 (s, 3H), 2.68 (s, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 176.4, 171.9, 169.1, 160.0 (d, *J* = 249.1 Hz), 134.0, 131.6 (d, *J* = 2.9 Hz), 131.1 (d, *J* = 3.8 Hz), 131.0, 127.7, 125.5, 125.2 (d, *J* = 3.6 Hz), 123.9, 122.3, 121.0, 118.8 (d, *J* = 15.4 Hz), 116.8 (d, *J* = 21.5 Hz), 115.2, 54.4, 45.7, 30.8, 27.3, 26.1, 19.4 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ -111.99 ppm.

IR (ATR) : $\tilde{v} = 2933$, 1742, 1640, 1447, 1384, 1145, 1022, 748, 564 cm⁻¹.

HRMS [M+H]⁺ calculated for C₂₃H₂₁FN₃O⁺: 374.1663, found: 374.1667.

3-(9-(3,5-dimethylphenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(30)

White solid 80% (61.4 mg), mp:151-152 °C. $R_f = 0.8$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.38 (s, 1H), 8.22 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.42 – 7.32 (m, 3H), 7.12 (s, 1H), 2.42 (s, 7H), 2.27 (d, *J* = 14.4 Hz, 1H), 1.57 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H) ppm.

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.2, 139.3, 134.1, 131.1, 130.9, 130.6, 129.8, 127.5, 126.5, 125.3, 123.9, 122.1, 122.0, 115.1, 54.4, 45.7, 30.7, 29.8, 27.9, 26.0, 21.4 ppm.

IR (ATR) : $\tilde{v} = 2930, 1722, 1643, 1450, 1387, 1149, 1056, 868, 751, 727 \text{ cm}^{-1}$.

HRMS $[M+H]^+$ calculated for $C_{25}H_{26}N_3O^+$: 384.2071, found: 384.2072.

3-(9-(3,5-dichlorophenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile(3p)

White solid 73% (61.9 mg), mp: 226-227 °C. $R_f = 0.8$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.89 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 1H), 7.58 – 7.55 (m, 1H), 7.46 (dd, *J* = 16.2, 8.5 Hz, 2H), 2.46 (d, *J* = 14.6 Hz, 1H), 2.24 (d, *J* = 14.4 Hz, 1H), 1.58 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 168.9, 136.5, 134.3, 133.4, 131.0, 130.6, 129.1, 128.0, 127.3,

125.9, 124.0, 121.4, 118.3, 115.3, 54.5, 46.1, 30.7, 30.1, 28.0, 26.0 ppm.

IR (ATR) : $\tilde{v} = 2930, 1733, 1659, 1444, 1384, 1314, 1037, 850, 750, 679 \text{ cm}^{-1}$.

HRMS $[M+H]^+$ calculated for $C_{23}H_{20}Cl_2N_3O^+$: 424.0978, found: 424.0987.

3-(9-(4-chloro-3-fluorophenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(3q)

White solid 60% (48.9 mg), mp: 148-149 °C. $R_f = 0.7$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.23 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.58 (dt, J = 14.8, 7.8 Hz, 4H), 7.44 (t, J = 7.7 Hz, 1H), 7.26 (d, J = 1.7 Hz, 0H), 2.53 – 2.32 (m, 1H), 2.25 (d, J = 14.4 Hz, 1H), 1.55 (s, 3H), 1.39 (s, 3H), 1.29 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.1, 158.7 (d, J = 251.1 Hz), 133.5, 131.72 (d, J = 7.5 Hz), 131.2, 127.9, 125.9, 125.7, 123.9, 121.8, 121.6, 119.1, 117.4 (d, J = 21.2 Hz), 115.3, 54.5, 45.9, 30.7, 30.0, 27.8, 25.9 ppm (two signals are missing due to overlapping).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.88 ppm.

IR (ATR) : $\tilde{v} = 2918$, 1719, 1637, 1450, 1391, 1309, 1145, 748, 728 cm⁻¹.

HRMS $[M+H]^+$ calculated for $C_{23}H_{20}ClFN_3O^+$: 408.1274, found: 408.1278.

3-(9-(3-fluoro-4-methylphenyl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile (3r)

White solid 90% (69.7 mg), mp: 156-157 °C. $R_f = 0.7$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.49 – 7.35 (m, 4H), 2.38 (d, *J* = 2.0 Hz, 4H), 2.26 (d, *J* = 14.5 Hz, 1H), 1.55 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.2, 161.9 (d, J = 245.3 Hz), 133.9, 132.8, 131.2, 130.5, 130.4, 127.7 126.0, 125.9(d, J = 17.1 Hz), 124.4, 123.9, 121.8, 120.4, 115.6 (d, J = 23.4 Hz), 115.2, 54.5, 45.9, 30.8, 29.9, 27.9, 26.0, 14.7 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.28 ppm.

IR (ATR) : $\tilde{v} = 2929$, 1733, 1637, 1444, 1296, 1148, 745, 669, 555 cm⁻¹.

HRMS [M+H]⁺ calculated for C₂₄H₂₃FN₃O⁺ : 388.1820, found: 388.1824.

3-(1-imino-2-methyl-9-(naphthalen-2-yl)-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(3s)

White solid 78% (63.4 mg), mp: 105-106 °C. $R_f = 0.5$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.8 Hz, 2H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.94 (dd, *J* = 6.1, 3.4 Hz, 2H), 7.86 (dd, *J* = 7.8, 3.4 Hz, 2H), 7.58 (dd, *J* = 6.4, 3.4 Hz, 3H), 7.44 (t, *J* = 7.6 Hz, 1H), 2.46 (d, *J* = 14.6 Hz, 1H), 2.29 (d, *J* = 14.6 Hz, 1H), 1.59 (s, 3H), 1.41 (s, 3H), 1.33 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.2, 134.2, 133.8, 133.3, 131.3, 130.3, 129.5, 128.6, 128.4, 128.3, 128.0, 127.7, 127.0, 126.9, 126.4, 125.6, 124.0, 122.1, 121.7, 115.2, 54.5, 45.9, 30.8, 29.9, 27.9, 26.1 ppm.

IR (ATR) : $\tilde{v} = 2926$, 1745, 1643, 1441, 1306, 1142, 856, 750 cm⁻¹.

HRMS $[M+H]^+$ calculated for $C_{27}H_{24}N_3O^+$: 406.1914, found: 406.1912.

3-(9-(benzofuran-2-yl)-1-imino-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-dimethylpropanenitrile(3t)

White solid 60% (47.5 mg), mp : 105-106 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 11.66 (s, 1H), 8.29 (d, J = 8.1 Hz, 1H), 8.09 (s, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.63 (t, J = 6.9 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.36 (dt, J = 30.4, 7.2 Hz, 3H), 2.57 – 2.42 (m, 1H), 2.36 (d, J = 14.3 Hz, 1H), 1.62 (s, 3H), 1.35 (d, J = 10.2 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 167.8, 154.1, 149.0, 131.4, 131.2, 128.6, 127.9, 125.9, 125.7, 123.8, 123.7, 122.4, 121.4, 115.4, 111.2, 54.3, 45.7, 30.7, 29.3, 28.6, 26.3 ppm (three signals are missing due to overlapping).

IR (ATR) : $\tilde{v} = 2918$, 1733, 1649, 1450, 1261, 1140, 817, 745 cm⁻¹.

HRMS $[M+H]^+$ calculated for $C_{25}H_{22}N_3O_2^+$: 396.1707, found: 396.1711.

3-(1-imino-2-methyl-3-oxo-9-(thiophen-2-yl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2dimethylpropanenitrile(3u)

Yellow solid 65% (47.0 mg), mp: 155-156 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.42 (s, 1H), 8.21 (d, *J* = 8.1 Hz, 1H), 7.87 – 7.65 (m, 2H), 7.65 – 7.35 (m, 4H), 2.46 (d, *J* = 14.6 Hz, 1H), 2.24 (d, *J* = 14.3 Hz, 1H), 1.56 (s, 3H), 1.39 (s, 3H), 1.27 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 190.0, 170.4, 132.9, 132.7, 132.2, 130.7, 129.7, 129.4, 128.2, 128.2, 126.0, 124.2, 123.5, 119.2, 115.8, 56.3, 45.1, 30.9, 28.8, 28.7, 24.3 ppm.

IR (ATR) : $\tilde{v} = 2981$, 1745, 1640, 1447, 1391, 1336, 745, 646 cm⁻¹.

HRMS $[M+H]^+$ calculated for $C_{21}H_{20}N_3OS^+$: 362.1322, found: 362.1322.

3-(1-imino-2-methyl-3-oxo-9-(thiophen-3-yl)-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-

dimethylpropanenitrile(3v)

Yellow solid 61% (44.1 mg), mp: 154-155 °C. R_f = 0.6 (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.42 (s, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 7.90 – 7.65 (m, 2H), 7.55 – 7.46 (m, 3H), 7.41 (t, *J* = 7.7 Hz, 1H), 2.43 (s, 1H), 2.25 (d, *J* = 13.6 Hz, 1H), 1.55 (s, 3H), 1.38 (s, 3H), 1.27 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.1, 134.1, 131.4, 131.1, 130.0, 127.8, 127.6, 125.5, 124.9, 123.9, 122.1, 116.5, 115.1, 54.4, 45.9, 30.8, 30.0, 27.6, 25.9 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2981$, 1730, 1643, 1444, 1378, 1333, 751, 643 cm⁻¹.

HRMS [M+H]⁺ calculated for C₂₁H₂₀N₃OS⁺ : 362.1322, found: 362.1322.

3-(1-imino-9-iodo-2-methyl-3-oxo-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-

dimethylpropanenitrile(3w)

White solid 95% (77.0 mg), mp: 129-130 °C. $R_f = 0.6$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.71 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 2.40 (d, J = 8.0 Hz, 1H), 7.55 – 7.40 (m, 3H), 7.55 – 7.55 (m, 3H), 7

14.6 Hz, 1H), 2.29 (d, *J* = 14.5 Hz, 1H), 1.56 (s, 3H), 1.31 (d, *J* = 20.3 Hz, 6H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 169.3, 136.5, 131.4, 128.5, 125.9, 123.6, 123.0, 115.2, 54.6,

45.7, 30.8, 29.4, 28.5, 26.0 ppm (two signals are missing due to overlapping).

IR (ATR) : $\tilde{v} = 2984, 1730, 1640, 438, 1384, 1321, 881, 755$ cm⁻¹.

HRMS $[M+Na]^+$ calculated for $C_{17}H_{16}IN_3ONa^+$: 428.0230, found: 428.0232.

Red solid 70% (39.1 mg), mp: 120-121 °C. $R_f = 0.6$ (PE:EA = 1:1).

¹**H NMR** (400 MHz,CDCl₃) δ 10.14 (s, 1H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.04 (s, 1H), 2.35 (s, 1H), 2.28 (d, *J* = 14.2 Hz, 1H), 1.54 (s, 3H), 1.35 (s, 3H), 1.25 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.5, 134.5, 131.7, 127.3, 125.4, 123.8, 123.3, 115.2, 104.1,
54.2, 45.6, 30.8, 29.7, 27.9, 26.0 ppm (one signal is missing due to overlapping).

IR (ATR) : $\tilde{v} = 2984$, 1740, 1652, 1441, 1387, 1315, 833, 757 cm⁻¹.

HRMS $[M+H]^+$ calculated for $C_{17}H_{17}N_3O^+$: 280.1445, found: 280.1442.

2,2-dimethyl-3-(7-methyl-6-oxo-7,9-dihydro-6*H*-benzo[b]benzo[5,6]azepino[2,3,4-*gh*]pyrrolizin-7-yl)propanenitrile(3A)

White solid 50% (36.8 mg), mp: 118-119 °C. $R_f = 0.8$ (PE:EA = 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.20 (m, 2H), 8.06 – 7.97 (m, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.47 (s, 3H), 5.07 (d, *J* = 13.1 Hz, 1H), 4.87 (d, *J* = 13.2 Hz, 1H), 2.43 (d, *J* = 14.6 Hz, 1H), 2.28 (d, *J* = 14.7 Hz, 1H), 1.49 (s, 3H), 1.32 (s, 3H), 1.29 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 164.8, 133.7, 133.4, 132.6, 131.9, 131.7, 130.3, 129.8, 128.5,

127.8, 125.7, 125.1, 124.2, 123.5, 122.1, 116.0, 59.7, 55.7, 46.1, 29.8, 28.4, 27.4, 25.6 ppm.

IR (ATR) : $\tilde{v} = 2930$, 1742, 1649, 1450, 1315, 1146, 785, 757 cm⁻¹.

HRMS $[M+H]^+$ calculated for $C_{24}H_{22}N_3O^+$: 368.1758, found: 368.1759.

3-(1-imino-2-methyl-3-oxo-9-phenyl-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)-2,2-

dimethylpropanamide (4)

White solid 70% (52.6 mg), mp: 68-69 °C. $R_f = 0.5$ (PE:EA = 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.23 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.80 – 7.73 (m, 3H), 7.60 – 7.53 (m, 4H), 7.50 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 2.29 (d, *J* = 5.6 Hz, 1H), 2.22 (d, *J* = 16.5 Hz, 1H), 1.56 (s, 3H), 1.39 (s, 3H), 1.31 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 200.6, 169.3, 134.8, 134.1, 132.2, 131.2, 129.8, 129.0, 128.4, 127.7, 125.6, 122.1, 120.6, 120.2, 115.2, 54.5, 45.9, 36.5, 30.8, 28.0, 26.1 ppm.
IR (ATR) : ṽ = 2921, 1637, 1523, 1447, 1302, 1258, 1140, 755, 700 cm⁻¹.
HRMS: [M+H]⁺ calculated for C₂₃H₂₅N₃O₂⁺: 374.1863, found: 374.1862.
C. Scale-up reaction.

1-methacryloyl-3-phenyl-1*H*-indole-2-carbonitrile **1a** (1 mmol), AIBN **2a** (2.5 mmol) and absolute ethanole (20 mL) were charged into a pressure tube. The reaction mixture was stirred at N_2 under 60 °C for 20 h. After completion of the reaction, the solvent was removed under reduced pressure and the crude reaction mixture was directly purified through column chromatography on silica gel using PE/EA (8:1) as eluent to obtain product **3a** in 68% yield (0.84 g).

D. Mechanistic studies:

To a Schlenk tube under air conditions, 1-methacryloyl-3-phenyl-1*H*-indole-2-carbonitrile **1a** (0.2 mmol, 1 equiv.), AIBN **2a** (0.5 mmol, 2.5 equiv.), TEMPO/DPE (0.6 mmol, 3 equiv.) and absolute ethanole (2 mL) were successively added. Then, the tube was stirred at N₂ under 60 °C for 20 h. The corresponding product (**3a**) was not detected according to TLC analysis. The radical-trapping adducts **I-1** and **I-2** were detected by HRMS analysis. HRMS (ESI-TOF) Calculated for $C_{13}H_{24}N_2ONa$ ([M+Na] ⁺): 247.1782. found: 247.1782. Calculated for $C_{18}H_{17}N$ ([M+Na] ⁺): 270.1254. found: 270.1264.

Figure S1. Copy of HRMS Spectrum of TEMPO/DPE-Br adduct

E. Crystal structure.

```
(a) Crystal structure of complex 3a, CCDC Number = 2413982
```


Figure S2 Crystal structure of **3a** with thermal ellipsoids at 50% probability.

Identification code	3a						
Empirical formula	C ₂₃ H ₂₁ N ₃ O						
Formula weight	355.43						
Temperature/K	293(2)						
Crystal system	monoclinic						
Space group	C2/c						
a/Å	22.050(2)						
b/Å	8.2245(13)						
c/Å	21.735(3)						
$\alpha^{\prime \circ}$	90						
β/°	100.182(11)						
$\gamma/^{\circ}$	90						
Volume/Å ³	3879.4(9)						
Z	8						
$\rho_{calc}g/cm^3$	1.217						
μ/mm ⁻¹	0.076						
F(000)	1504.0						
Crystal size/mm ³	0.17 imes 0.12 imes 0.1						
Radiation	MoKa ($\lambda = 0.71073$)						
20 range for data collection/° 5.516 to 52.732							
Index ranges	$\text{-}24 \leq h \leq 27, \text{-}10 \leq k \leq 8, \text{-}27 \leq l \leq 26$						
Reflections collected	9870						
Independent reflections	$3961 [R_{int} = 0.0345, R_{sigma} = 0.0566]$						
Data/restraints/parameters	3961/1/262						
Goodness-of-fit on F ²	1.092						
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0955, wR_2 = 0.2265$						
Final R indexes [all data]	$R_1 = 0.1348, wR_2 = 0.2472$						
Largest diff. peak/hole / e Å ⁻³ 0.25/-0.16							

Table 1 Crystal data and structure refinement for 3a

F. NMR spectra:

¹H and ¹³C NMR Spectra of compound 3a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H and ¹³C NMR Spectra of compound 3b

¹H and ¹³C NMR Spectra of 3c

¹H and ¹³C NMR Spectra of 3d

¹H and ¹³C NMR Spectra of 3e

f1 (ppm)

¹H and ¹³C NMR Spectra of 3f

fl (ppm)

¹H and ¹³C NMR Spectra of 3g

¹H and ¹³C NMR Spectra of 3h

fl (ppm)

									111.80				
il statistica.								بنيها أنتهين					

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 f1 (ppm) ¹H and ¹³C NMR Spectra of 3i

S29

¹H and ¹³C NMR Spectra of 3j

f1 (ppm)

¹H and ¹³C NMR Spectra of 3k

¹H and ¹³C NMR Spectra of 3l

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H and ¹³C NMR Spectra of 3n

S34

¹H and ¹³C NMR Spectra of 30

100 f1 (ppm)

¹H and ¹³C NMR Spectra of 3p

¹H and ¹³C NMR Spectra of 3q

f1 (ppm)

¹⁹F NMR spectrum of 3q

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

¹H and ¹³C NMR Spectra of 3r

fl (ppm)

¹⁹F NMR spectrum of 3r

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 f1 (ppm)

f1 (ppm)

f1 (ppm)

¹H and ¹³C NMR Spectra of 3u

fl (ppm)

¹H and ¹³C NMR Spectra of 3v

¹H and ¹³C NMR Spectra of 3x

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

G. References

- J. Yuan, L. Shen, N. Guo, Y. Yin, P. Yang, L. Yang, Y. Xiao and S. Zhang, *The Journal of Organic Chemistry*, 2023, 88, 16598-16608.
- 2 R. Wang and W. Bao, *RSC Advances*, 2015, **5**, 57469-57471.